1
|
Fukunaga N, Ribeiro RVP, Bissoondath V, Billia F, Rao V. Ghrelin May Inhibit Inflammatory Response and Apoptosis During Ischemia-Reperfusion Injury. Transplant Proc 2022; 54:2357-2363. [PMID: 36180256 DOI: 10.1016/j.transproceed.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ghrelin, a novel growth hormone-releasing peptide, has both anti-inflammatory and anti-apoptotic effects on human endothelial cells. We evaluated the protective effects of ghrelin against ischemia-reperfusion injury (IRI) in a murine heterotopic cervical heart transplantation model. METHODS Donor hearts from C57BL/6J wild-type mice, which were kept in cold saline for 60 minutes, were heterotopically transplanted into C57BL/6J wild-type recipients. A day prior to heterotopic cervical heart transplantation, donor animals received either ghrelin (300 nmol/kg) or saline (0.3 mL) intraperitoneally. Upon reperfusion and postoperative day 1, ghrelin or saline was administered to the recipients. Donor hearts were procured on day 2. RESULTS Ghrelin injection did not result in any adverse effects in donors or recipients. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly decreased in the ghrelin group (0.38% ± 0.21% vs 5.74% ± 3.68%; P < .001). Both cleaved caspase-3 activity and Bcl-2/Bax ratio from the ghrelin group were significantly reduced compared to those in the control. Furthermore, the phosphorylated Akt/Akt ratio was higher in the ghrelin group (0.44 ± 0.21 vs 0.14 ± 0.03; P = .043). Nuclear factor-kappa B p65 nuclear translocation was reduced in the ghrelin hearts compared to the controls (3.17% ± 1.84% vs 19.28% ± 13.14%; P = .009). Vascular cell adhesion molecule-1, intracellular adhesion molecule-1, nuclear factor-kappa B, and tumor necrosis factor alpha levels were also significantly reduced in the ghrelin-treated group. No significant difference was observed in 8-isoprostane production between groups. CONCLUSION Ghrelin inhibits the inflammatory response and apoptosis during transplant-related IRI. This study demonstrates the protective effects of ghrelin against IRI.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Filio Billia
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
3
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Fukunaga N, Kawajiri H, Badiwala MV, Butany J, Li RK, Billia F, Rao V. Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. Am J Transplant 2020; 20:1262-1271. [PMID: 31769924 DOI: 10.1111/ajt.15724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) and cardiac allograft vasculopathy (CAV) remain unsolved complications post-heart transplant (Tx). The antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) has been suggested to inhibit reactive oxygen species-mediated NF-κB activation. We hypothesized that Nrf2 inhibits NF-κB activation post-Tx and suppresses IRI and the subsequent development of CAV. IRI and CAV were investigated in murine heterotopic Tx models, respectively. Nrf2 wild-type (WT) and KO mice were used as donors. Sulforaphane was used as an Nrf2 agonist. In saline-treated animals following 24 hours of reperfusion in isogenic grafts, Nrf2-KO showed significantly less SOD1/2 activity compared with WT. Nrf2-KO displayed significantly high total and phosphorylated p65 expressions and percentage of cells with nuclear p65. mRNA levels of NF-κB-mediated proinflammatory genes were also high. Graft dysfunction, apoptosis, and caspase-3 activity were significantly higher in Nrf2-KO. In the allograft studies, graft beating score was significantly weaker in Nrf2-KO compared with WT. Nrf2-KO also demonstrated significantly more coronary luminal narrowing. In WT animals, sulforaphane successfully augmented all the protective effects of Nrf2 with increase of SOD2 activity. Nrf2 inhibits NF-κB activation and protects against IRI via its antioxidant properties and suppresses the subsequent development of CAV.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Kawajiri
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mitesh V Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jagdish Butany
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Cheng CH, Lee CF, Oh BC, Furtmüller GJ, Patel CH, Brandacher G, Powell JD. Targeting Metabolism as a Platform for Inducing Allograft Tolerance in the Absence of Long-Term Immunosuppression. Front Immunol 2020; 11:572. [PMID: 32328063 PMCID: PMC7161684 DOI: 10.3389/fimmu.2020.00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Transplant tolerance in the absence of long-term immunosuppression has been an elusive goal for solid organ transplantation. Recently, it has become clear that metabolic reprogramming plays a critical role in promoting T cell activation, differentiation, and function. Targeting metabolism can preferentially inhibit T cell effector generation while simultaneously promoting the generation of T regulatory cells. We hypothesized that costimulatory blockade with CTLA4Ig in combination with targeting T cell metabolism might provide a novel platform to promote the induction of transplant tolerance.
Collapse
Affiliation(s)
- Chih-Hsien Cheng
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung Transplantation Institute, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Fang Lee
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung Transplantation Institute, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Byoung Chol Oh
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg J Furtmüller
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chirag H Patel
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan D Powell
- Sidney∼Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Ziegler T, Ishikawa K, Hinkel R, Kupatt C. Translational Aspects of Adeno-Associated Virus–Mediated Cardiac Gene Therapy. Hum Gene Ther 2018; 29:1341-1351. [DOI: 10.1089/hum.2017.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tilman Ziegler
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kiyotake Ishikawa
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rabea Hinkel
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Christian Kupatt
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
The Selective RNA Polymerase I Inhibitor CX-5461 Mitigates Neointimal Remodeling in a Modified Model of Rat Aortic Transplantation. Transplantation 2018; 102:1674-1683. [DOI: 10.1097/tp.0000000000002372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Sun W, Chan SY. Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2018; 5:204. [PMID: 30073166 PMCID: PMC6058030 DOI: 10.3389/fmed.2018.00204] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a historically neglected and highly morbid vascular disease that leads to right heart failure and, in some cases, death. The molecular origins of this disease have been poorly defined, and as such, current pulmonary vasodilator therapies do not cure or reverse this disease. Although extracellular matrix (ECM) remodeling and pulmonary arterial stiffening have long been associated with end-stage PAH, recent studies have reported that such vascular stiffening can occur early in pathogenesis. Furthermore, there is emerging evidence that ECM stiffening may represent a key first step in pathogenic reprogramming and molecular crosstalk among endothelial, smooth muscle, and fibroblast cells in the remodeled pulmonary vessel. Such processes represent the convergence of activation of a number of specific mechanoactivated signaling pathways, microRNAs, and metabolic pathways in pulmonary vasculature. In this review, we summarize the contemporary understanding of vascular stiffening as a driver of PAH, its mechanisms, potential therapeutic targets and clinical perspectives. Of note, early intervention targeting arterial stiffness may break the vicious cycle of PAH progression, leading to outcome improvement which has not been demonstrated by current vasodilator therapy.
Collapse
Affiliation(s)
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Wang LP, Jia ZB, Liu Y, Gao Q, Cheng SJ, Jin D, Ma L, Yin XH. Inhibitory effect of wild-type P53 gene transfer on graft coronary artery disease. Transpl Immunol 2018; 48:1-9. [DOI: 10.1016/j.trim.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 11/27/2022]
|
10
|
Macrophage-stimulated microRNA expression in mural cells promotes transplantation-induced neointima formation. Oncotarget 2018; 8:30100-30111. [PMID: 28415796 PMCID: PMC5444729 DOI: 10.18632/oncotarget.16279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 01/16/2023] Open
Abstract
In this study, we tested the possibility that macrophages might contribute to neointima formation by stimulating microRNA expressions in mural cells. Thoracic aortas from F344 rats were transplanted into recipient Lewis rats. Clodronate liposome was used for in vivo macrophage depletion. Using miR-21 as a prototypic example of vascular enriched microRNA, we showed that macrophage depletion reduced the expression level of miR-21, which was upregulated in the allograft. This effect of macrophage depletion was accompanied by attenuations in neointimal hyperplasia and transplantation-induced vascular inflammation. Using in vitro assays, we identified that macrophages might stimulate miR-21 expression in smooth muscle cells and adventitial fibroblasts via the release of tumor necrosis factor-α. We also showed that silencing of miR-21 suppressed tumor necrosis factor-induced proliferation, migration, and inflammatory responses in mural cells. Our results suggest that macrophage may promote transplantation-induced neointima formation by stimulating miR-21 expression in vascular mural cells, which promotes mural cell proliferation, migration and/or inflammation. Moreover, we have established that tumor necrosis factor-α has a major role in mediating this paracrine process.
Collapse
|
11
|
Franz M, Grün K, Betge S, Rohm I, Ndongson-Dongmo B, Bauer R, Schulze PC, Lichtenauer M, Petersen I, Neri D, Berndt A, Jung C. Lung tissue remodelling in MCT-induced pulmonary hypertension: a proposal for a novel scoring system and changes in extracellular matrix and fibrosis associated gene expression. Oncotarget 2018; 7:81241-81254. [PMID: 27835899 PMCID: PMC5348389 DOI: 10.18632/oncotarget.13220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Stefan Betge
- Department of Angiology, Cardiovascular Center Bad Bevensen, Bad Bevensen, Germany
| | - Ilonka Rohm
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Austria
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Christian Jung
- Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Fiorelli AI, Lourenço-Filho DD, Tavares ER, Carvalho PO, Marques AF, Gutierrez PS, Maranhão RC, Stolf NAG. Methotrexate associated to lipid core nanoparticles improves cardiac allograft vasculopathy and the inflammatory profile in a rabbit heart graft model. ACTA ACUST UNITED AC 2017; 50:e6225. [PMID: 28832763 PMCID: PMC5561808 DOI: 10.1590/1414-431x20176225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
Coronary allograft vasculopathy is an inflammatory-proliferative process that compromises the long-term success of heart transplantation and has no effective treatment. A lipid nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and concentrates them in the heart graft. The aim of the study was to investigate the effects of methotrexate (MTX) associated to LDE. Rabbits fed a 0.5% cholesterol diet and submitted to heterotopic heart transplantation were treated with cyclosporine A (10 mg·kg–1·day–1 orally) and allocated to treatment with intravenous LDE-MTX (4 mg/kg, weekly, n=10) or with weekly intravenous saline solution (control group, n=10), beginning on the day of surgery. Animals were euthanized 6 weeks later. Compared to controls, grafts of LDE-MTX treated rabbits showed 20% reduction of coronary stenosis, with a four-fold increase in vessel lumen and 80% reduction of macrophage staining in grafts. Necrosis was attenuated by LDE-MTX. Native hearts of both LDE-MTX and Control groups were apparently normal. Gene expression of lipoprotein receptors was significantly greater in grafts compared to native hearts. In LDE-MTX group, gene expression of the pro-inflammatory factors tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-18, vascular cell adhesion molecule-1, and matrix metalloproteinase-12 was strongly diminished whereas expression of anti-inflammatory interleukin-10 increased. LDE-MTX promoted improvement of the cardiac allograft vasculopathy and diminished inflammation in heart grafts.
Collapse
Affiliation(s)
- A I Fiorelli
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D D Lourenço-Filho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E R Tavares
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P O Carvalho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A F Marques
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P S Gutierrez
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R C Maranhão
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N A G Stolf
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Influence of Drugs Carried in Lipid Nanoparticles in Coronary Disease of Rabbit Transplanted Heart. Ann Thorac Surg 2017; 104:577-583. [DOI: 10.1016/j.athoracsur.2016.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
|
14
|
Sun Y, Wang K, Ye P, Wu J, Ren L, Zhang A, Huang X, Deng P, Wu C, Yue Z, Chen Z, Ding X, Chen J, Xia J. MicroRNA-155 Promotes the Directional Migration of Resident Smooth Muscle Progenitor Cells by Regulating Monocyte Chemoattractant Protein 1 in Transplant Arteriosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1230-9. [PMID: 27079875 DOI: 10.1161/atvbaha.115.306691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Smooth muscle-like cells are major cell components of transplant arteriosclerosis lesions. This study investigated the origin of the smooth muscle-like cells, the mechanisms responsible for their accumulation in the neointima, and the factors that drive these processes. APPROACH AND RESULTS A murine aortic transplantation model was established by transplanting miR-155(-/-) bone marrow cells into miR-155(+/+) mice. MicroRNA-155 was found to play a functional role in the transplant arteriosclerosis. Moreover, we found that the nonbone marrow-derived progenitor cells with markers of both early differentiated smooth muscles and stem cells in the allograft adventitia were smooth muscle progenitor cells. Purified smooth muscle progenitor cells expressed a mature smooth muscle cell marker when induced by platelet-derived growth factor-BB in vitro. In vivo, these cells could migrate into the intima from the adventitia and could contribute to the neointimal hyperplasia. The loss of microRNA-155 in bone marrow-derived cells decreased the concentration gradient of monocyte chemoattractant protein 1 between the intima and the adventitia of the allografts, which reduced the migration of smooth muscle progenitor cells from the adventitia into the neointima. CONCLUSIONS This study demonstrated that microRNA-155 promoted the directional migration of smooth muscle progenitor cells from the adventitia by regulating the monocyte chemoattractant protein 1 concentration gradient, which aggravated transplant arteriosclerosis.
Collapse
Affiliation(s)
- Yuan Sun
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Ke Wang
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Ping Ye
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Jie Wu
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Lingyun Ren
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Anchen Zhang
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Xiaofan Huang
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Peng Deng
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Chuangyan Wu
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Zhang Yue
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Zhaolei Chen
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Xiangchao Ding
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Jiuling Chen
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China
| | - Jiahong Xia
- From the Department of Vascular Surgery, The Clinical Medical College of Yangzhou University, Yangzhou, China (Y.S., Z.C.); Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.S., K.W., J.W., L.R., A.Z., X.H., P.D., C.W., Z.Y., X.D., J.C., J.X.); and Departments of Cardiovascular Medicine (P.Y., L.R., J.X.) and Cardiovascular Surgery (P.Y., L.R., J.X.), Central Hospital of Wuhan, Wuhan, China.
| |
Collapse
|
15
|
|
16
|
Franz M, Doll F, Grün K, Richter P, Köse N, Ziffels B, Schubert H, Figulla HR, Jung C, Gummert J, Renner A, Neri D, Berndt A. Targeted delivery of interleukin-10 to chronic cardiac allograft rejection using a human antibody specific to the extra domain A of fibronectin. Int J Cardiol 2015; 195:311-22. [PMID: 26056964 DOI: 10.1016/j.ijcard.2015.05.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Management of chronic rejection is challenging since there are not sufficient preventive or therapeutic strategies. The rejection process leads to overexpression of ED-A(+) fibronectin (ED-A(+) Fn). The human antibody F8, specific to ED-A(+) Fn, may serve as a vehicle for targeted delivery of bioactive payloads, e.g. interleukin 10 (IL-10). The aim of this study was to investigate the therapeutic effects of the fusion protein F8-interleukin-10 (F8-IL10) in the process of chronic rejection development. METHODS A heterotopic rat heart transplantation model was used to induce chronic rejection. For therapeutic interventions, the immunocytokines F8-humanIL10 (DEKAVIL), F8-ratIL10 as well as KSF-humanIL10 (irrelevant antigen-specificity) were used. Treatment was performed weekly for 10 weeks starting at day 7 after transplantation (1mg/animal). RESULTS In the cardiac allografts, treatment with F8-huIL10 or F8-ratIL10 was associated with increased heart weights, a higher grade of chronic rejection, increased CIF, higher protein expression levels of alpha-smooth muscle actin (α-SMA), an augmented infiltration with inflammatory cells (CD4+, CD8+ and CD68+ cells) and higher serum levels of brain natriuretic peptide (BNP) compared to the control groups. CONCLUSIONS All observed treatment effects are transplantation-specific since the F8 antibody is specific to ED-A(+) Fn that is not expressed in healthy hearts. A clear targeting effect of F8-huIL10 as well as F8-ratIL10 could be proven. Against that background, a further study is needed to address the question, if F8-IL10 treatment is capable to reduce CAV and CIF starting at a time point when chronic rejection has fully developed (therapeutic approach).
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany.
| | - Fabia Doll
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Petra Richter
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Nilay Köse
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Barbara Ziffels
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Science and Welfare, Jena University Hospital, Jena, Germany
| | - Hans R Figulla
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Christian Jung
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart Center North Rhine-Westphalia, Ruhr-University of Bochum, Bad Oeynhausen, Germany
| | - André Renner
- Clinic for Thoracic and Cardiovascular Surgery, Heart Center North Rhine-Westphalia, Ruhr-University of Bochum, Bad Oeynhausen, Germany
| | - Dario Neri
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | |
Collapse
|
17
|
Maranhão RC, Tavares ER. Advances in non-invasive drug delivery for atherosclerotic heart disease. Expert Opin Drug Deliv 2015; 12:1135-47. [DOI: 10.1517/17425247.2015.999663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Huang X, Ren L, Ye P, Cheng C, Wu J, Wang S, Sun Y, Liu Z, Xie A, Xia J. Peroxisome proliferator-activated receptor γ deficiency in T cells accelerates chronic rejection by influencing the differentiation of CD4+ T cells and alternatively activated macrophages. PLoS One 2014; 9:e112953. [PMID: 25383620 PMCID: PMC4226585 DOI: 10.1371/journal.pone.0112953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/22/2014] [Indexed: 12/04/2022] Open
Abstract
Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects.
Collapse
Affiliation(s)
- Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lingyun Ren
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Wuhan, People’s Republic of China
| | - Chao Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuan Sun
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zheng Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Aini Xie
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
19
|
Dipchand AI, White M, Manlhiot C, Pollock-BarZiv S, Allain-Rooney T, West L, He Y, Touyz RM. Myocyte growth, repair, and oxidative stress following pediatric heart transplantation. Pediatr Transplant 2014; 18:764-70. [PMID: 25118092 DOI: 10.1111/petr.12337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2014] [Indexed: 11/29/2022]
Abstract
Cardiac remodeling is associated with plasma biomarkers of fibrinogenesis, inflammation, and oxidative stress, and upregulation of mitogenic, pro-fibrotic, and apoptotic signaling pathways. Our primary objective was to evaluate biomarker and subcellular myocardial changes in pediatric heart transplant recipients. Fifty-two-week prospective, randomized (tacrolimus, Tac, vs. cyclosporine, CsA), open-label, parallel group study. Serial myocardial biopsies were probed for mitogenic and pro-inflammatory proteins. Plasma biomarkers of oxidative stress (F2α isoprostanes, nitrotyrosine), and inflammation and oxidation (hsCRP and cystatin-C) were measured. Nine of 11 randomized patients completed the study (four Tac, five CsA). Mean levels of F2α isoprostanes, hsCRP, and cystatin-C were maximal at Week 2. Peak activation of all MAP kinases in myocardial tissue was maximal at Week 10; no association was seen with rejection. Cardiac Bax/Bcl-2 levels (index of apoptosis) correlated negatively with F2α isoprostanes at Week 2 (r = -0.88) and with hsCRP at Week 52 (r = -0.67). At Week 52, hsCRP levels correlated positively with molecular indices of cardiac cell growth. We found evidence of systemic and myocardial oxidative damage and inflammation early posttransplant, which may be related to the remodeling process. Further study is needed to better understand the cardiac and systemic repair processes following pediatric heart transplantation.
Collapse
Affiliation(s)
- Anne I Dipchand
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Adeno-Associated Viral Vector 2.9 Thymosin ß4 Application Attenuates Rejection After Heart Transplantation. Transplantation 2014; 98:835-43. [DOI: 10.1097/tp.0000000000000327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Immunology of Transplant Protocols. CURRENT OTORHINOLARYNGOLOGY REPORTS 2014. [DOI: 10.1007/s40136-014-0057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Zou H, Yang Y, Gao M, Zhang B, Ming B, Sun Y, Chen H, Tang X, Chen Z, Xiong P, Xu Y, Fang M, Tan Z, Gong F, Zheng F. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs. Am J Transplant 2014; 14:1765-77. [PMID: 24984831 DOI: 10.1111/ajt.12781] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/25/2023]
Abstract
Chronic rejection that leads to diffuse narrowing and occlusion of graft vessels is the most important cause of morbidity and mortality following cardiac transplantation. The role and underlying mechanism of high-mobility group box 1 (HMGB1), as an established inflammatory mediator in acute rejection, remains poorly understood in chronic rejection. Here, we assessed the effects and mechanisms of HMGB1 on the chronic rejection using single MHC Class II-mismatched mouse cardiac transplantation model. It was found that HMGB1 was increased accompanying with the development of chronic rejection, while blockade of HMGB1 with specific neutralizing mAb substantially ameliorated chronic rejection-mediated vasculopathy and fibrosis of allograft, as well as markedly decreased T cell infiltration and production of IL-17A and interferon-gamma in allograft and recipient's spleen. Further, anti-HMGB1 antibody treatment significantly declined the number and frequency of mature dendritic cells (DCs) in allograft and recipient's spleen, especially CD11b(+) Ly6C(high) matured DCs that share the phenotypes with inflammatory-DCs. These findings indicate that HMGB1 contributes to chronic rejection, and HMGB1 blockade may be a novel mean to disrupt the proinflammatory loop after heart transplantation.
Collapse
Affiliation(s)
- H Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun Y, Ye P, Wu J, Liu Z, Zhang A, Ren L, Cheng C, Huang X, Wang K, Deng P, Wu C, Yue Z, Xia J. Inhibition of intimal hyperplasia in murine aortic allografts by the oral administration of the transforming growth factor-beta receptor I kinase inhibitor SD-208. J Heart Lung Transplant 2014; 33:654-61. [DOI: 10.1016/j.healun.2014.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/16/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022] Open
|
24
|
Coronary cardiac allograft vasculopathy versus native atherosclerosis: difficulties in classification. Virchows Arch 2014; 464:627-35. [PMID: 24807733 DOI: 10.1007/s00428-014-1586-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 02/01/2023]
Abstract
Cardiac allograft vasculopathy is regarded as a progressive and diffuse intimal hyperplastic lesion of arteries and veins that leads to insidious vessel narrowing and to allograft ischemic disease, such as acute myocardial infarction or sudden cardiac death. The coronary lesions in transplanted hearts are considered as a particular type of arteriosclerosis with many similarities but also significant differences compared to native coronary atherosclerosis. It is particularly difficult for pathologists to systematically classify the lesions and to elucidate their origins, since over time, the allograft immune responses cause vascular pathology characterized by not only the onset of de novo fibrocellular lesions but also remodeling of already-existing native atherosclerotic lesions in the donor heart. Intraplaque hemorrhages, which result from newly formed leaky microvessels, may cause rapid increase of stenosis and generate a substrate for plaque destabilization. Comparing cardiac allograft vasculopathy from explanted hearts at autopsy with native coronary atherosclerosis from hearts removed at transplantation has revealed that ongoing intraplaque hemorrhages are also an important feature of cardiac allograft vasculopathy and may be important factors in the rapid progression of cardiac allograft vasculopathy.
Collapse
|
25
|
Franz M, Matusiak-Brückner M, Richter P, Grün K, Ziffels B, Neri D, Maschek H, Schulz U, Pfeil A, Jung C, Figulla HR, Gummert J, Berndt A, Renner A. De novo expression of fetal ED-A(+) fibronectin and B (+) tenascin-C splicing variants in human cardiac allografts: potential impact for targeted therapy of rejection. J Mol Histol 2014; 45:519-32. [PMID: 24792713 DOI: 10.1007/s10735-014-9573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Management of acute and especially chronic rejection after human cardiac transplantation is still challenging. Chronic rejection, represented by allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) is known to cause severe long-term complications. Rejection associated tissue-remodelling entails the reoccurrence of fetal variants of Fibronectin (Fn) and Tenascin-C (Tn-C), which are virtually absent in adult human organs. In a rat model, an extensive re-expression could be demonstrated for ED-A(+) Fn with spatial association to CAV and CIF. Thus, it is of great interest to investigate the cardiac tissue expression and distribution in human samples. From 48 heart transplanted patients, 64 tissue specimens derived from right ventricular biopsies were available. Histopathological analysis was performed according to the International Society for Heart and Lung Transplantation (ISHLT) guidelines for the detection of acute rejection. By immunohistochemistry, protein expression of ED-A(+) Fn, B(+) Tn-C, alpha-smooth muscle actin, CD31 and CD45 was assessed and analysed semiquantitatively. Co-localisation studies were performed by means of immunofluorescence double labelling. Histopathological analysis of the 64 samples revealed different ISHLT grades (0R in 36 cases, 1R in 20 cases and 2R in 8 cases). There was a distinct and quantitatively relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C in most samples. Semi-quantitative evaluation did not show any correlation to the acute rejection grade for all markers. Interestingly, significant correlations to the extent of inflammation could be shown for ED-A(+) Fn (r = 0.442, p = 0.000) and B(+) Tn-C (r = 0.408, p = 0.001) as well as between both proteins (r = 0.663, p = 0.000). A spatial association of ED-A(+) Fn and B(+) Tn-C to CAV and CIF could be demonstrated. A relevant re-occurrence of ED-A(+) Fn and B(+) Tn-C following human heart transplantation could be demonstrated with spatial association to signs of rejection and a significant correlation to tissue inflammation. These data might contribute to the identification of novel biomarkers reflecting the rejection process and to the development of promising strategies to image, prevent or treat cardiac rejection.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Erlanger Allee 101, 07740, Jena, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cardiac signaling molecules and plasma biomarkers after cardiac transplantation: Impact of tacrolimus versus cyclosporine. J Heart Lung Transplant 2013; 32:1222-32. [DOI: 10.1016/j.healun.2013.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
|
27
|
IL-13 signaling via IL-13Rα2 triggers TGF-β1-dependent allograft fibrosis. Transplant Res 2013; 2:16. [PMID: 24143891 PMCID: PMC4016099 DOI: 10.1186/2047-1440-2-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022] Open
Abstract
Background Allograft fibrosis still remains a critical problem in transplantation, including heart transplantation. The IL-13/TGF-β1 interaction has previously been identified as a key pathway orchestrating fibrosis in different inflammatory immune disorders. Here we investigate if this pathway is also responsible for allograft fibrosis and if interference with the IL-13/TGF-β1 interaction prevents allograft fibrosis. Methods FVB or control DBA/1 donor hearts were transplanted heterotopically into DBA/1 recipient mice and hearts were explanted at day 60 and 100 post-transplantation. Cardiac tissue was examined by Masson’s trichrome staining and immunohistochemistry for CD4, CD8, CD11b, IL-13, Fas ligand, matrix metalloproteinase (MMP)-1, MMP-13, β2-microglobulin, and Gremlin-1. Graft-infiltrating cells were isolated and analyzed by flow cytometry. IL-13 and TGF-β1 levels were determined by enzyme-linked immunosorbent assay (ELISA) and the amount of collagen was quantified using a Sircol assay; IL-13Rα2 expression was detected by Western blotting. In some experiments IL-13/ TGF-β1 signaling was blocked with specific IL-13Rα2 siRNA. Additionally, a PCR array of RNA isolated from the allografts was performed to analyze expression of multiple genes involved in fibrosis. Results Both groups survived long-term (>100 days). The allogeneic grafts were infiltrated by significantly increased numbers of CD4+ (P <0.0001), CD8+ (P <0.0001), and CD11b+ cells (P = 0.0065) by day 100. Furthermore, elevated IL-13 levels (P = 0.0003) and numbers of infiltrating IL-13+ cells (P = 0.0037), together with an expression of IL-13Rα2, were detected only within allografts. The expression of IL-13 and IL-13Rα2 resulted in significantly increased TGF-β1 levels (P <0.0001), higher numbers of CD11bhighGr1intermediateTGF-β1+ cells, and elevated cardiac collagen deposition (P = 0.0094). The allograft fibrosis found in these experiments was accompanied by upregulation of multiple profibrotic genes, which was confirmed by immunohistochemical stainings of allograft tissue. Blockage of the IL-13/TGF-β1 interaction by IL-13Rα2 siRNA led to lower numbers of CD11bhighGr1intermediateTGF-β1+, CD4+, CD8+, and CD11b+ cells, and prevented collagen deposition (P = 0.0018) within these allografts. Conclusions IL-13 signaling via IL-13Rα2 induces TGF-β1 and causes allograft fibrosis in a murine model of chronic transplant rejection. Blockage of this IL-13/TGF-β1 interaction by IL-13Rα2 siRNA prevents cardiac allograft fibrosis. Thus, IL-13Rα2 may be exploitable as a future target to reduce allograft fibrosis in organ transplantation.
Collapse
|
28
|
Frea S, Capriolo M, Bergamasco L, Iacovino C, Quaglia FC, Ribezzo M, Marra WG, Boffini M, Rinaldi M, Morello M, Gaita F. Prognostic role of myocardial performance index on long-term survival after heart transplantation: a prospective study. Echocardiography 2013; 30:1033-41. [PMID: 23600857 DOI: 10.1111/echo.12220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The survival rate of heart transplant patients is increasing, underlying the need for accurate predictors of adverse events during clinical follow-up. Myocardial performance index (MPI) is a Doppler-derived index of combined systolic and diastolic function: we assessed the prognostic role of MPI in survival of patients >1 year after heart transplantation (HT). A total of 152 consecutive HT patients referred to our institution were enrolled in this prospective study. Primary endpoints were cardiac death and a composite of major adverse cardiac events (MACE). During follow-up (69 ± 22 months), 68 (44.7%) patients had an adverse event and 20 (13.15%) patients died. Patients with MACE during follow-up showed lower EF (57.3 ± 9.3 vs. 63 ± 6.1; P < 0.001) and higher MPI (0.45 ± 0.19 vs. 0.31 ± 0.13; P < 0.001) at enrolment. MPI and EF were independently related to MACE (OR = 2.2; 95% confidence interval [CI] = 1.01-5.1; and OR = 6.6; 95% CI = 3.5-11.2, respectively) and showed strong diagnostic power (MPI: receiver operating characteristic [ROC] area = 79%, with 79% sensitivity and 81% specificity; EF: ROC area = 77%, with 54% sensitivity and 91% specificity) in the subsequent year. Patients with EF > 50% and MPI < 0.45 at enrolment showed 75% event-free survival 5 years after HT. In HT patients, MPI combined with EF was an accurate means of predicting long-term adverse events.
Collapse
Affiliation(s)
- Simone Frea
- Division of Cardiology, University of Torino, Hospital S. Giovanni Battista, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wei W, Chen M, Zhu Y, Wang J, Zhu P, Li Y, Li J. Down-regulation of vascular HMGB1 and RAGE expression by n-3 polyunsaturated fatty acids is accompanied by amelioration of chronic vasculopathy of small bowel allografts. J Nutr Biochem 2012; 23:1333-40. [DOI: 10.1016/j.jnutbio.2011.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/31/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
|
30
|
Connective tissue growth factor (CTGF/CCN2): A protagonist in cardiac allograft vasculopathy development? J Heart Lung Transplant 2012; 31:881-7. [DOI: 10.1016/j.healun.2012.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/03/2012] [Accepted: 02/27/2012] [Indexed: 12/24/2022] Open
|
31
|
Suzuki JI, Ogawa M, Hirata Y, Nagai R, Isobe M. Effects of immunoglobulin to prevent coronary allograft vasculopathy in heart transplantation. Expert Opin Ther Targets 2012; 16:783-9. [PMID: 22762198 DOI: 10.1517/14728222.2012.697555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Although 100,000 cardiac transplants have been performed, coronary allograft vasculopathy (CAV), which is a phenomenon of chronic rejection, is still a serious problem. AREAS COVERED Several adhesion molecules, cytokines, and chemokines play a critical role in the process. Recent investigations have proved some promising methodologies for preventing or treating rejection. Although immunoglobulins are known to be an effective treatment in many diseases, their effect on cardiac transplantation or CAV is to be elucidated. EXPERT OPINION In this review article, we described some promising methodologies that use immunoglobulins to prevent CAV. Immunoglobulins may be used to prevent CAV.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- University of Tokyo, Graduate School of Medicine, Department of Advanced Clinical Science and Therapeutics, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan.
| | | | | | | | | |
Collapse
|
32
|
Fröhlich GM, Rufibach K, Enseleit F, Wolfrum M, von Babo M, Frank M, Berli R, Hermann M, Holzmeister J, Wilhelm M, Falk V, Noll G, Lüscher TF, Ruschitzka F. Statins and the risk of cancer after heart transplantation. Circulation 2012; 126:440-7. [PMID: 22761452 DOI: 10.1161/circulationaha.111.081059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Although newer immunosuppressive agents, such as mTOR (mammalian target of rapamycin) inhibitors, have lowered the occurrence of malignancies after transplantation, cancer is still a leading cause of death late after heart transplantation. Statins may have an impact on clinical outcomes beyond their lipid-lowering effects. The aim of the present study was to delineate whether statin therapy has an impact on cancer risk and total mortality after heart transplantation. METHODS AND RESULTS A total of 255 patients who underwent heart transplantation at the University Hospital Zurich between 1985 and 2007 and survived the first year were included in the present study. The primary outcome measure was the occurrence of any malignancy; the secondary end point was overall survival. During follow-up, a malignancy was diagnosed in 108 patients (42%). The cumulative incidence of tumors 8 years after transplantation was reduced in patients receiving a statin (34% versus 13%; 95% confidence interval, 0.25-0.43 versus 0.07-0.18; P<0.003). Statin use was associated with improved cancer-free and overall survival (both P<0.0001). A Cox regression model that analyzed the time to tumor formation with or without statin therapy, adjusted for age, male sex, type of cardiomyopathy, and immunosuppressive therapy (including switch to mTOR inhibitors or tacrolimus), demonstrated a superior survival in the statin group. Statins reduced the hazard of occurrence of any malignancy by 67% (hazard ratio, 0.33; 95% confidence interval, 0.21-0.51; P<0.0001). CONCLUSIONS Although it is not possible to adjust for all potential confounders because of the very long follow-up period, this registry suggests that statin use is associated with improved cancer-free and overall survival after cardiac transplantation. These data will need to be confirmed in a prospective trial.
Collapse
Affiliation(s)
- Georg Marcus Fröhlich
- Cardiovascular Center Cardiology, Heart Failure/Transplantation Clinic, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Franz M, Neri D, Berndt A. Chronic cardiac allograft rejection: critical role of ED-A(+) fibronectin and implications for targeted therapy strategies. J Pathol 2012; 226:557-61. [PMID: 22102444 DOI: 10.1002/path.3968] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic cardiac allograft rejection is characterized by cardiac allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) causing severe long-term complications after heart transplantation and determining allograft function and patients' prognosis. Until now, there have been no sufficient preventive or therapeutic strategies. CAV and CIF are accompanied by changes in the extracellular matrix, including re-expression of the fetal fibronectin splice variant known as ED-A(+) fibronectin. This molecule has been shown to be crucial for the development of myofibroblasts (MyoFbs) as the main cell type in CIF and for the activation of vascular smooth muscle cells (VSMCs) as the main cell type in CAV. Relevant re-expression and protein deposition of ED-A(+) fibronectin has been demonstrated in animal models of chronic rejection, with spatial association to CAV and CIF, and a quantitative correlation to the rejection grade. The paper by Booth et al published in this issue of The Journal of Pathology could prove for the first time the functional importance of ED-A(+) fibronectin for the development of CIF as a main component of chronic cardiac rejection. Thus, promising conclusions for the development of new diagnostic, preventive, and therapeutic strategies for chronic cardiac rejection focusing on ED-A(+) fibronectin can be suggested.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | | | | |
Collapse
|
34
|
Infrared Fluorescence Imaging of Lymphatic Regeneration in Nonhuman Primate Facial Vascularized Composite Allografts. Ann Plast Surg 2012; 68:314-9. [DOI: 10.1097/sap.0b013e31824671e5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Suzuki JI, Ogawa M, Sakai Y, Hirata Y, Isobe M, Nagai R. A Prostacycline Analog Prevents Chronic Myocardial Remodeling in Murine Cardiac Allografts. Int Heart J 2012; 53:64-7. [DOI: 10.1536/ihj.53.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo
| | - Masahito Ogawa
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo
| | | | - Yasunobu Hirata
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Ryozo Nagai
- Department of Cardiovascular Medicine, The University of Tokyo
| |
Collapse
|
36
|
Suzuki JI, Ogawa M, Hishikari K, Watanabe R, Takayama K, Hirata Y, Nagai R, Isobe M. Novel effects of macrolide antibiotics on cardiovascular diseases. Cardiovasc Ther 2011; 30:301-7. [PMID: 22136572 DOI: 10.1111/j.1755-5922.2011.00303.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Macrolide antibiotics are broadly used for the treatment of various microbial infections. However, they are also known to have multiple biologic effects, such as alteration of inflammatory factors and matrix metalloproteinases (MMPs). Because of controversial results in clinical trials, the effects of macrolides on cardiovascular diseases are still to be elucidated. It has been reported that MMP activity is upregulated in various cardiovascular diseases, such as myocarditis, cardiac transplant rejection and myocardial infarction. However, little is known about the effects of macrolides on cardiovascular diseases. We have reported that clarithromycin suppressed the development of myocarditis, cardiac rejection and myocardial ischemia using animal models. In this article, we reviewed the roles of MMPs in cardiovascular diseases and the effects of macrolides on the prevention of adverse tissue remodeling.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gallardo ME, García-Pavía P, Chamorro R, Vázquez ME, Gómez-Bueno M, Millán I, Almoguera B, Domingo V, Segovia J, Vilches C, Alonso-Pulpón L, Garesse R, Bornstein B. Mitochondrial haplogroups associated with end-stage heart failure and coronary allograft vasculopathy in heart transplant patients. Eur Heart J 2011; 33:346-53. [PMID: 21821846 DOI: 10.1093/eurheartj/ehr280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Mitochondrial haplogroups are known to influence individual predisposition to a wide spectrum of metabolic and degenerative diseases, including ischaemic cardiovascular diseases. We have examined the influence of the mitochondrial DNA (mtDNA) background on the development of human end-stage heart failure (HF) in patients undergoing heart transplantation. The influence of mtDNA haplogroups on the incidence of transplant-related complications, mainly cardiac allograft vasculopathy (CAV), and on post-transplant survival was also studied. METHODS AND RESULTS The most common mitochondrial haplogroups in European populations were genotyped in 450 heart transplant recipients, 248 heart transplant donors, and 206 healthy controls. Mitochondrial haplogroups were determined by PCR amplification of short mtDNA fragments, followed by restriction fragment length polymorphism analysis. After adjustment for age and sex the frequency of haplogroup H was significantly higher in heart transplant recipients than in controls [OR: 1.86 (95% confidence intervals, CI: 1.27-2.74), P= 0.014], and in heart donors [OR: 1.47 (95% CI: 0.99-2.19), P= 0.032]. Likewise, haplogroup Uk was found significantly more frequently among CAV patients than in non-CAV heart allograft recipients [OR: 4.1 (95% CI: 1.51-11.42), P= 0.042]. Finally, heart donor haplogroups had no influence on the morbidity or mortality after heart transplantation. CONCLUSIONS Mitochondrial haplogroups behave like risk factors for the progress to end-stage HF in a Spanish cardiac transplant population. Mitochondrial DNA variants may have some influence on the appearance of cardiac transplant complications.
Collapse
Affiliation(s)
- M Esther Gallardo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huibers M, De Jonge N, Van Kuik J, Koning ESD, Van Wichen D, Dullens H, Schipper M, De Weger R. Intimal fibrosis in human cardiac allograft vasculopathy. Transpl Immunol 2011; 25:124-32. [PMID: 21782945 DOI: 10.1016/j.trim.2011.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/06/2011] [Indexed: 11/30/2022]
Abstract
Human Cardiac Allograft Vasculopathy (CAV) is one of the major complications for patients after heart transplantation. It is characterized by a concentric luminal narrowing due to (neo) intimal expansion in the coronary arteries of donor hearts after heart transplantation. In this process fibrosis plays an important role. Aim of this study is to analyze the factors and cells involved in this fibrotic process. Coronary arteries from five heart transplantation patients and three controls were obtained at autopsy. Quantitative real-time PCR was performed on mRNA obtained from various arterial layers isolated by laser micro dissection. Positive gene expression was confirmed by immunohistochemistry and/or in situ hybridisation. The strongest mRNA expression of fibrotic factors (predominantly pro-fibrotic) was found in the neo-intima. Especially, connective tissue growth factor expression was higher in the CAV vessels than in the controls. The lymphocyte activity of interferon gamma was only detected in CAV vessels. Furthermore as shown by in situ hybridisation, the lymphocytes producing interferon gamma also expressed transforming growth factor beta. Anti-fibrotic factors, such as bone morphogenic protein 4, were only expressed in CD3(-)/CD68(-) stromal cells. Macrophages present in the CAV and control vessels showed to be of the M2 type and did not produce any fibrotic factor(s). In conclusion, T-cells producing both interferon gamma and transforming growth factor beta, may play an important role in the fibrotic process in CAV vessels by upregulation of connective tissue growth factor production.
Collapse
Affiliation(s)
- Manon Huibers
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lourenço-Filho DD, Maranhão RC, Méndez-Contreras CA, Tavares ER, Freitas FR, Stolf NA. An artificial nanoemulsion carrying paclitaxel decreases the transplant heart vascular disease: A study in a rabbit graft model. J Thorac Cardiovasc Surg 2011; 141:1522-8. [DOI: 10.1016/j.jtcvs.2010.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/14/2010] [Accepted: 08/08/2010] [Indexed: 10/18/2022]
|
40
|
Ogawa M, Suzuki JI, Yamaguchi Y, Muto S, Itai A, Hirata Y, Isobe M, Nagai R. The effects of pharmacologic plasminogen activator inhibitor-1 inhibition in acute and chronic rejection in murine cardiac allografts. Transplantation 2011; 91:21-6. [PMID: 21452408 DOI: 10.1097/tp.0b013e3181fd3c0f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute rejection and graft arterial disease (GAD) in cardiac transplantation limit the long-term survival of recipients; these processes are enhanced by inflammation and thrombus formation. Plasminogen activator inhibitor (PAI)-1 is critical in the inflammation and thrombus formation. However, little is known about the effect of PAI-1 in heart transplantation. Thus, the objective was to clarify the role of PAI-1 in the progression of cardiac rejection. METHODS Murine hearts were heterotopically transplanted using major mismatch combinations for evaluation of acute rejection and class II mismatch combinations for the GAD. We administered the specific PAI-1 inhibitor (IMD-1622) into murine recipients after cardiac allografts. RESULTS Nontreated allografts of the major mismatch group were acutely rejected, whereas the PAI-1 inhibitor prolonged their survival. Although severe cell infiltration and intimal thickening with enhancement of inflammatory factors were observed in untreated allografts of class II mismatch group on day 60, the PAI-1 inhibitor attenuated these changes. CONCLUSION The PAI-1 inhibitor is potent for the suppression of both acute rejection and GAD.
Collapse
Affiliation(s)
- Masahito Ogawa
- Department of Advanced Clinical Science and Therapeutics, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Turan RG, Bozdag-Turan I, Ortak J, Akin I, Kische S, Schneider H, Rehders TC, Turan CH, Rauchhaus M, Kleinfeldt T, Chatterjee T, Sahin K, Nienaber CA, Ince H. Improvement of cardiac function by intracoronary freshly isolated bone marrow cells transplantation in patients with acute myocardial infarction. Circ J 2011; 75:683-91. [PMID: 21266786 DOI: 10.1253/circj.cj-10-0817] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We analyzed in the present study the influence of intracoronary autologous freshly isolated bone marrow cells transplantation (BMCs-Tx) on cardiac function in patients with acute myocardial infarction (AMI). METHODS AND RESULTS The 32 patients with AMI were enrolled in this prospective nonrandomized study to either freshly isolated BMC-Tx or to a control group without cell therapy. Global left ventricular ejection fraction (LVEF) and the size of infarct area were determined by left ventriculography. We observed in patients with autologous freshly isolated BMCs-Tx at 6 months follow up a significant reduction of infarct size as compared to control group. Moreover, we found a significant increase of LVEF as well as infarct wall movement velocity at 6 months follow up in cell therapy group as compared to control group. In the control group there was no significant difference of LVEF, infarct size and infarct wall movement velocity between baseline and 6 months after AMI. CONCLUSIONS These results demonstrate for the first time that intracoronary transplantation of autologous freshly isolated BMCs by use of a point of care system is safe, and may lead to improvement of cardiac function in patients with AMI.
Collapse
Affiliation(s)
- Ramazan Gökmen Turan
- Department of Internal Medicine, Division of Cardiology, Rostock-University, Ernst Hydemann Str 6, 18055 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cellular and Functional Imaging of Cardiac Transplant Rejection. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010; 4:50-62. [PMID: 21359095 DOI: 10.1007/s12410-010-9055-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heart transplantation is now an established treatment for patients suffering from end-stage heart diseases. With the advances in immunosuppressive treatment, the survival rate for transplant patients has improved greatly. However, allograft rejection, both acute and chronic, after heart transplantation is still a limitation leading to morbidity and mortality. The current clinical gold standard for screening rejection is endomyocardial biopsy (EMB), which is not only invasive, but also error-prone, due to the limited sample size and the site location of sampling. It would be highly desirable to have reliable and noninvasive alternatives for EMB in monitoring cardiac allograft rejection. The objective of this review is to highlight how cardiovascular imaging can contribute to noninvasively detecting and to evaluating both acute and chronic allograft rejection after heart transplantation, in particular, cardiovascular MRI (CMRI); and how CMRI can assess both immune cell infiltration at the rejecting organ, and the cardiac dysfunctions resulting from allograft rejection.
Collapse
|
43
|
Franz M, Grün K, Richter P, Brehm BR, Fritzenwanger M, Hekmat K, Neri D, Gummert J, Figulla HR, Kosmehl H, Berndt A, Renner A. Extra cellular matrix remodelling after heterotopic rat heart transplantation: gene expression profiling and involvement of ED-A+ fibronectin, alpha-smooth muscle actin and B+ tenascin-C in chronic cardiac allograft rejection. Histochem Cell Biol 2010; 134:503-17. [PMID: 20931338 DOI: 10.1007/s00418-010-0750-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
Abstract
Chronic cardiac rejection is represented by cardiac allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) known to cause severe complications. These processes are accompanied by remarkable changes in the cardiac extra cellular matrix (cECM). The aim of our study was to analyse the cECM remodelling in chronic rejection and to elucidate a potential role of ED-A domain containing fibronectin (ED-A(+) Fn), alpha smooth muscle actin (ASMA) and B domain containing tenascin-C (B(+) Tn-C). A model of chronic rejection after heterotopic rat heart transplantation was used. Allografts, recipient and control hearts were subjected to histological assessment of rejection grade, to real-time PCR based analysis of 84 genes of ECM and adhesion molecules and to immunofluorescence labelling procedures, including ED-A(+) Fn, ASMA and B(+) Tn-C antibodies. Histological analysis revealed different grades of chronic rejection. By gene expression analysis, a relevant up-regulation of the majority of ECM genes in association with chronic rejection could be shown. For 8 genes, there was a relevant up-regulation in allografts as well as in the corresponding recipient hearts. Association of ASMA positive cells with the grade of chronic rejection could be proven. In CAV and also in CIF there were extensive co-depositions of ED-A(+) Fn, ASMA and B(+) Tn-C. In conclusion, chronic cardiac allograft rejection is associated with a cECM remodelling. ASMA protein deposition in CAV, and CIF is a valuable marker to detect chronic rejection. Interactions of VSMCs and Fibro-/Myofibroblasts with ED-A(+) Fn and B(+) Tn-C might functionally contribute to the development of chronic cardiac rejection.
Collapse
Affiliation(s)
- Marcus Franz
- Department of Internal Medicine I, University Hospital of Jena, Erlanger Allee 101, 07740, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|