1
|
Homaeigohar S, Assad MA, Azari AH, Ghorbani F, Rodgers C, Dalby MJ, Zheng K, Xu R, Elbahri M, Boccaccini AR. Biosynthesis of Zinc Oxide Nanoparticles on l-Carnosine Biofunctionalized Polyacrylonitrile Nanofibers; a Biomimetic Wound Healing Material. ACS APPLIED BIO MATERIALS 2023; 6:4290-4303. [PMID: 37721636 PMCID: PMC10583230 DOI: 10.1021/acsabm.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School
of Science and Engineering, University of
Dundee, Dundee DD1 4HN, U.K.
| | - Mhd Adel Assad
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Amir Hossein Azari
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Farnaz Ghorbani
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Chloe Rodgers
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow 11 6EW, U.K.
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow 11 6EW, U.K.
| | - Kai Zheng
- Jiangsu
Province Engineering Research Center of Stomatological Translational
Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Rongyao Xu
- Jiangsu
Province Engineering Research Center of Stomatological Translational
Medicine, Nanjing Medical University, Nanjing 210029, China
- Department
of Oral and Maxillofacial Surgery, Stomatological Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mady Elbahri
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Aldo. R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
2
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
3
|
Vishnyakova KS, Babizhayev MA, Aliper AM, Buzdin AA, Kudryavzeva AV, Yegorov YE. Stimulation of cell proliferation by carnosine: Cell and transcriptome approaches. Mol Biol 2014. [DOI: 10.1134/s0026893314050161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Sakae K, Agata T, Kamide R, Yanagisawa H. Effects of L-carnosine and its zinc complex (Polaprezinc) on pressure ulcer healing. Nutr Clin Pract 2013; 28:609-16. [PMID: 23835365 DOI: 10.1177/0884533613493333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND L-carnosine (CAR) is an endogenous dipeptide. We aimed to determine the effects of CAR and its zinc complex polaprezinc (PLZ) on pressure ulcer healing in institutionalized long-term care patients. METHODS This study was a nonrandomized controlled trial with a maximum 4-week follow-up. Forty-two patients with stage II-IV pressure ulcers for 4 or more weeks were allocated to 1 of 3 groups in order of recruitment: the control group (n = 14) was untreated, the PLZ group (n = 10) orally received 150 mg/d PLZ (containing 116 mg CAR and 34 mg zinc), and the CAR group (n = 18) orally received 116 mg/d CAR. Pressure ulcer severity was measured weekly using the Pressure Ulcer Scale for Healing (PUSH) score. RESULTS At baseline, no significant differences were found among groups in demographic and nutrition parameters and pressure ulcer characteristics (severity, size, and staging). After 4 weeks, the rate of pressure ulcer healing, assessed by the mean weekly improvement in PUSH score, was significantly greater in the CAR (1.6 ± 0.2, P = .02) and PLZ groups (1.8 ± 0.2, P = .009) than in the control group (0.8 ± 0.2). The difference between the CAR and PLZ groups was not significant (P = .73). Actual dietary intakes over this period did not differ significantly among groups. CONCLUSIONS Our results suggest that CAR and PLZ may almost equally accelerate pressure ulcer healing during 4 weeks. The results need confirmation by randomized controlled trials with larger sample sizes.
Collapse
Affiliation(s)
- Kensaku Sakae
- Hiroyuki Yanagisawa, Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | |
Collapse
|
5
|
Xie Z, Baba SP, Sweeney BR, Barski OA. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications. Chem Biol Interact 2013; 202:288-97. [PMID: 23313711 DOI: 10.1016/j.cbi.2012.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy-aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, its ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load.
Collapse
Affiliation(s)
- Zhengzhi Xie
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
The methanolic extract of Opuntia ficus-indica stems and its hexane, ethyl acetate, n-butanol and aqueous fractions were evaluated for their wound healing activity in rats. The extract and less polar fractions showed significant effects.
Collapse
Affiliation(s)
- E H Park
- College of Pharmacy, Sookmyung Women's University, 140-742, Seoul, South Korea.
| | | |
Collapse
|
7
|
Seto K, Yoneta T, Suda H, Tamaki H. Effect of polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc), a novel antiulcer agent containing zinc, on cellular proliferation: role of insulin-like growth factor I. Biochem Pharmacol 1999; 58:245-50. [PMID: 10423164 DOI: 10.1016/s0006-2952(99)00078-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of polaprezinc (N-(3-aminopropionyl)-L-histidinato zinc), a novel antiulcer drug containing zinc, on cellular proliferation was studied using cultured cells. In human umbilical vein endothelial cells (HUVEC) or human foreskin fibroblast cells, bromodeoxyuridine (BrdU) uptake and the number of cells were increased by polaprezinc under low serum conditions, but polaprezinc had no effect on guinea pig gastric mucosal epithelial cells. In addition, L-carnosine (a component of polaprezinc) had no effect on cultured HUVEC, while zinc sulfate, a representative zinc compound, increased BrdU uptake by about 2-fold at 10(-9) M. However, the action of zinc sulfate was weaker than that of polaprezinc. The insulin-like growth factor I (IGF-I) mRNA level was increased in HUVEC by polaprezinc at 10(-9) M approximately 3 x 10(-8) M concentrations, causing stimulation of BrdU uptake. When an anti-IGF-I antibody was added to cultures, the effects of polaprezinc on BrdU uptake was suppressed. These results suggest that although polaprezinc, a novel antiulcer agent, does not have proliferative effects on epithelial cells, it does promote the proliferation of non-parenchymal cells, and IGF-I is involved in this action.
Collapse
Affiliation(s)
- K Seto
- Department of Pharmacology, Zeria Pharmaceutical Co., Ltd., Saitama, Ohsato-gun, Japan
| | | | | | | |
Collapse
|
8
|
Shim PJ, Park JH, Chang MS, Lim MJ, Kim DH, Jung YH, Jew SS, Park EH, Kim HD. Asiaticoside mimetics as wound healing agent. Bioorg Med Chem Lett 1996. [DOI: 10.1016/s0960-894x(96)00540-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|