1
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
2
|
Dual Enkephalinase Inhibitors and Their Role in Chronic Pain Management. Curr Pain Headache Rep 2021; 25:29. [PMID: 33761014 DOI: 10.1007/s11916-021-00949-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dual enkephalinase inhibitors (DENKIs) are pain medications that indirectly activate opioid receptors and can be used as an alternative to traditional opioids. Understanding the physiology of enkephalins and their inhibitors and the pharmacology of these drugs will allow for proper clinical application for chronic pain patients in the future. RECENT FINDINGS DENKIs can be used as an alternative mode of analgesia for patients suffering from chronic pain by preventing the degradation of endogenous opioid ligands. By inhibiting the two major enkephalin-degrading enzymes (neprilysin and aminopeptidase N), DENKIs can provide analgesia with less adverse effects than nonendogenous opioids. The purpose of this paper is to review the current literature investigating DENKIs and explore their contribution to chronic pain management.
Collapse
|
3
|
Hartman K, Mielczarek P, Smoluch M, Silberring J. Inhibitors of neuropeptide peptidases engaged in pain and drug dependence. Neuropharmacology 2020; 175:108137. [PMID: 32526240 DOI: 10.1016/j.neuropharm.2020.108137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022]
Abstract
Owing to a broad spectrum of functions performed by neuropeptides, this class of signaling molecules attracts an increasing interest. One of the key steps in the regulation of biological activity of neuropeptides is proteolytic conversion or degradation by proteinases that change or terminate biological activity of native peptides. These enzymes, in turn, are regulated by inhibitors, which play integral role in controlling many metabolic pathways. Thus, the search for selective inhibitors and detailed knowledge on the mechanisms of binding of these substances to enzymes, could be of importance for designing new pharmacological approaches. The aim of this review is to summarize the current knowledge on the inhibitors of enzymes that convert selected groups of neuropeptides, such as dynorphins, enkephalins, substance P and NPFF fragments. The importance of these substances in pathophysiological processes involved in pain and drug addiction, have been discussed. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Kinga Hartman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Mielczarek
- Polish Academy of Sciences, Maj Institute of Pharmacology, Laboratory of Proteomics and Mass Spectrometry, Smetna 12, 31-343, Krakow, Poland.
| | - Marek Smoluch
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jerzy Silberring
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
4
|
Raffa RB, Pergolizzi JV, Taylor R, Ossipov MH. Indirect-acting strategy of opioid action instead of direct receptor activation: dual-acting enkephalinase inhibitors (DENKIs). J Clin Pharm Ther 2018; 43:443-449. [DOI: 10.1111/jcpt.12687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
- R. B. Raffa
- University of Arizona College of Pharmacy; Tucson AZ USA
- Temple University School of Pharmacy; Philadelphia PA USA
| | | | | | - M. H. Ossipov
- University of Arizona College of Medicine; Tucson AZ USA
| | | |
Collapse
|
5
|
Abstract
Depression is a pervasive and debilitating mental disorder that is inadequately treated by current pharmacotherapies in a majority of patients. Although opioids have long been known to regulate mood states, the use of opioids to treat depression is rarely discussed. This chapter explores the preclinical and clinical evidence supporting the antidepressant-like effects of opioid ligands, and in particular, delta opioid receptor (DOR) agonists. DOR agonists have been shown to produce antidepressant-like effects in a number of animal models. Some DOR agonists also produce convulsions which has limited their clinical utility. However, DOR agonists that generate antidepressant-like effects without convulsions have recently been developed and these drugs are beginning to be evaluated in humans. Work investigating potential mechanisms of action for the antidepressant-like effects of DOR agonists is also explored. Understanding mechanisms that give rise to DOR-mediated behaviors is critical for the development of DOR drugs with improved safety and clinical utility, and future work should be devoted to elucidating these pathways.
Collapse
|
6
|
Yin X, Guven N, Dietis N. Stress-based animal models of depression: Do we actually know what we are doing? Brain Res 2016; 1652:30-42. [DOI: 10.1016/j.brainres.2016.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/03/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
|
7
|
Chen TC, Cheng YY, Sun WZ, Shyu BC. Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice. Mol Pain 2008; 4:41. [PMID: 18826595 PMCID: PMC2569012 DOI: 10.1186/1744-8069-4-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 09/30/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mice lacking the preproenkephalin (ppENK) gene are hyperalgesic and show more anxiety and aggression than wild-type (WT) mice. The marked behavioral changes in ppENK knock-out (KO) mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice. RESULTS The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p.) differed between WT and KO mice in hot plate test. The current source density (CSD) profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1) and anterior cingulate cortex (ACC) were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively. CONCLUSION The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord, S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.
Collapse
Affiliation(s)
- Tsung-Chieh Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| | | | | | | |
Collapse
|
8
|
Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R, Salvadori S, Caló G. Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides 2008; 29:93-103. [PMID: 18069089 DOI: 10.1016/j.peptides.2007.10.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/08/2007] [Accepted: 10/16/2007] [Indexed: 11/28/2022]
Abstract
Knockout and pharmacological studies have shown that delta opioid peptide (DOP) receptor signalling regulates emotional responses. In the present study, the in vitro and in vivo pharmacological profile of the DOP ligand, H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512) was investigated. In receptor binding experiments performed on membranes of CHO cells expressing the human recombinant opioid receptors, UFP-512 displayed very high affinity (pKi 10.20) and selectivity (>150-fold) for DOP sites. In functional studies ([35S]GTP gamma S binding in CHOhDOP membranes and electrically stimulated mouse vas deferens) UFP-512 behaved as a DOP selective full agonist showing potency values more than 100-fold higher than DPDPE. In vivo, in the mouse forced swimming test, UFP-512 reduced immobility time both after intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration. Similar effects were recorded in rats. Moreover, UFP-512 evoked anxiolytic-like effects in the mouse elevated plus maze and light-dark aversion assays. All these in vivo actions of UFP-512 were fully prevented by the selective DOP antagonist naltrindole (3 mg/kg, s.c.). In conclusion, the present findings demonstrate that UFP-512 behaves as a highly potent and selective agonist at DOP receptors and corroborate the proposal that the selective activation of DOP receptors elicits robust anxiolytic- and antidepressant-like effects in rodents.
Collapse
Affiliation(s)
- Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 2007; 11:145-59. [PMID: 17227231 DOI: 10.1517/14728222.11.2.145] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most efficient drugs to alleviate severe pain are opioid compounds. However, their chronic use could be associated with serious drawbacks, such as tolerance, respiratory depression and constipation. Therefore, there is a need for compounds able to efficiently alleviate inflammatory and neurogenic pain following chronic treatment. The discovery that the endogenous opioid peptides, enkephalins, are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by synthetic dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of morphine side effects. These dual inhibitors also have antidepressant-like properties through enkephalin-related activation of delta-opioid receptors. This is expected to reduce the emotional component of pain in humans. This article reviews the promising data obtained for future development of a new class of analgesic that could be of major interest in a number of severe and chronic pain syndromes.
Collapse
|
10
|
Vergura R, Valenti E, Hebbes CP, Gavioli EC, Spagnolo B, McDonald J, Lambert DG, Balboni G, Salvadori S, Regoli D, Calo' G. Dmt-Tic-NH-CH2-Bid (UFP-502), a potent DOP receptor agonist: in vitro and in vivo studies. Peptides 2006; 27:3322-30. [PMID: 16963157 DOI: 10.1016/j.peptides.2006.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/24/2006] [Accepted: 07/24/2006] [Indexed: 11/16/2022]
Abstract
Knockout and pharmacological studies demonstrated that the activation of delta opioid peptide (DOP) receptors produces antidepressant-like effects in rodents. Here we report the results obtained with the novel DOP ligand H-Dmt-Tic-NH-CH(2)-Bid (UFP-502). UFP-502 bound with high affinity (pK(i) 9.43) to recombinant DOP receptors displaying moderate selectivity over MOP and KOP. In CHO(hDOP) [(35)S]GTPgammaS binding and mouse vas deferens experiments, UFP-502 behaved as a potent (pEC(50) 10.09 and 10.70, respectively) full agonist. In these preparations, naloxone, naltrindole and N,N(CH(3))(2)Dmt-Tic-OH showed similar pA(2) values against UFP-502 and DPDPE and the same rank order of potency. In vivo in mice, UFP-502 mimicked DPDPE actions, producing a significant reduction of immobility time after intracerebroventricular administration in the forced swimming test and a clear antinociceptive effect after intrathecal injection in the tail withdrawal assay. However, while the effects of DPDPE were fully prevented by naltrindole those evoked by UFP-502 were unaffected (tail withdrawal assay) or only partially reversed (forced swimming test). In conclusion, UFP-502 represents a novel and useful chemical template for the design of selective agonists for the DOP receptor.
Collapse
Affiliation(s)
- Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and Neuroscience Centre, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jutkiewicz EM, Torregrossa MM, Sobczyk-Kojiro K, Mosberg HI, Folk JE, Rice KC, Watson SJ, Woods JH. Behavioral and neurobiological effects of the enkephalinase inhibitor RB101 relative to its antidepressant effects. Eur J Pharmacol 2006; 531:151-9. [PMID: 16442521 PMCID: PMC1828120 DOI: 10.1016/j.ejphar.2005.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Nonpeptidic delta-opioid receptor agonists produce antidepressant-like effects in rodents, and compounds that inhibit the breakdown of endogenous opioid peptides have antidepressant-like effects in animal models. In this study, the behavioral effects of the enkephalinase inhibitor, RB101 (N-[(R, S)-2-benzyl-3-[(S)(2-amino-4-methyl-thio)-butyldithio]-1-oxopropyl]-l-phenylalanine benzyl ester), were examined. Specifically, the effects of RB101 on convulsive activity, locomotor activity, and antidepressant-like effects in the forced swim test were studied in Sprague-Dawley rats, and the opioid receptor types mediating these effects were examined by antagonist studies. In addition, the effects of RB101 on brain-derived neurotrophic factor (BDNF) mRNA expression were evaluated in relation to its antidepressant effects. RB101 produced delta-opioid receptor-mediated antidepressant effects (32 mg/kg i.v. and 100 mg/kg i.p.) and increased locomotor activity (32 mg/kg i.v.) in rats. RB101 did not produce convulsions or seizures and did not alter BDNF mRNA expression. In conclusion, RB101 has the potential to produce antidepressant effects without convulsions.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ortega-Alvaro A, Acebes I, Saracíbar G, Echevarría E, Casis L, Micó JA. Effect of the antidepressant nefazodone on the density of cells expressing mu-opioid receptors in discrete brain areas processing sensory and affective dimensions of pain. Psychopharmacology (Berl) 2004; 176:305-11. [PMID: 15138764 DOI: 10.1007/s00213-004-1894-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 03/23/2004] [Indexed: 12/20/2022]
Abstract
RATIONALE The principal use of antidepressants is in the treatment of depression and affective disorders. Antidepressants have also been used as an adjuvant to analgesics in pain treatment. However, in chronic treatment, their antinociceptive and antidepressive effects coexist simultaneously. Antidepressants can interact with the opioid system, which is also involved in regulating nociceptive processing and affective state. Chronic antidepressants could act by increasing mu-opioid receptor expression in many brain areas involved in the regulation of nociception and affective state. OBJECTIVES The aim of this study was to evaluate the antinociceptive and antidepressant-like effects and the possible variations in mu-opioid receptor expression induced by a chronic nefazodone treatment in brain areas related to pain and affective state. METHODS Wistar rats were chronically treated with nefazodone (10 and 25 mg/kg IP, twice a day, for 14 days). Twelve hours after the last day 14 dose of nefazodone, a tail-flick test was performed. After the administration of a daily dose of nefazodone, Porsolt's test was carried out 12 h after last dose. Two hours after completion of 14 days treatment, other animals were processed for mu-opioid receptor immunocytochemistry using polyclonal antisera raised in rabbits. Several brain regions were analyzed: the frontal and cingulate cortex, the dorsal raphe nucleus and the periaqueductal gray. RESULTS Chronic nefazodone treatment induced a significant increase in tail-flick latency and a significant decrease in immobility time at total doses of 20 and 50 mg/kg per day ( P<0.05). In treated animals, the density of neural cells immunostained for mu-opioid receptor in the frontal and cingulate cortices, dorsal raphe nucleus and periaqueductal gray had increased after chronic nefazodone compared to controls. CONCLUSION Therefore, chronic nefazodone induces antinociceptive and antidepressant-like effects in rats and increases mu-opioid receptor expression in brain areas related to pain and affective state. These results suggest that antidepressants could be effective on somatic and affective dimensions of pain and this action could be related to its influence on the opioid system.
Collapse
Affiliation(s)
- Antonio Ortega-Alvaro
- Pharmacology and Neuroscience Research Group (CTS-510), Department of Neuroscience (Pharmacology and Psychiatry), Faculty of Medicine, University of Cadiz, Plaza Fragela 9, 11003 Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Broom DC, Jutkiewicz EM, Rice KC, Traynor JR, Woods JH. Behavioral effects of delta-opioid receptor agonists: potential antidepressants? JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:1-6. [PMID: 12396021 DOI: 10.1254/jjp.90.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of selective delta-opioid receptor agonists has revealed some very intriguing behavioral properties. delta-Opioid agonists have antinociceptive, seizuregenic and convulsive properties. A number of studies have identified a novel behavioral effect of delta-opioid-receptor agonists, implicating a role for the delta-opioid receptor in depression. Early clinical experiments demonstrated that exogenously administered opioid peptides had antidepressant activity in human patients. Also, enkephalinase inhibitors, which prevent the degradation of endogenous enkephalins, produced antidepressant-like effects mediated through the delta-opioid receptor in animal models of depression. More recently, the selective non-peptidic delta-opioid agonists SNC80 and (+)BW373U86 demonstrated antidepressant-like activity in the forced swim assay in rats. These studies propose that the delta-opioid receptor may provide a new therapeutic target for treating human depression.
Collapse
Affiliation(s)
- Daniel C Broom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109-0632, USA
| | | | | | | | | |
Collapse
|
14
|
Vilpoux C, Carpentier C, Leroux-Nicollet I, Naudon L, Costentin J. Differential effects of chronic antidepressant treatments on micro- and delta-opioid receptors in rat brain. Eur J Pharmacol 2002; 443:85-93. [PMID: 12044796 DOI: 10.1016/s0014-2999(02)01585-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We performed an autoradiographic study of [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin (DAMGO)-sensitive [(3)H]naloxone binding to micro-opioid receptors and of [(3)H][D-Pen(2),D-Pen(5)]enkephalin (DPDPE) binding to delta-opioid receptors in the rat brain after 4- or 21-day treatments with paroxetine, reboxetine and moclobemide to investigate the participation of these receptors in the adaptive mechanisms occurring during the delay of action of new generation antidepressants. Paroxetine increased micro-opioid receptor binding site density in cingulate and insular cortices, dorsal endopiriform nucleus (4 days) and olfactory tubercle (21 days) and decreased it in thalamus (21 days). Reboxetine increased it in amygdala (4 days), hippocampus and thalamus (21 days) and decreased it in dorsal raphe (4 days). Moclobemide increased it in hippocampus (4 days) and decreased it in anterior olfactory nucleus, frontal cortex, amygdala and hypothalamus (21 days). Moclobemide increased delta-opioid receptor binding site density in frontal cortex and amygdala (4 days) and decreased it in amygdala and colliculi (21 days). Opioid receptors displayed distinct patterns of adaptations in response to the three antidepressants studied.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/administration & dosage
- Antidepressive Agents/pharmacology
- Autoradiography
- Binding Sites
- Brain/anatomy & histology
- Brain/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Injections, Intraperitoneal
- Male
- Moclobemide/administration & dosage
- Moclobemide/pharmacology
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Paroxetine/administration & dosage
- Paroxetine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reboxetine
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Time Factors
Collapse
Affiliation(s)
- Catherine Vilpoux
- Unité de Neuropsychopharmacologie Expérimentale, CNRS UPRESA 6036, IFRMP No. 23, UFR de Médecine-Pharmacie, 22 Bd. Gambetta, 76 183 Rouen, Cedex, France
| | | | | | | | | |
Collapse
|
15
|
Honda M, Okutsu H, Matsuura T, Miyagi T, Yamamoto Y, Hazato T, Ono H. Spinorphin, an endogenous inhibitor of enkephalin-degrading enzymes, potentiates leu-enkephalin-induced anti-allodynic and antinociceptive effects in mice. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:261-7. [PMID: 11829145 DOI: 10.1254/jjp.87.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spinorphin (LVVYPWT) has been isolated from the bovine spinal cord as an endogenous inhibitor of enkephalin-degrading enzymes. It has been reported that spinorphin has an antinociceptive effect, inhibitory effect on contraction of smooth muscle and anti-inflammatory effect. In the present study, the effects of leu-enkephalin and spinorphin on allodynia and mechanical and thermal nociceptions were examined in vivo using mice. Intrathecal (i.t.) administration of leu-enkephalin or spinorphin inhibited the allodynia induced by intrathecal nociceptin in a dose-dependent manner. Furthermore, spinorphin enhanced the inhibitory effect of enkephalin on allodynia induced by nociceptin. Naloxone antagonized both inhibitory effects of leu-enkephalin and spinorphin, suggesting that the endogenous opioidergic system can modulate allodynia. Intracerebroventricular (i.c.v.) administration of leu-enkephalin increased the nociceptive threshold of heat or mechanical stimulation to a mouse. Although i.c.v. administration of spinorphin had no effect on the threshold of heat or mechanical stimulation, spinorphin enhanced and prolonged the antinociceptive effect of leu-enkephalin. The enhancement of spinorphin on the antinociception produced by leu-enkephalin was reversed by pretreatment with naloxone. From these results, it is suggested that the effects of spinorphin on enkephalin-induced anti-allodynic and antinociceptive effects are due to inhibition of enkephalin-degrading enzymes.
Collapse
Affiliation(s)
- M Honda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Science University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Panocka I, Massi M, Lapo I, Swiderski T, Kowalczyk M, Sadowski B. Antidepressant-type effect of the NK3 tachykinin receptor agonist aminosenktide in mouse lines differing in endogenous opioid system activity. Peptides 2001; 22:1037-42. [PMID: 11445231 DOI: 10.1016/s0196-9781(01)00438-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The influence of the tachykinin NK3 receptor agonist, aminosenktide on the immobility in the forced swimming test was studied in mouse lines selectively bred for divergent magnitudes of stress-induced analgesia. The high analgesia (HA) line is known to display enhanced, and the low analgesia (LA) line displays reduced activity of the opioid system. Aminosenktide at doses of 125 microg/kg or 250 microg/kg intraperitoneally (IP) reduced, in naltrexone-reversible manner, the immobility more of opioid receptor-dense HA than of unselected mice, but was ineffective in the opioid receptor-deficient LA line. The effect of aminosenktide was quite similar to the antiimmobility action of desipramine (10 mg/kg IP), a prototypic antidepressant agent. None of the compounds increased animals' locomotion as found with an open field test; therefore their antiimmobility effect cannot be attributed to a change in general motility. The results claim that aminosenktide causes an antidepressant effect, and endogenous opioids are involved in this process.
Collapse
Affiliation(s)
- I Panocka
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, 01-163 4 Warsaw, Kozielska, Poland.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Pain management has become an increasingly well researched area in medicine over recent years, and there have been advances in a number of areas. While opioids remain an integral part of pain-management strategies, there is now an emphasis on the use of adjuvant drugs, such as paracetamol and anti-inflammatory agents, which through physiological or pharmacological synergism, both enhance pain control and reduce opioid use. The management of neuropathic pain continues to be a challenge. Anti-epileptics and antidepressants, together with clonidine and ketamine, provide the foundations for treatment. Another area of interest has been the widespread use of patient-controlled analgesia and the administration of some drugs, especially opioids, by means other than traditional oral and parenteral routes. The number of new drugs that have reached the stage of clinical trials has been small, yet they offer exciting possibilities. The epibatidine analogue ABT-594 and zinconitide both offer novel approaches to the management of neuropathic pain states, while selective cyclo-oxygenase-2 inhibitors and nitroaspirins may see advances in the management of nociceptive pain states.
Collapse
Affiliation(s)
- R D MacPherson
- Department of Anaesthesia and Pain Management, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
18
|
Litvinova SV, Aristova VV, Shulgovskii VV, Terebilina NN, Panchenko LF. Changes in thermonociceptive thresholds and the role of enkephalinase A in homeostasis in morphine-tolerant rat offspring. Bull Exp Biol Med 2000; 129:474-6. [PMID: 10977956 DOI: 10.1007/bf02439807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1999] [Indexed: 10/24/2022]
Abstract
The dynamics of thermonociceptive thresholds as a marker of the state of the endogenous opioid system was studied in the offspring of morphine-tolerant rats. Significant, age-dependent increase in thermonociceptive thresholds and higher levels of enkephalinase A in structures of the endogenous antinociceptive system were observed in the offspring compared with the control. These findings attest to disturbances of the opioid system in the progeny of morphine-tolerant rats and confirm the key role of enkephalinase A in the maintenance of homeostasis disturbed by chronic prenatal morphine treatment.
Collapse
Affiliation(s)
- S V Litvinova
- Department of Higher Nervous Activity, Biological Faculty, M. V. Lomonosov Moscow State University
| | | | | | | | | |
Collapse
|