1
|
Abstract
Thyroid hormones (THs) have important contributions to the development of the mammalian brain, targeting its actions on both neurons and glial cells. Astrocytes, which constitute about half of the glial cells, characteristically undergo dramatic changes in their morphology during development and such changes become necessary for the proper development of the brain. Interestingly, a large number of studies have suggested that THs play a profound role in such morphological maturation of the astrocytes. This review discusses the present knowledge on the mechanisms by which THs elicit progressive differentiation and maturation of the astrocytes. As a prelude, information on astrocyte morphology during development and its regulations, the role of THs in the various functions of astrocyte shall be dealt with for a thorough understanding of the subject of this review.
Collapse
|
2
|
Trias E, Díaz-Amarilla P, Olivera-Bravo S, Isasi E, Drechsel DA, Lopez N, Bradford CS, Ireton KE, Beckman JS, Barbeito L. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS. Front Cell Neurosci 2013; 7:274. [PMID: 24399933 PMCID: PMC3871969 DOI: 10.3389/fncel.2013.00274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/09/2013] [Indexed: 01/22/2023] Open
Abstract
Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular origin of AbA cells remains unknown. Because AbA cells are labeled with the proliferation marker Ki67, we analyzed the phenotypic makers of proliferating glial cells that surround motor neurons by immunohistochemistry. The number of Ki67 +AbA cells sharply increased in symptomatic rats, displaying large cell bodies with processes embracing motor neurons. Most were co-labeled with astrocytic marker GFAP concurrently with the microglial markers Iba1 and CD163. Cultures of spinal cord prepared from symptomatic SOD1 G93A rats yielded large numbers of microglia expressing Iba1, CD11b, and CD68. Cells sorted for CD11b expression by flow cytometry transformed into AbA cells within two weeks. During these two weeks, the expression of microglial markers largely disappeared, while GFAP and S100β expression increased. The phenotypic transition to AbA cells was stimulated by forskolin. These findings provide evidence for a subpopulation of proliferating microglial cells in SOD1 G93A rats that undergo a phenotypic transition into AbA cells after onset of paralysis that may promote the fulminant disease progression. These cells could be a therapeutic target for slowing paralysis progression in ALS.
Collapse
Affiliation(s)
- Emiliano Trias
- Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | | | - Eugenia Isasi
- Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Derek A Drechsel
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, OR, USA ; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA
| | - Nathan Lopez
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, OR, USA ; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA
| | - C Samuel Bradford
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, OR, USA ; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA
| | - Kyle E Ireton
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, OR, USA ; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA ; Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Joseph S Beckman
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, OR, USA ; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA ; Linus Pauling Institute, Oregon State University Corvallis, OR, USA
| | | |
Collapse
|
3
|
Rodnight RB, Gottfried C. Morphological plasticity of rodent astroglia. J Neurochem 2012; 124:263-75. [PMID: 23278277 DOI: 10.1111/jnc.12087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/04/2012] [Accepted: 11/04/2012] [Indexed: 11/29/2022]
Abstract
In the past two decades, there has been an explosion of research on the role of neuroglial interactions in the control of brain homeostasis in both physiological and pathological conditions. Astrocytes, a subtype of glia in the central nervous system, are dynamic signaling elements that regulate neurogenesis and development of brain circuits, displaying intimate dynamic relationships with neurons, especially at synaptic sites where they functionally integrate the tripartite synapse. When astrocytes are isolated from the brain and maintained in culture, they exhibit a polygonal shape unlike their precursors in vivo. However, cultured astrocytes can be induced to undergo morphological plasticity leading to process formation, either by interaction with neurons or by the influence of pharmacological agents. This review highlights studies on the molecular mechanisms underlying morphological plasticity in astrocyte cultures and intact brain tissue, both in situ and in vivo.
Collapse
Affiliation(s)
- Richard Burnard Rodnight
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | | |
Collapse
|
4
|
Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2011; 108:18126-31. [PMID: 22010221 DOI: 10.1073/pnas.1110689108] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Motoneuron loss and reactive astrocytosis are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a paralytic neurodegenerative disease that can be triggered by mutations in Cu-Zn superoxide dismutase (SOD1). Dysfunctional astrocytes contribute to ALS pathogenesis, inducing motoneuron damage and accelerating disease progression. However, it is unknown whether ALS progression is associated with the appearance of a specific astrocytic phenotype with neurotoxic potential. Here, we report the isolation of astrocytes with aberrant phenotype (referred as "AbA cells") from primary spinal cord cultures of symptomatic rats expressing the SOD1(G93A) mutation. Isolation was based on AbA cells' marked proliferative capacity and lack of replicative senescence, which allowed oligoclonal cell expansion for 1 y. AbA cells displayed astrocytic markers including glial fibrillary acidic protein, S100β protein, glutamine synthase, and connexin 43 but lacked glutamate transporter 1 and the glial progenitor marker NG2 glycoprotein. Notably, AbA cells secreted soluble factors that induced motoneuron death with a 10-fold higher potency than neonatal SOD1(G93A) astrocytes. AbA-like aberrant astrocytes expressing S100β and connexin 43 but lacking NG2 were identified in nearby motoneurons, and their number increased sharply after disease onset. Thus, AbA cells appear to be an as-yet unknown astrocyte population arising during ALS progression with unprecedented proliferative and neurotoxic capacity and may be potential cellular targets for slowing ALS progression.
Collapse
|
5
|
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010; 91:189-99. [PMID: 20138112 DOI: 10.1016/j.pneurobio.2010.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/07/2009] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
Abstract
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kume T, Ito R, Taguchi R, Izumi Y, Katsuki H, Niidome T, Takada-Takatori Y, Sugimoto H, Akaike A. Serofendic acid promotes stellation induced by cAMP and cGMP analogs in cultured cortical astrocytes. J Pharmacol Sci 2009; 109:110-8. [PMID: 19122367 DOI: 10.1254/jphs.08254fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the effect of serofendic acid, a neuroprotective substance derived from fetal calf serum, on the morphological changes in cultured cortical astrocytes. Cultured astrocytes developed a stellate morphology with several processes following exposure to dibutylyl cAMP (dbcAMP), a membrane-permeable cAMP analog; 8-Br-cGMP, a membrane-permeable cGMP analog; or phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator. Serofendic acid significantly accelerated the stellation induced by dbcAMP- and 8-Br-cGMP. In contrast, the PMA-induced stellation was not affected by serofendic acid. Next, we attempted to elucidate the mechanism underlying the dbcAMP-induced stellation and explore the site of action of serofendic acid. Both the stellation induced by dbcAMP and the promotional effect of serofendic acid were partially inhibited by KT5720, a specific protein kinase A (PKA) inhibitor. Furthermore, serofendic acid failed to facilitate the stellation induced by Y-27632, an inhibitor of Rho-associated kinase (ROCK). These results indicate that serofendic acid promotes dbcAMP- and 8-Br-cGMP-induced stellation and the promotional effect on dbcAMP-induced stellation is mediated at least partly by the regulation of PKA activity and not by controlling ROCK activity.
Collapse
Affiliation(s)
- Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 2008; 28:4604-12. [PMID: 18448636 DOI: 10.1523/jneurosci.5074-07.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes serve various important functions in the CNS, but the molecular mechanisms of their generation and maturation are still enigmatic. Here, we show that Pax6, a key transcription factor that controls neurogenesis, also regulates proliferation, differentiation, and migration of astrocytes in the CNS. We first reveal that Pax6 is expressed in astrocytes during development as well as postnatally in the wild-type mouse. Astrocytes derived from Pax6 homozygous mutants (Sey/Sey) mice exhibited aberrant proliferation together with immature differentiation, both in vivo and in vitro, with higher migration potential in scratch-wound assays in vitro. Furthermore, a larger population of Sey/Sey astrocytes expresses neural stem cell markers such as nestin, Sox2, and prominin-1. These phenotypes of Pax6-deficient astrocytes putatively occur via higher Akt activity. Thus, the breakdown of Pax6 function induces the retention of neural stem-like characteristics and inhibits astrocyte maturation.
Collapse
|
8
|
Subpopulation of nestin positive glial precursor cells occur in primary adult human brain cultures. Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0123-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Gharami K, Das S. Delayed but sustained induction of mitogen-activated protein kinase activity is associated with β-adrenergic receptor-mediated morphological differentiation of astrocytes. J Neurochem 2003; 88:12-22. [PMID: 14675145 DOI: 10.1046/j.1471-4159.2003.02148.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Astroglial beta-adrenergic receptors (beta-ARs) are functionally linked to regulate cellular morphology. In primary cultures, the beta-AR agonist isoproterenol (ISP) can transform flat polygonal astrocytes into process-bearing, mature stellate cells by 48 h, an effect that can be blocked by the beta-AR antagonist, propranolol. ISP induced immediate activation of protein kinase A (PKA) which persisted up to 2 h, with no visible change in cell morphology. However, activation of PKA was sufficient to drive the process of transformation to completion, suggesting the involvement of downstream regulators of PKA. In addition to PKA inhibitors, the mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 also blocked ISP-induced morphological transformation. ISP treatment resulted in a biphasic response of cellular phosphorylated MAPK (phosphorylated extracellular signal-regulated kinase; p-ERK) level: an initial decline in p-ERK level followed by a sustained induction at 12-24 h, both of which were blocked by PKA inhibitor. The induction in pERK level coincided with initiation of morphological differentiation of the astrocytes and nuclear translocation of p-ERK. A long-lasting activation of p-ERK activity by ISP, at a later stage, appears to be critical for the transformation of astrocytes.
Collapse
Affiliation(s)
- Kusumika Gharami
- Neurobiology Division, Indian Institute of Chemical Biology, Jadavpur, Calcutta, India
| | | |
Collapse
|
10
|
Abe K, Misawa M. The extracellular signal-regulated kinase cascade suppresses amyloid beta protein-induced promotion of glutamate clearance in cultured rat cortical astrocytes. Brain Res 2003; 979:179-87. [PMID: 12850584 DOI: 10.1016/s0006-8993(03)02899-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently found that Alzheimer's disease amyloid beta protein (Abeta) activates the extracellular signal-regulated kinase (ERK) and promotes L-glutamate uptake in astrocytes. To elucidate the relationship between the Abeta-induced ERK phosphorylation and promotion of L-glutamate uptake, we investigated the effects of U0126 and PD98059, specific inhibitors of the ERK-activating enzyme MEK, in cultured rat cortical astrocytes. Abeta-induced ERK phosphorylation was completely blocked by the MEK inhibitors, while Abeta-induced promotion of extracellular L-glutamate clearance was enhanced by the presence of the MEK inhibitors. Abeta-induced increase of the glutamate transporter GLAST expression was also enhanced by the presence of MEK inhibitors. The effective concentrations of MEK inhibitors in enhancing Abeta-induced promotion of glutamate clearance and GLAST expression were consistent with those in blocking Abeta-induced ERK phosphorylation. These results suggest that the MEK/ERK signal functions to suppress Abeta-induced upregulation of a glutamate uptake system in astrocytes.
Collapse
Affiliation(s)
- Kazuho Abe
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan.
| | | |
Collapse
|
11
|
Abe K, Misawa M. Astrocyte stellation induced by Rho kinase inhibitors in culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:99-104. [PMID: 12763584 DOI: 10.1016/s0165-3806(03)00096-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To understand the role of Rho kinases in regulation of astrocyte morphology, we investigated the effects of Rho kinase inhibitors on the morphology of cultured rat cortical astrocytes. Cultured astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but changed into process-bearing stellate cells following treatment with the selective Rho kinase inhibitor Y-27632 (1-10 microM). The Y-27632-induced astrocyte stellation was abolished by treatment with colchicine, indicating that the response requires reorganization of cytoskeletal elements. The effect of Y-27632 was mimicked by another Rho kinase inhibitor HA1077, but not by the protein kinase C inhibitor GF-109203X or the protein kinase A inhibitor KT5720. These results suggest that Rho kinases are in an activated state in the absence of stimuli and contribute to the maintenance of polygonal morphology of cultured astrocytes.
Collapse
Affiliation(s)
- Kazuho Abe
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | |
Collapse
|
12
|
Gabryel B, Adamek M, Trzeciak HI. Does trimetazidine exert cytoprotective activity on astrocytes subjected to hypoxia in vitro? Neurotoxicology 2001; 22:455-65. [PMID: 11577804 DOI: 10.1016/s0161-813x(01)00041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to establish whether trimetazidine (TMZ) is capable of protecting astrocytes against hypoxic injury. Using the model of astrocyte cell culture we tried to observe the cells treated with TMZ before, during and after hypoxia simulated in vitro. Cell viability was determined by Live/Dead (viability/cytotoxicity) Assay Kit and MTT conversion test. Apoptotic cell death was distinguished by a method using fluorescence microscopy with Hoechst 33342. The effect of the drug on the DNA synthesis was evaluated by measuring the incorporation of [3H]thymidine into DNA of astrocytes. TMZ stimulates the proliferation of astrocytes most significant one when the astrocytes are exposed to the drug in normoxia, hypoxia and/or re-oxygenation. Adding TMZ into cultures during re-oxygenation and hypoxial re-oxygenation significantly decreases the number of dead and apoptotic cells. Our experiment has proved that TMZ exerts the most significantly cytoprotective effect on astrocytes in vitro when added during hypoxia and/or re-oxygenation. We may conclude that the protective effect of TMZ depends on the sequence of drug adding and hypoxia/ re-oxygenation onset.
Collapse
Affiliation(s)
- B Gabryel
- Department of Pharmacology, Silesian Medical University, Katowice, Poland.
| | | | | |
Collapse
|
13
|
Abe K, Saito H. L-glutamate suppresses astrocyte stellation induced by actin breakdown in culture. Biol Pharm Bull 2001; 24:347-50. [PMID: 11305593 DOI: 10.1248/bpb.24.347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently found that L-glutamate suppresses morphological changes of astrocytes induced by amyloid beta protein, adenosine 3',5'-cyclic monophosphate or phorbol ester in culture. To test the possibility that L-glutamate affects organization of the cytoskeleton, we investigated its effect on morphological changes induced by disruption of actin filaments with cytochalasin B. Cultured rat cortical astrocytes exhibited flat, polygonal morphology in the absence of stimulation, and changed into process-bearing stellate cells following treatment with cytochalasin B (50 microM). L-Glutamate strongly suppressed the stellation induced by cytochalasin B. The effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that glutamate transporter activity leads to cytoskeletal actin organization in astrocytes.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology Faculty of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | | |
Collapse
|
14
|
Abe K, Saito H. Na+ and K+ dependence of L-glutamate-induced suppression of astrocyte stellation in culture. Biol Pharm Bull 2001; 24:50-3. [PMID: 11201245 DOI: 10.1248/bpb.24.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently found that L-glutamate suppresses astrocyte stellation induced by various stimuli, and that this effect of L-glutamate is mimicked by transportable glutamate uptake inhibitors. To test the possible role of the glutamate transporter in the regulation of astrocyte morphology, we investigated the Na+ and K+ dependence of this effect of L-glutamate. In astrocyte cultures obtained from the cerebral cortex of neonatal rats, the L-glutamate-induced suppression of astrocyte stellation was significantly attenuated in a low- Na+/high- K+ medium and by the Na+ -K+ pump inhibitor ouabain. These results support that astrocyte morphology is affected by the activity of the Na+ -dependent glutamate transporter.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | | |
Collapse
|
15
|
Napp MI, Colombo JA. Heterochronous maturation of regional brain astroglia: neuronal modulation of striatal glial cells differentiation ex vivo. Int J Dev Neurosci 2000; 18:531-44. [PMID: 10884598 DOI: 10.1016/s0736-5748(00)00021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Subcultured astroglial cells from striatum, cerebral cortex and ventral mesencephalon obtained from primary cultures of fetal (E14, E17 and E21) or postnatal (days 5-6) rats showed different regional, age-dependent morphological response (stellation) to cyclic AMP. While most of the cerebral cortex and ventral mesencephalic astroglial cell population was responsive at all ages tested, striatal cells at E14 and E17 were not. At age E21 striatal astroglia showed a significant shift toward a mature-like type of response to cyclic AMP. Postnatal striatal astroglia responded to cyclic AMP as the cortical and ventral mesencephalic astroglia did, with generalized stellation. Prenatal striatal astroglia was characterized immunocytochemically as A2B5+, fibronectin+, vimentin+, S-100+ and GFAP-. Failure of early prenatal (E14, E17) striatal astroglia to differentiate in response to cyclic AMP, was overcome by previous (5-7 days) co-culture with primary cell dissociates from postnatal-, but not from prenatal donors, from all brain regions tested including a non-target region for striatal cells, such as septum. This effect was duplicated when striatal astroglia was co-cultured with cell populations enriched in neurons through Percoll gradients. Only cell-to-cell contact co-cultures were able to induce a change in the studied response. Dead neuron-enriched populations obtained following various types of physical treatments were also able to change significantly striatal cell response toward cyclic AMP. Enriched astroglial populations from postnatal donors did not change striatal astroglial response toward cyclic AMP, except for ventral mesencephalic astroglia which induced a comparatively reduced but significant increase in striatal cell responsiveness. It is concluded that astroglial maturation and potential for phenotype expression during brain development proceeds with regional heterochrony. Also, that maturation of prenatal striatal astroglia responsiveness toward cyclic AMP is inducible by non-diffusible factors, probably of neuronal origin, expressed in live or dead primary cultures from various, homotopic and heterotopic, postnatal brain regions. It is further suggested that striatal afferents and/or mature local striatal neurons express membrane associated molecules that regulate responsiveness for phenotype expression of striatal glial cells, thus reinforcing the concept of a highly interactive, continuous neuron-glial developmental process that takes place during brain organization.
Collapse
Affiliation(s)
- M I Napp
- Programa Unidad de Neurobiología Aplicada (PRUNA)(CEMIC-CONICET), Av Galván 4102, 1431, Buenos Aires, Argentina
| | | |
Collapse
|
16
|
Ikeda Y, Ueno A, Naraba H, Matsuki N, Oh-Ishi S. Intracellular Ca2+ increase in neuro-2A cells and rat astrocytes following stimulation of bradykinin B2 receptor. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:140-5. [PMID: 11128036 DOI: 10.1254/jjp.84.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Murine neuroblastoma cell line Neuro-2A cells and rat brain astrocytes showed a dose-dependent increase in intracellular Ca2+ in response to bradykinin, when assessed by a single cell image analyzing system. The Ca2+ increase in Neuro-2A cells by bradykinin was also examined by a suspension fluorescent assay using fura-2 loading. The Ca2+ increase in both cases was suppressed by a bradykinin B2 receptor antagonist, Hoe 140, but not by a B1 receptor antagonist, des-Arg-Hoe 140, suggesting that the effect occurred via specific B2 receptor activation. RT-PCR for bradykinin B2 receptor mRNA showed that both Neuro-2A cells and the astrocytes expressed B2 receptor mRNA. Binding of [3H]bradykinin to Neuro-2A cells was assessed, and a specific binding constant of 0.75 nM was determined. Furthermore, the increase in [Ca2+]i by bradykinin could be caused by a release of Ca2+ from storage sites in the endoplasmic reticulum, since thapsigargin and U-73122 attenuated the effect of bradykinin in Neuro-2A as well as in astrocytes. These results indicate that both astrocytes and neuroblastoma Neuro-2A cells stimulated by bradykinin could express a bradykinin B2 receptor-mediated intracellular Ca2+ increase leading to signal transduction.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Abe K, Saito H. The p44/42 mitogen-activated protein kinase cascade is involved in the induction and maintenance of astrocyte stellation mediated by protein kinase C. Neurosci Res 2000; 36:251-7. [PMID: 10683529 DOI: 10.1016/s0168-0102(99)00134-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitogen-activated protein kinase (MAPK) is known to be involved in the differentiation of various types of cells. To understand the role of p44/42 MAPK (ERK1/2) in astrocyte differentiation, we investigated the effects of U0126 and PD98059, specific inhibitors of the MAPK-activating enzyme MEK, on astrocyte morphology in culture. Cultured rat cortical astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but differentiated into process-bearing stellate cells in response to the membrane-permeable cyclic AMP analog dibutyryl cyclic AMP (dBcAMP) or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). dBcAMP-induced astrocyte stellation was not affected by MEK inhibitors, while PMA-induced astrocyte stellation was significantly blocked by U0126 (0.1-10 microM) and PD98059 (10-30 microM). Western blot analysis with an antibody specific for phosphorylated ERK1/2 revealed that PMA, but not dBcAMP, induced phosphorylation of ERK1/2 in a time- and concentration-dependent manner. The PMA-induced astrocyte stellation and ERK1/2 phosphorylation were blocked by specific PKC inhibitors, GF-109203X (0.01-1 microM) and calphostin C (1 microM). In addition, when U0126 or PD98059 was added after treatment with PMA, stellate astrocytes returned to polygonal. These results suggest that the MEK/ERK cascade is involved in the induction and maintenance of astrocyte stellation mediated by PKC, but not by cyclic AMP signaling.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
18
|
Abe K, Saito H. L-glutamate suppresses amyloid beta-protein-induced stellation of cultured rat cortical astrocytes. J Neurochem 2000; 74:280-6. [PMID: 10617130 DOI: 10.1046/j.1471-4159.2000.0740280.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alzheimer's amyloid beta-protein (Abeta) has been reported to potentiate glutamate toxicity in neurons, but very little is known about interaction between Abeta and glutamate in astrocytes. Therefore, in the present study, we investigated the effects of Abeta and glutamate on morphology of astrocytes. Cultured rat cortical astrocytes exhibited polygonal morphology in the absence of stimulation and differentiated into process-bearing stellate cells following exposure to Abeta (20 microM). L-Glutamate (30-1,000 microM) had no effect on astrocyte morphology in the absence of stimulation but strongly suppressed Abeta-induced stellation. The suppressive effect of L-glutamate on Abeta-induced stellation was not mimicked by glutamate receptor agonists and not blocked by glutamate receptor antagonists. In contrast, the suppressive effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that Abeta-induced astrocyte stellation is suppressed by a mechanism related to glutamate transporters.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | |
Collapse
|
19
|
Stanimirovic DB, Ball R, Small DL, Muruganandam A. Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro. Int J Dev Neurosci 1999; 17:173-84. [PMID: 10452361 DOI: 10.1016/s0736-5748(99)00028-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glutamate plays an important role in brain development, physiological function, and neurodegeneration. Astrocytes control synaptic concentration of glutamate via the high affinity glutamate transporters, GLT-1 and GLAST, and the glutamate catabolizing enzyme, glutamine synthetase. In this study we show that astrocytes cultured from rat brain in various stages of development including embryonic (E18), postnatal (P1-P21) and mature (P50), show distinct patterns of GLT-1 and GLAST expression, glutamine synthetase activity, and phenotypic changes induced by dibutyryl-cyclic adenosine monophosphate. The transcripts for GLT-1 message were detectable in embryonic astrocytes only, whereas the GLAST message was highly expressed in E18 and P1-P4 astrocyte cultures, declined in P10-P21, and was undetectable in P50 astrocytes. Uptake of 3H-glutamate correlated well with GLAST expression in astrocyte cultures of all developmental stages. Glutamine synthetase activity significantly declined from high embryonic levels in P4 astrocytes and remained low throughout postnatal maturation. Exposure of astrocyte cultures to the differentiating agent, db-cAMP (250-500 microM; 6 days), resulted in a pronounced stellation, up-regulation of GLT-1 and GLAST in E18, and GLAST in P4 cultures, while it was ineffective in P10 astrocytes. By contrast, db-cAMP induced a more pronounced stimulation of glutamine synthetase activity (up to 10-fold above basal) in P10 than in E18 cultures (up to 2 times above basal). The differences in expression/inducibility of glutamate transporters and glutamine synthetase observed in astrocyte cultures derived from various stages of fetal and postnatal development suggest that astrocytes in vivo might also respond differently to environmental or injurious stimuli during development and maturation.
Collapse
Affiliation(s)
- D B Stanimirovic
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ONT, Canada.
| | | | | | | |
Collapse
|
20
|
Abstract
We investigated the effect of adenosine on astrocyte morphology by using cell cultures prepared from the cerebral cortices of neonatal rats. Cultured rat cortical astrocytes exhibited flattened, polygonal morphology in the absence of stimulation, but differentiated into process-bearing stellate cells in response to adenosine (1-1000 microM). Adenosine-induced astrocyte stellation was abolished by treatment with microtubule inhibitors, colchicine and paclitaxel, indicating the involvement of cytoskeletal elements. The effect of adenosine was mimicked by other adenosine receptor agonists, and blocked by adenosine receptor antagonists and guanosine 5'-O-(2-thiodiphosphate), indicating that the effect of adenosine is mediated by G protein-coupled adenosine receptors. Although adenosine receptors are known to be linked to adenylate cyclase or phospholipase C, adenosine did not change intracellular cyclic AMP level nor intracellular Ca2+ concentration in astrocytes. Alternatively, adenosine-induced stellation was abolished by tyrosine phosphatase inhibitors, orthovanadate and phenylarsine oxide, suggesting that adenosine causes astrocyte stellation through tyrosine dephosphorylation. Adenosine may function as a factor regulating astrocyte differentiation.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|