1
|
Kawashima K, Mashimo M, Nomura A, Fujii T. Contributions of Non-Neuronal Cholinergic Systems to the Regulation of Immune Cell Function, Highlighting the Role of α7 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2024; 25:4564. [PMID: 38674149 PMCID: PMC11050324 DOI: 10.3390/ijms25084564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Loewi's discovery of acetylcholine (ACh) release from the frog vagus nerve and the discovery by Dale and Dudley of ACh in ox spleen led to the demonstration of chemical transmission of nerve impulses. ACh is now well-known to function as a neurotransmitter. However, advances in the techniques for ACh detection have led to its discovery in many lifeforms lacking a nervous system, including eubacteria, archaea, fungi, and plants. Notably, mRNAs encoding choline acetyltransferase and muscarinic and nicotinic ACh receptors (nAChRs) have been found in uninnervated mammalian cells, including immune cells, keratinocytes, vascular endothelial cells, cardiac myocytes, respiratory, and digestive epithelial cells. It thus appears that non-neuronal cholinergic systems are expressed in a variety of mammalian cells, and that ACh should now be recognized not only as a neurotransmitter, but also as a local regulator of non-neuronal cholinergic systems. Here, we discuss the role of non-neuronal cholinergic systems, with a focus on immune cells. A current focus of much research on non-neuronal cholinergic systems in immune cells is α7 nAChRs, as these receptors expressed on macrophages and T cells are involved in regulating inflammatory and immune responses. This makes α7 nAChRs an attractive potential therapeutic target.
Collapse
Grants
- 19-31: TF; 20-25: TF. Individual Research Grants from the Doshisha Women's College of Liberal Arts
- 24590120, K.K., T.F., K.H.; 22K06638, T.F., A.N., 15K18871, M.M.; 15K07979, T.F., 15K07969-m, K.K.; 18K06903, T.F. The Ministry of Education, Science, Sports and Culture of Japan
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (A.N.)
| |
Collapse
|
2
|
Mashimo M, Kawashima K, Fujii T. Non-neuronal Cholinergic Muscarinic Acetylcholine Receptors in the Regulation of Immune Function. Biol Pharm Bull 2022; 45:675-683. [PMID: 35650095 DOI: 10.1248/bpb.b21-01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune cells such as T and B cells, monocytes and macrophages all express most of the cholinergic components of the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase (AChE). Because of its efficient cleavage by AChE, ACh synthesized and released from immune cells acts only locally in an autocrine and/or paracrine fashion at mAChRs and nAChRs on themselves and other immune cells located in close proximity, leading to modification of immune function. Immune cells generally express all five mAChR subtypes (M1-M5) and neuron type nAChR subunits α2-α7, α9, α10, β2-β4. The expression pattern and levels of mAChR subtypes and nAChR subunits vary depending on the tissue involved and its immunological status. Immunological activation of T cells via T-cell receptor-mediated pathways and cell adhesion molecules upregulates ChAT expression, which facilitates the synthesis and release of ACh. At present, α7 nAChRs expressed in macrophages are receiving much attention because they play a central role in anti-inflammatory cholinergic pathways. However, it now appears that through modification of cytokine synthesis, Gq/11-coupled mAChRs play a prominent role in regulation of T cell proliferation and differentiation and B cell immunoglobulin class switching. It is anticipated that greater understanding of Gq/11-coupled mAChRs on immune cells will provide an opportunity to develop new and effective treatments for immunological disorders.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
3
|
Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. Int J Mol Sci 2021; 22:ijms22136818. [PMID: 34202925 PMCID: PMC8268711 DOI: 10.3390/ijms22136818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.
Collapse
|
4
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
5
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
6
|
Effect of anti-muscarinic autoantibodies on leukocyte function in Sjögren's syndrome. Mol Immunol 2017; 90:136-142. [PMID: 28750255 DOI: 10.1016/j.molimm.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Patients with primary Sjögren's syndrome, a systemic autoimmune disease, have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R).Primary Sjögren's syndrome is a systemic autoimmune disease. Patients with primary Sjögren's syndrome have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R). Leukopenia has been reported to be significantly more common in primary Sjögren's syndrome patients who have anti-M3R-autoantibodies in their sera. In this study, we investigated whether these anti-M3R autoantibodies have effects on M3R and MHCI expression in Jurkat T cells. Purified IgG antibodies were isolated from the serum of healthy individuals and primary Sjögren's syndrome patients. Jurkat cell line was used to represent T lymphocytes. In situ immunofluorescence confocal microscopy was used to confirm the binding reactivity of primary Sjögren's syndrome IgG antibodies to M3R. Co-immunoprecipitation and immunofluorescence results suggested a direct interaction between M3R and MHC I. Co-internalization of M3R and MHC I was observed when Jurkat cells were exposed to the primary Sjögren's syndrome IgG, but this primary Sjögren's syndrome IgG-induced co-internalization of M3R and MHC I was prevented by the presence of exogenous IFN-γ. Primary Sjögren's syndrome IgG itself did not affect the viability of Jurkat cells, but Jurkat cells exposed to primary Sjögren's syndrome IgG were observed to undergo significant cell death when co-cultured with primary Natural Killer cells. Our results suggest that anti-M3R autoantibodies in primary Sjögren's syndrome induce downregulation of plasma membrane-resident M3R and MHC class I molecules in leukocytes followed by NK cell-mediated cell death. This mechanism may explain the frequency of leukopenia occurrence in patients with primary Sjögren's syndrome.
Collapse
|
7
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
|
8
|
Acetylcholine released from T cells regulates intracellular Ca 2+, IL-2 secretion and T cell proliferation through nicotinic acetylcholine receptor. Life Sci 2016; 172:13-18. [PMID: 28025040 DOI: 10.1016/j.lfs.2016.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
Abstract
AIMS T lymphocytes synthesize acetylcholine (ACh) and express muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively) responsible for increases in the intracellular Ca2+ concentration ([Ca2+]i). Our aim in the present study was to assess whether autocrine ACh released from T lymphocytes regulates their physiological functions. MAIN METHODS MOLT-3 human leukemic cell line and murine splenocytes were loaded with fura-2 to monitor [Ca2+]i changes in the absence or presence of several AChR antagonists, including mecamylamine, methyllycaconitine and scopolamine. Real-time PCR and ELISA were performed to measure interleukin-2 (IL-2) mRNA and protein levels. KEY FINDINGS T lymphocytes constitutively produce sufficient amounts of ACh to elicit autocrine changes in [Ca2+]i. These autocrine ACh-evoked [Ca2+]i transients were mediated by nAChRs and then influx of extracellular Ca2+. Mecamylamine, a nAChR inhibitor, suppressed not only these [Ca2+]i transients, but also IL-2 release and T cell proliferation. SIGNIFICANCE Here, we confirmed that T lymphocytes utilize ACh as a tool to interact with each other and that autocrine ACh-activated nAChRs are involved in cytokine release and cell proliferation. These findings suggest the possibility that nAChR agonists and antagonists and smoking are able to modulate immune function, which in turn suggests the therapeutic potential of immune activation or suppression using nAChR agonists or antagonists.
Collapse
|
9
|
Dobrovinskaya O, Valencia-Cruz G, Castro-Sánchez L, Bonales-Alatorre EO, Liñan-Rico L, Pottosin I. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia. Front Pharmacol 2016; 7:290. [PMID: 27630569 PMCID: PMC5005329 DOI: 10.3389/fphar.2016.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México; Consejo Nacional de Ciencia y TecnologíaMéxico City, México
| | | | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| |
Collapse
|
10
|
Mashimo M, Yurie Y, Kawashima K, Fujii T. CRAC channels are required for [Ca(2+)]i oscillations and c-fos gene expression after muscarinic acetylcholine receptor activation in leukemic T cells. Life Sci 2016; 161:45-50. [PMID: 27474128 DOI: 10.1016/j.lfs.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
AIMS T lymphocytes express muscarinic acetylcholine receptors (mAChRs) involved in regulating their proliferation, differentiation and cytokine release. Activation of M1, M3 or M5 mAChRs increases the intracellular Ca(2+) concentration ([Ca(2+)]i) through inositol-1,4,5-phosphate (IP3)-mediated Ca(2+) release from endoplasmic reticulum Ca(2+) stores. In addition, T lymphocytes express Ca(2+)-release activated Ca(2+) (CRAC) channels to induce Ca(2+) influx and to regulate diverse immune functions. Our aim in the present study was to assess the role of CRAC channels during mAChR activation in the Ca(2+)-dependent transduction that contributes to the regulation of T cell function. MAIN METHODS Changes in [Ca(2+)]i following mAChR activation on human leukemic T cells, CCRF-CEM (CEM), were monitored using fura-2, based on the ratio of 510nm fluorescences elicited by excitation at 340nm and 380nm (R340/380). KEY FINDINGS We demonstrate that CEM cells express mainly M3 and M5 mAChRs, but little the M1 subtype, and that oxotremorine-M (Oxo-M), an mAChR agonist, induces an initial transient increase in [Ca(2+)]i followed by repetitive [Ca(2+)]i oscillations. Removing extracellular Ca(2+) or pharmacological blockade of CRAC channels abolished the [Ca(2+)]i oscillations without affecting the initial [Ca(2+)]i transient induced by Oxo-M. Moreover, CRAC channel blockade also suppressed Oxo-M-induced c-fos and interleukin-2 expression. SIGNIFICANCE These results suggest that upon M3 or M5 mAChR activation, IP3-mediated Ca(2+) release induces extracellular Ca(2+) influx through CRAC channels, which generates repetitive [Ca(2+)]i oscillations and, in turn, enhances c-fos gene expression in T lymphocytes.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yukako Yurie
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
11
|
Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. APPLICATION OF CLINICAL GENETICS 2016; 9:39-47. [PMID: 27099524 PMCID: PMC4821384 DOI: 10.2147/tacg.s99405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients. SUBJECTS AND METHODS A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. RESULTS ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05). CONCLUSION We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Teilah Huth
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anu Chacko
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Samantha Johnston
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Pete Smith
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
13
|
Abstract
The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function.
Collapse
Affiliation(s)
- M J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | |
Collapse
|
14
|
Darby M, Schnoeller C, Vira A, Culley FJ, Culley F, Bobat S, Logan E, Kirstein F, Wess J, Cunningham AF, Brombacher F, Selkirk ME, Horsnell WGC. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection. PLoS Pathog 2015; 11:e1004636. [PMID: 25629518 PMCID: PMC4309615 DOI: 10.1371/journal.ppat.1004636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 01/24/2023] Open
Abstract
Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.
Collapse
Affiliation(s)
- Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Corinna Schnoeller
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Alykhan Vira
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Fiona Jane Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Fiona Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Saeeda Bobat
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Erin Logan
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Frank Kirstein
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Murray E Selkirk
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann N Y Acad Sci 2012; 1261:7-17. [PMID: 22823388 DOI: 10.1111/j.1749-6632.2012.06516.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune cells, including lymphocytes, express muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs, respectively), and agonist stimulation of these AChRs causes functional and biochemical changes in the cells. The origin of the ACh that acts on immune cell AChRs has remained unclear until recently, however. In 1995, we identified choline acetyltransferase mRNA and protein in human T cells, and found that immunological T cell activation potentiated lymphocytic cholinergic transmission by increasing ACh synthesis and AChR expression. We also found that M(1) /M(5) mAChR signaling upregulates IgG(1) and proinflammatory cytokine production, whereas α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts as an autocrine and/or paracrine factor via AChRs on immune cells to modulate immune function. In addition, a recently discovered endogenous allosteric α7 nAChR ligand, SLURP-1, also appears to be involved in modulating normal T cell function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
16
|
Mediatophore regulates acetylcholine release from T cells. J Neuroimmunol 2012; 244:16-22. [DOI: 10.1016/j.jneuroim.2011.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/21/2011] [Accepted: 12/15/2011] [Indexed: 11/23/2022]
|
17
|
Chen YJ, Chang LS. Arecoline-induced death of human leukemia K562 cells is associated with surface up-modulation of TNFR2. J Cell Physiol 2012; 227:2240-51. [DOI: 10.1002/jcp.22963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Verbout NG, Jacoby DB. Muscarinic receptor agonists and antagonists: effects on inflammation and immunity. Handb Exp Pharmacol 2012:403-27. [PMID: 22222708 DOI: 10.1007/978-3-642-23274-9_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we will review what is known about muscarinic regulation of immune cells and the contribution of immune cell muscarinic receptors to inflammatory disease and immunity. In particular, immune cell expression of cholinergic machinery, muscarinic receptor subtypes and functional consequences of agonist stimulation will be reviewed. Lastly, this chapter will discuss the potential therapeutic effects of selective antagonists on immune cell function and inflammatory disease in recent animal studies and human clinical trials.
Collapse
Affiliation(s)
- Norah G Verbout
- School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
19
|
Lung and blood lymphocytes NTPDase and acetylcholinesterase activity in cigarette smoke-exposed rats treated with curcumin. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Charoenying T, Suriyo T, Thiantanawat A, Chaiyaroj SC, Parkpian P, Satayavivad J. Effects of paraoxon on neuronal and lymphocytic cholinergic systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:119-128. [PMID: 21787676 DOI: 10.1016/j.etap.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/05/2010] [Accepted: 09/21/2010] [Indexed: 05/31/2023]
Abstract
The cholinergic system in lymphocytes is hypothesized to be a key target for neurotoxic organophosphates (OPs). The present study determined the comparative effects of paraoxon, the active metabolite of OP-parathion, which is detected in the human neuroblastoma line, SH-SY5Y, and leukemic T-lymphocytes, MOLT-3, in vitro. Paraoxon induced cytotoxic effects in a dose- and time-dependent manner in both cells. Further, the paraoxon-induced modulatory effects were comparable despite different cell types, including over-expression of N-terminus acetylcholinesterase (N-AChE) protein, a marker of apoptosis, down-regulations of mRNA encoding M1, M2, and M3 muscarinic acetylcholine receptors (mAChRs), and induction in expression of c-Fos gene, an indication of certain mAChR subtype(s) activation. Furthermore, the non-selective cholinergic antagonist atropine partially attenuated the paraoxon-induced N-AChE and c-Fos activations in both types of cells. These results provide initial and additional information that OPs may similarly induce neuro- and immuno-toxic effects through mAChRs activation, and they underline the potential of using lymphocytes for assessing OPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Tanvisith Charoenying
- Inter-University Program in Environmental Toxicology, Technology, and Management, Asian Institute of Technology, Mahidol University, and Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | | | | | | |
Collapse
|
21
|
Lyubchenko T, Nielsen JP, Miller SM, Liubchenko GA, Holers VM. Role of initial protein phosphorylation events and localized release-activated calcium influx in B cell antigen receptor signaling. J Leukoc Biol 2008; 85:298-309. [PMID: 19028960 DOI: 10.1189/jlb.0308193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increase in intracellular calcium concentration is one of the major initial steps in B cell activation following antigen receptor (BCR) ligation. We show herein that in C57BL/6 murine B lymphocytes and in model cell lines, BCR-mediated calcium ion (Ca(2+)) influx occurs via highly selective Ca(2+) release-activated channels, and stromal interaction molecule 1 (STIM1) plays an important role in this pathway. We also demonstrate the temporal relation between Ca(2+)-dependent signaling events and formation of the immune synapse. Our data indicate that cytoplasmic Ca(2+) levels in areas adjacent to the immune synapse differ from those in the rest of the cytoplasm. Finally, a comparison of phosphorylation patterns of BCR-triggered signaling proteins in the presence or absence of Ca(2+) revealed the unanticipated finding that initial BCR-triggered, Ca(2+)-dependent tyrosine phosphorylation events involve predominantly Ca(2+) released from intracellular stores and that influx-derived Ca(2+) is not essential. This suggests a different role for this phase of Ca(2+) influx.
Collapse
Affiliation(s)
- Taras Lyubchenko
- Department of Medicine and Immunology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
22
|
Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008; 106:186-92. [PMID: 18285654 DOI: 10.1254/jphs.fm0070109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lymphocytes possess all the components required to constitute an independent, non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). ACh modifies T and B cell function via both mAChR- and nAChR-mediated pathways. Stimulation of lymphocytes with the T cell activator phytohemagglutinin, protein kinase C activator phorbol ester, or cell surface molecules enhances the synthesis and release of ACh and up-regulates ChAT and/or M(5) mAChR gene expression. Furthermore, animal models of immune disorders exhibit abnormal lymphocytic cholinergic activity. The cholesterol-lowering drug simvastatin attenuates the lymphocytic cholinergic activity of T cells by inhibiting LFA-1 signaling in a manner independent of its cholesterol-lowering activity. This suggests that simvastatin exerts its immunosuppressive effects in part by modifying lymphocytic cholinergic activity. Nicotine, an active ingredient of tobacco, ameliorates ulcerative colitis but exacerbates Crohn's disease. Expression of mRNAs encoding the nAChR alpha7 and alpha5 subunits are significantly diminished in peripheral mononuclear leukocytes from smokers, as compared with those from nonsmokers. In addition, long-term exposure of lymphocytes to nicotine reduces intracellular Ca(2+) signaling via alpha7 nAChR-mediated pathways. In fact, studies of humoral antibody production in M(1)/M(5) mAChR-deficient and alpha7 nAChR-deficient animals revealed the role of lymphocytic cholinergic activity in the regulation of immune function. These results provide clues to understanding the mechanisms underlying immune system regulation and could serve as the basis for the development of new immunomodulatory drugs.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Minato-ku, Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Suriyo T, Thiantanawat A, Chaiyaroj SC, Parkpian P, Satayavivad J. Involvement of the lymphocytic muscarinic acetylcholine receptor in methylmercury-induced c-Fos expression and apoptosis in human leukemic T cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1109-1123. [PMID: 18569623 DOI: 10.1080/15287390802114725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Methylmercury (MeHg) is an environmental toxicant that is known to induce lymphocyte apoptosis; however, little is known about the molecular mechanism involved. Data showed that MOLT-3 cells were more sensitive to MeHg-induced cytotoxic effects than Jurkat clone E6-1 cells, suggesting that the lymphocytic muscarinic cholinergic system may be involved since the expressions of five subtypes (M1-M5) of muscarinic acetylcholine receptor (mAChR) in MOLT-3 cells are higher than in Jurkat cells. The role of mAChR-linked pathways in MeHg-induced apoptosis in human leukemic T cells was examined in this study. Treatment of the MOLT-3 cells with 1 microM MeHg produced induction of c-Fos expression, apoptotic cell death, and downregulation of mAChR. MeHg-induced c-Fos expression was significantly reduced by pretreatment with atropine (a nonselective mAChR antagonist), or 4-DAMP (a selective M1/M3 mAChR antagonist), whereas pirenzipine (a selective M1 mAChR antagonist) or himbazine (a selective M2/M4 mAChR antagonist) did not reduce this induction, suggesting that MeHg-induced c-Fos expression through the activation of the mAChR, at least M3 subtype, is involved. Pretreatment with 4-DAMP or SB 203580 (a specific p38 inhibitor) resulted in decreases in the level of phosphorylated p38, c-Fos expression, and apoptotic cell death induced by MeHg. Taken together, these data suggest that the mAChR-p38-dependent pathway participates in the increase of c-Fos expression, which is involved in MeHg-induced lymphocyte apoptosis. In addition, a noncytotoxic concentration of MeHg (0.1 microM) inhibited PHA/PMA-stimulated interleukin (IL)-2 production, and this inhibition was reversed by pretreatment with atropine or 4-DAMP. Overall, this study provides initial evidence that MeHg may alter the immune system by targeting the lymphocytic mAChR.
Collapse
Affiliation(s)
- Tawit Suriyo
- Inter-University Program in Environmental Toxicology, Technology and Management, Asian Institute of Technology, Mahidol University and Chulabhorn Research Institute, Bangkok
| | | | | | | | | |
Collapse
|
24
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a condition which is characterized by irreversible airway obstruction due to narrowing of small airways, bronchiolitis, and destruction of the lung parenchyma, emphysema. It is the fourth most common cause of mortality in the world and is expected to be the third most common cause of death by 2020. The main cause of COPD is smoking but other exposures may be of importance. Exposure leads to airway inflammation in which a variety of cells are involved. Besides neutrophil granulocytes, macrophages and lymphocytes, airway epithelial cells are also of particular importance in the inflammatory process and in the development of emphysema. Cell trafficking orchestrated by chemokines and other chamoattractants, the proteinase-antiproteinase system, oxidative stress and airway remodelling are central processes associated with the development of COPD. Recently systemic effects of COPD have attracted attention and the importance of systemic inflammation has been recognized. This seems to have direct therapeutic implications as treatment with inhaled glucocorticosteroids has been shown to influence mortality. The increasing body of knowledge regarding the inflammatory mechanism in COPD will most likely have implications for future therapy and new drugs, specifically aimed at interaction with the inflammatory processes, are currently being developed.
Collapse
Affiliation(s)
- Kjell Larsson
- Unit of Lung and Allergy Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Fujii YX, Tashiro A, Arimoto K, Fujigaya H, Moriwaki Y, Misawa H, Fujii T, Matsui M, Kasahara T, Kawashima K. Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice. J Neuroimmunol 2007; 188:80-5. [PMID: 17586055 DOI: 10.1016/j.jneuroim.2007.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 11/30/2022]
Abstract
Immunological activation of T cells enhances synthesis of acetylcholine (ACh) and transcription of choline acetyltransferase (ChAT), M5 muscarinic ACh receptor (mAChR) and acetylcholinesterase (AChE). Stimulation of mAChRs on T and B cells causes oscillating Ca(2+)-signaling and up-regulation of c-fos expression; moreover, M1 mAChRs play a crucial role in the differentiation of CD8(+) T cells into cytolytic T lymphocytes. Collectively, these findings suggest that immune cell function is regulated by its own cholinergic system. Bearing that in mind, we tested whether immune function can be regulated via mAChR-mediated pathways by immunizing combined M1 and M5 mAChR knockout (M1/M5 KO) and wild-type (WT) C57BL/6JJcl mice with ovalbumin (OVA) and measuring serum IgG1 and IgM 1 wk later. We found that serum levels of total and anti-OVA-specific IgG1 were significantly lower in M1/M5 KO than WT mice, though there was no difference in serum levels of total and anti-OVA-specific IgM between the two genotypes. Secretion of interleukin (IL)-6 from activated spleen cells was significantly reduced in M1/M5 KO mice, whereas there was no significant change in gamma interferon secretion. Expression of AChE mRNA was significantly reduced in activated spleen cells from M1/M5 KO mice. These results suggest that M1 and/or M5 mAChRs are involved in regulating cytokine (e.g., IL-6) production, leading to modulation of antibody class switching from IgM to IgG1, but are not involved in the initial generation of the antibody response. They also support the notion that a non-neuronal cholinergic system is involved in regulating immune cell function.
Collapse
Affiliation(s)
- Yoshihito X Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 2007; 80:2314-9. [PMID: 17383684 DOI: 10.1016/j.lfs.2007.02.036] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/20/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
It is now evident that acetylcholine (ACh) synthesized by choline acetyltransferase (ChAT) and released from T cells during antigen presentation binds to muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively) on T and B cells or dendritic cells, leading to modulation of their function. In the present study, we used reverse transcription-polymerase chain reaction (RT-PCR) to investigate whether mononuclear leukocytes (MNLs), bone marrow-derived dendritic cells (DCs) and macrophages from C57BL/6J mice express components of the cholinergic system. Expression of ChAT mRNA was detected in MNLs activated with ConA and DCs stimulated with LPS, but not in resting MNLs and DCs or in resting and stimulated macrophages. MNLs, DCs and macrophages all expressed mRNAs encoding the five mAChR subtypes (M(1)-M(5)) and the nAChR alpha2, alpha5, alpha6, alpha7, alpha10 and beta2 subunits. Expression of VIP mRNA was detected in MNLs and macrophages, but not in DCs. MNLs, DCs and macrophages all expressed VIP receptor-1 (VPAC1) and -2 (VPAC2) mRNAs, as well as mRNAs encoding secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP)-1 and SLURP-2, two endogenous nAChR ligands. These results suggest that the lymphocytic cholinergic system is activated by ACh via mAChR- and nAChR-mediated pathways during antigen presentation between T cells and DCs or macrophages, leading to modulation of immune cell function. Moreover, VIP released from both postganglionic cholinergic neurons and immune cells may play a role in the cholinergic anti-inflammatory reflex, acting via VPAC1 and VPAC2 on immune cells.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Tokyo 105-8512, Japan.
| | | | | | | | | |
Collapse
|
27
|
Fujii T, Takada-Takatori Y, Kawashima K. Roles played by lymphocyte function-associated antigen-1 in the regulation of lymphocytic cholinergic activity. Life Sci 2007; 80:2320-4. [PMID: 17289088 DOI: 10.1016/j.lfs.2007.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/04/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Lymphocytes possess the essential components of a cholinergic system, including acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulation of lymphocytes with phytohemagglutinin, which activates T cells via the T cell receptor/CD3 complex, enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. In addition, activation of protein kinase C and increases in intracellular cAMP also enhance cholinergic activity in T cells, and lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) is an important mediator of leukocyte migration and T cell activation. Anti-CD11a monoclonal antibody (mAb) as well as antithymocyte globulin containing antibodies against CD2, CD7 and CD11a all increase ChAT activity, ACh synthesis and release, and expression of ChAT and M(5) mAChR mRNAs in T cells. The cholesterol-lowering drug simvastatin inhibits LFA-1 signaling by binding to an allosteric site on CD11a (LFA-1 alpha chain), which leads to immunomodulation. We found that simvastatin abolishes anti-CD11a mAb-induced increases in lymphocytic cholinergic activity in a manner independent of its cholesterol-lowering activity. Collectively then, these results indicate that LFA-1 contributes to the regulation of lymphocytic cholinergic activity via CD11a-mediated pathways and suggest that simvastatin exerts its immunosuppressive effects in part via modification of lymphocytic cholinergic activity.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Tokyo 105-8512, Japan
| | | | | |
Collapse
|
28
|
Fujii T, Masuyama K, Kawashima K. Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways. J Neuroimmunol 2006; 179:101-7. [PMID: 16828882 DOI: 10.1016/j.jneuroim.2006.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 11/22/2022]
Abstract
Lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) is an important mediator of leukocyte migration and T cell activation. We previously showed that antithymocyte globulin stimulates an independent, non-neuronal cholinergic system in T cells via LFA-1-mediated pathways, as evidenced by increases in acetylcholine (ACh) synthesis and choline acetyltransferase (ChAT) mRNA expression. The cholesterol-lowering drug simvastatin inhibits LFA-1 signaling by binding to an allosteric site on CD11a (LFA-1 alpha chain), which leads to immunomodulation. In the present study, we investigated whether simvastatin modulates lymphocytic cholinergic activity in T cells. We found that anti-CD11a monoclonal antibody (mAb) increased ChAT activity, ACh synthesis and release, and expression of ChAT and M5 muscarinic ACh receptor mRNA in MOLT-3 cells, a human leukemic T cell line. Simvastatin abolished these anti-CD11a mAb-induced increases in lymphocytic cholinergic activity in a manner independent of its cholesterol-lowering activity. These results indicate that LFA-1 contributes to the regulation of lymphocytic cholinergic activity via CD11a-mediated pathways, and suggest that simvastatin exerts its immunosuppressive effects in part via modification of lymphocytic cholinergic activity.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Iarlori C, Gambi D, Gambi F, Lucci I, Feliciani C, Salvatore M, Reale M. Expression and production of two selected beta-chemokines in peripheral blood mononuclear cells from patients with Alzheimer's disease. Exp Gerontol 2006; 40:605-11. [PMID: 15935590 DOI: 10.1016/j.exger.2005.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 12/13/2022]
Abstract
MCP-1 and RANTES are molecules that regulate monocyte and T-lymphocyte recruitment towards sites of inflammation. We sought to evaluate the role of these chemokines in Alzheimer's disease (AD), and the effect of acetylcholinesterase inhibitor (AchEI) therapy on their release from peripheral blood mononuclear cells (PBMC). MCP-1 and RANTES mRNA expressions were determined by RT-PCR and the amount of secreted chemokines was assayed using specific ELISA methods from purified PBMC from each AD patients (n = 40) at the time of enrolment (T0) and after 1 month of treatment with AchEI (T1) and from 20 healthy age and sex-matched subjects (HC). We found that expression and production of MCP-1 in AD patients was significantly lower than in HC subjects. After 1 month of therapy with AchEI (Donepezil), MCP-1 levels increased in each patient. However, higher levels were detected for RANTES in AD patients compared to control subjects and in AD patients treated with Donepezil. MCP-1 and RANTES have a compensatory role in balancing the impaired mechanisms involved in immune response during ageing. Our present findings suggest that these two chemokines are both involved in AD pathogenesis and might reflect different states of activation and/or responsiveness of PBMC from AD patients, contributing to the impaired of the peripheral immune system in these patients.
Collapse
Affiliation(s)
- Carla Iarlori
- Department of Oncology and Neuroscience, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA. Regulation of CD8+ cytolytic T lymphocyte differentiation by a cholinergic pathway. J Neuroimmunol 2005; 164:66-75. [PMID: 15913791 DOI: 10.1016/j.jneuroim.2005.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 03/18/2005] [Indexed: 11/25/2022]
Abstract
In this report, we provide evidence that muscarinic receptors play a role in the generation of CD8+ cytolytic T lymphocytes. Analysis of mice with targeted deletions of each of the known muscarinic receptors (M1-M5) showed that CD8+ T cells from M1 receptor-deficient mice had a defect in the ability to differentiate into cytolytic T lymphocytes. Additional pharmacological experiments support the role of muscarinic receptors in wild type mice and suggest that acetylcholine may be involved. Together, these findings suggest that the M1 muscarinic receptor is involved in CTL development, thus providing novel insights into CD8+ T cell biology and the potential role of cholinergic signaling in immune regulation.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Blotting, Northern/methods
- CD3 Complex/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Flow Cytometry/methods
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muscarinic Antagonists/pharmacology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M1/deficiency
- Receptor, Muscarinic M1/physiology
- Receptors, Muscarinic/classification
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
Collapse
Affiliation(s)
- James C Zimring
- Department of Pathology, Emory University School of Medicine, Woodruff Memorial Research Building, Room 7301, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
31
|
De Rosa MJ, Esandi MDC, Garelli A, Rayes D, Bouzat C. Relationship between α7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005; 160:154-61. [PMID: 15710468 DOI: 10.1016/j.jneuroim.2004.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 10/04/2004] [Accepted: 11/15/2004] [Indexed: 11/26/2022]
Abstract
The presence of nicotinic receptors (nAChRs) in blood cells has been demonstrated. However, little is known about their functional roles. We have detected mRNA of alpha7 nAChR in peripheral human lymphocytes and determined that its expression is highly variable among individuals and within the same individual at different times. Upregulation of alpha7 is systematically observed after incubation of lymphocytes with nicotine or alpha-bungarotoxin. In addition, the incubation with these drugs decreases the percentage of apoptotic cells induced by the exposure to cortisol. Our results suggest that alpha7 nAChRs are involved in the modulation of cortisol-induced apoptosis.
Collapse
Affiliation(s)
- María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Telford G, Wilkinson LJ, Hooi DSW, Worrall V, Green AC, Cook DL, Pritchard DI, Griffiths GD. An in vitro investigation of the effects of the nerve agent pretreatment pyridostigmine bromide on human peripheral blood T-cell function. Int Immunopharmacol 2004; 4:1455-66. [PMID: 15351315 DOI: 10.1016/j.intimp.2004.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 05/26/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
The current pretreatment against nerve agent poisoning deployed by the UK and US armed forces is the acetylcholinesterase (EC 3.1.1.7) inhibitor pyridostigmine bromide (PB). At higher doses, PB is also used to treat the autoimmune disease myasthenia gravis. In both cases, the therapeutic effect is mediated by inhibition of acetylcholinesterase (AChE) at cholinergic synapses. However, the location of AChE is not restricted to these sites. AChE, acetylcholine (ACh) receptors and choline acetyltransferase have been reported to be expressed by T cells, suggesting that cholinergic signalling may exert some modulatory influence on T-cell function and consequently on the immune system. The aim of this study was to investigate the role of the T-cell cholinergic system in the immunological activation process and to examine whether inhibitors of AChE such as PB affect immune function. To investigate this, human peripheral blood mononuclear cells (PBMC) were stimulated using either mitogen, cross-linking of the T-cell receptor and co-receptors with antibodies (anti-CD3/CD28) or by antigen presentation in the presence of various AChE inhibitors and ACh receptor agonists or antagonist. Several indices were used to assess T-cell activation, including the secretion of IL-2, cell proliferation and expression of CD69. Treatment with PB had no significant effect on the immunological assays selected. Physostigmine (PHY), a carbamate compound similar to PB, consistently showed inhibition of T-cell activation, but only at concentrations in excess of those required to inhibit AChE. No evidence was found to support previously published findings showing muscarinic enhancement of cell proliferation or IL-2 secretion.
Collapse
Affiliation(s)
- Gary Telford
- Immune Modulation Research Laboratory, School of Pharmaceutical Sciences, University of Nottingham, The Boots Science Building, NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Horiuchi Y, Fujii T, Kamimura Y, Kawashima K. The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol 2004; 144:46-52. [PMID: 14597097 DOI: 10.1016/j.jneuroim.2003.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effects of apelin, an immunologically active peptide ligand for orphan receptor APJ, on acetylcholine (ACh) synthesis in MOLT-3 human leukemic T cells. We initially confirmed expression of APJ mRNA in several human T- and B-cell lines by reverse transcription-polymerase chain reaction (RT-PCR). We also found that in phytohemagglutinin (PHA)-stimulated MOLT-3 cells, an active apelin fragment, apelin-13, down-regulates expression of choline acetyltransferase (ChAT) mRNA and significantly reduces ChAT activity and cellular ACh content and release. It thus appears that apelin inhibits lymphocytic cholinergic activity via APJ during immunological responses.
Collapse
Affiliation(s)
- Yoko Horiuchi
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
35
|
Fujii T. [An independent, non-neuronal cholinergic system in lymphocytes and its roles in regulation of immune function]. Nihon Yakurigaku Zasshi 2004; 123:179-88. [PMID: 14993730 DOI: 10.1254/fpj.123.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Acetylcholine (ACh) is classically thought of as a neurotransmitter in mammalian species. However, lymphocytes express most of the cholinergic components found in the nervous system, including ACh, choline acetyltransferase (ChAT), high-affinity choline transporter, and acetylcholinesterase as well as both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Activation of T cells via the T cell receptor/CD3 complex, contact of T cells with antigen presenting cells, or activation of the adenylyl cyclase pathway in T cells modulates cholinergic activity, as evidenced by up-regulation of ChAT and M(5) mAChR mRNA expression. Stimulation of mAChRs on T and B cells with ACh or another mAChR agonists elicits intracellular Ca(2+) signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and interleukin-2-induced signal transduction via M(3) and M(5) mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca(2+) signaling in T and B cells, probably via alpha7 nAChRs subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Abnormalities in lymphocytic cholinergic system have been seen in animal models of immune deficiency and immune acceleration. Collectively, these data provided a compelling picture in which immune function is, at least partly, under the control of an independent, non-neuronal cholinergic system in lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan.
| |
Collapse
|
36
|
Suenaga A, Fujii T, Ogawa H, Maruyama T, Ohuchida S, Katsube N, Obata T, Kawashima K. Up-regulation of lymphocytic cholinergic activity by ONO-4819, a selective prostaglandin EP4 receptor agonist, in MOLT-3 human leukemic T cells. Vascul Pharmacol 2004; 41:51-8. [PMID: 15196475 DOI: 10.1016/j.vph.2004.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
We used a selective EP4 receptor agonist, ONO-4819, and a human leukemic T cell line MOLT-3 cells, which express all four prostaglandin E2 (PGE2) receptors (EP1-EP4), to investigate whether the EP4 PGE2 receptor subtype is involved in regulating lymphocytic cholinergic activity. Phytohemagglutinin (PHA), a T cell activator, significantly enhanced the expression of EP4 receptor mRNA during the first 3-6 h of exposure, after which, expression gradually declined. Furthermore, PHA stimulation slightly but significantly up-regulated the expression of EP2 mRNA after 12 h and of EP3 mRNA after 6 h. By contrast, expression level of EP1 receptor mRNA was not affected by PHA. ONO-4819 (1 microM), which was added to cultures after 3 h of PHA stimulation, significantly increased cellular ACh content and release, and up-regulated ChAT mRNA expression and activity but inhibited MOLT-3 cell proliferation. These findings suggest that the activation of T lymphocytes up-regulates EP4 receptor mRNA expression and, to a lesser extent, EP2 and EP3 receptors and that PGE2 enhances nonneuronal lymphocytic cholinergic transmission in activated T cells, at least in part, via EP4 receptor-mediated pathways.
Collapse
Affiliation(s)
- Aya Suenaga
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kawashima K, Fujii T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 2003; 74:675-96. [PMID: 14654162 DOI: 10.1016/j.lfs.2003.09.037] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | | |
Collapse
|
38
|
Fujii T, Watanabe Y, Inoue T, Kawashima K. Upregulation of mRNA encoding the M5 muscarinic acetylcholine receptor in human T- and B-lymphocytes during immunological responses. Neurochem Res 2003; 28:423-9. [PMID: 12675126 DOI: 10.1023/a:1022840416292] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lymphocytes possess an independent, non-neuronal cholinergic system. Moreover, both T- and B-lymphocytes express multiple muscarinic acetylcholine receptors (mAChR). To obtain a better understanding of the regulatory mechanisms governing mAChR gene expression in the lymphocytic cholinergic system, we examined the effects of lymphocyte activation on expression of mAChR mRNA. Stimulation of T- and B-lymphocytes, respectively, with T-cell activator phytohemagglutinin and B-cell activator Staphylococcus aureus Cowan I upregulated M5 mAChR mRNA expression in the CEM human leukemic T-cell line and in the Daudi B-cell line, which served as models of lymphocytes. In striking contrast, M3 and M4 mAChR mRNA expression was not affected in either cell line. Nonetheless, stimulating lymphocytes with phorbol 12-myristate 13-acetate, a protein kinase C activator, plus ionomycin, a calcium ionophore, upregulated expression of both M3 and M5 mAChR mRNA. This represents the first demonstration that immunological stimulation leads to M5 mAChR gene expression in lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
39
|
Kamimura Y, Fujii T, Kojima H, Nagano T, Kawashima K. Nitric oxide (NO) synthase mRNA expression and NO production via muscarinic acetylcholine receptor-mediated pathways in the CEM, human leukemic T-cell line. Life Sci 2003; 72:2151-4. [PMID: 12628472 DOI: 10.1016/s0024-3205(03)00076-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by neuronal, endothelial and inducible isoforms of NO synthase (nNOS, eNOS and iNOS, respectively) and is involved in the regulation of a variety of physiological functions, including immune activity. In vascular endothelial cells, stimulation of M(3) subtype of muscarinic acetylcholine receptors (mAChRs) triggers NO synthesis by eNOS. Human lymphocytes express several mAChR subtypes and their stimulation increases the intracellular free Ca(2+) concentration and up-regulates c-fos gene expression. While the above findings suggest involvement of the lymphocytic cholinergic system in the regulation of immune function, little is known on NOS expression and NO synthesis in T-lymphocytes. In the present study, using reverse transcription-polymerase chain reaction, we found that CEM cells express mRNAs encoding iNOS and nNOS, but not for eNOS. In addition, using quantitative fluorescence microscopy and a novel NO-sensitive fluorescent indicator, DAF-2, we found that oxotremorine-M (Oxo-M) (100 microM), a non-selective mAChR agonist, enhances NO production in the cells. This effect of Oxo-M was antagonized by pirenzepine (10 microM), an antagonist acting preferentially at M(1) mAChR and by atropine (10 microM). Also 4-DAMP (10 microM), an antagonist acting preferentially at M(3) mAChR, reduced significantly the effect of Oxo-M, while AFDX-116 (10 microM), an antagonist acting preferentially at M(2) mAChR, was ineffective. These findings suggest that T-lymphocytes express functional mAChRs linked to NO synthesis by nNOS and/or iNOS.
Collapse
Affiliation(s)
- Yuichiro Kamimura
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Lymphocytes are now known to possess the essential components for a non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulating lymphocytes with phytohemagglutinin, a T-cell activator; Staphylococcus aureus Cowan I, a B-cell activator; or cell surface molecules enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. Activation of mAChRs and nAChRs on lymphocytes elicits increases in the intracellular Ca(2+) concentration and stimulates c-fos gene expression and nitric oxide synthesis. On the other hand, long-term exposure to nicotine down-regulates expression of nAChR mRNA. Abnormalities in the lymphocytic cholinergic system have been detected in spontaneously hypertensive rats and MRL-lpr mice, two animal models of immune disorders. Taken together, these data present a compelling picture in which immune function is, at least in part, under the control of an independent non-neuronal lymphocytic cholinergic system.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | | |
Collapse
|
41
|
Mayerhofer A, Fritz S. Ovarian acetylcholine and muscarinic receptors: hints of a novel intrinsic ovarian regulatory system. Microsc Res Tech 2002; 59:503-8. [PMID: 12467026 DOI: 10.1002/jemt.10228] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
More than two decades ago, the degrading enzyme of the neurotransmitter acetylcholine (ACH) was reported in nerve fibers of the rat ovary. Subsequently, it was assumed that ACH is a neurotransmitter of ovarian nerves, although the sole presence of the degrading enzyme, ACH-esterase, does not allow such a conclusion. That ACH may be involved in the complex regulation of ovarian functions, including hormone production, was indicated by studies using, for example, granulosa cells (GCs). The lack of detailed information about both source(s) and functions of ACH in the ovary prompted us to examine sites of ovarian ACH-synthesis and ACH-receptor-bearing target cells. We also started to identify functions of ACH in cultured human GCs. While ovarian innervation and recently described neuron-like cells of the ovary were not immunoreactive for the ACH-synthesizing enzyme, choline-acetyl transferase (CHAT), we found immunoreactivity in GCs of rodents and primates. Isolated human and rat GCs produced ACH and contained the vesicular ACH transporter (VACHT). These results indicate that endocrine GCs are an unexpected non-neuronal source of ACH in the ovary. Moreover, these cells and GCs in vivo contain ACH-receptors of the muscarinic subtype (MR), namely M1R and M5R. In contrast, oocytes express M3R. MR of human GCs are functional and cholinergic stimulation is linked to rapid increases in intracellular Ca(++) levels. M1/5R activation also led to increased cell proliferation of human GCs in vitro and this stimulatory effect was found to be associated with rapid disruption of gap junction communication. Ongoing studies begin to identify regulation of ion channels and altered gene expression as consequences of MR stimulation. Thus, our results outline first details of an unexpected intraovarian, non-neuronal cholinergic system, and suggest that it may be involved in the regulation of cell proliferation in the ovary.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomisches Institut der Universität München, D-80802 München, Germany.
| | | |
Collapse
|
42
|
Fujii T, Ushiyama N, Hosonuma K, Suenaga A, Kawashima K. Effects of human antithymocyte globulin on acetylcholine synthesis, its release and choline acetyltransferase transcription in a human leukemic T-cell line. J Neuroimmunol 2002; 128:1-8. [PMID: 12098504 DOI: 10.1016/s0165-5728(02)00111-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphocytes possess an independent, nonneuronal cholinergic system. In the present study, we investigated the short- and long-term effects of antithymocyte globulin (ATG)-Fresenius (ATG-F), a human antithymocyte globulin that binds to CD2, CD7 and CD11a, on acetylcholine (ACh) synthesis and transcription of choline acetyltransferase (ChAT) in CCRF-CEM cells, a human leukemic T-cell line. In the short-term (6 h), ATG-F enhanced ACh release, likely through transient increases in intracellular Ca(2+) ([Ca(2+)](i)) mediated by CD7, which led to declines in intracellular ACh content. By 48 h, however, the ACh content had increased as compared to control due to up-regulation of ChAT expression mediated by CD11a.
Collapse
MESH Headings
- Acetylcholine/biosynthesis
- Acetylcholine/metabolism
- Antigens, CD7/immunology
- Antigens, CD7/metabolism
- Antigens, Surface/drug effects
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Antilymphocyte Serum/immunology
- Antilymphocyte Serum/pharmacology
- CD11 Antigens/immunology
- CD11 Antigens/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/immunology
- Cell Division/drug effects
- Cell Division/immunology
- Choline O-Acetyltransferase/genetics
- Choline O-Acetyltransferase/metabolism
- Humans
- Intracellular Fluid/drug effects
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Leukemia
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/immunology
- Tumor Cells, Cultured
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
43
|
Fujii T, Kawashima K. An independent non-neuronal cholinergic system in lymphocytes. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:11-5. [PMID: 11243565 DOI: 10.1254/jjp.85.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acetylcholine (ACh) is a well characterized neurotransmitter occurring throughout the animal kingdom. In addition, both muscarinic and nicotinic ACh receptors have been identified on lymphocytes of various origin, and their stimulation by muscarinic or nicotinic agonists elicits a variety of functional and biochemical effects. It was thus initially postulated that the parasympathetic nervous system may play a role in modulating immune system function. However, ACh in the blood has now been localized to lymphocytes; indeed expression of choline acetyltransferase (ChAT), an ACh synthesizing enzyme, has been shown in human blood mononuclear leukocytes, human leukemic T-cell lines and rat lymphocytes. Stimulation of T-lymphocytes with phytohemagglutinin activates the lymphoid cholinergic system, as evidenced by increased synthesis and release of ACh and increased expression of mRNAs encoding ChAT and ACh receptors. The observation that M3 muscarinic receptor stimulation by ACh and other agonists increases the intracellular free Ca2+ concentration and upregulates c-fos gene expression strongly argues that ACh, synthesized and released from T-lymphocytes, acts as an autocrine and/or paracrine factor regulating immune function. These findings present a compelling picture in which immune function is, at least in part, under the control of an independent lymphoid cholinergic system.
Collapse
Affiliation(s)
- T Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan
| | | |
Collapse
|
44
|
Fujii T, Kawashima K. YM905, a novel M3 antagonist, inhibits Ca2+ signaling and c-fos gene expression mediated via muscarinic receptors in human T cells. GENERAL PHARMACOLOGY 2000; 35:71-5. [PMID: 11707312 DOI: 10.1016/s0306-3623(01)00093-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our earlier observations suggest that M3 muscarinic acetylcholine (ACh) receptors (mAChRs) are involved in Ca2+ signaling and regulation of c-fos gene expression in T lymphocytes. Here, we describe the effects of YM905, a novel M3 antagonist, on evoked Ca2+ signaling and c-fos gene expression in CEM human leukemic T cells. YM905 significantly inhibited increases in intracellular free Ca2+ evoked by 10 microM oxotremorine-M, an M1/M3 agonist (IC50=100 nM), and also inhibited 10 microM oxotremorine-M-induced upregulation of c-fos gene expression at 1 microM. These findings demonstrate that YM905 antagonizes the intracellular responses in T cells induced via mAChRs, possibly M3 receptors.
Collapse
Affiliation(s)
- T Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | | |
Collapse
|