1
|
Gawryś-Kopczyńska M, Szudzik M, Samborowska E, Konop M, Chabowski D, Onyszkiewicz M, Ufnal M. Spontaneously hypertensive rats exhibit increased liver flavin monooxygenase expression and elevated plasma TMAO levels compared to normotensive and Ang II-dependent hypertensive rats. Front Physiol 2024; 15:1340166. [PMID: 38681141 PMCID: PMC11046708 DOI: 10.3389/fphys.2024.1340166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024] Open
Abstract
Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs. Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS). Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats. Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs.
Collapse
Affiliation(s)
- Marta Gawryś-Kopczyńska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Maksymilian Onyszkiewicz
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
3
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
4
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
5
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
6
|
Oesch F, Honarvar N, Fabian E, Berger FI, Landsiedel R. N-vinyl compounds: studies on metabolism, genotoxicity, carcinogenicity. Arch Toxicol 2021; 95:3143-3159. [PMID: 34091723 DOI: 10.1007/s00204-021-03081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Several N-vinyl compounds are produced in high volumes and are widely employed in the production of copolymers and polymers used in chemical, pharmaceutical, cosmetic and food industry. Hence, information on their genotoxicity and carcinogenicity is requisite. This review presents hitherto available information on the carcinogenicity and genotoxicity of N-vinyl compounds as well as their metabolism potentially generating genotoxic and carcinogenic derivatives. The genotoxicity and carcinogenicity of the investigated N-vinyl compounds vary widely from no observed carcinogenicity tested in lifetime bioassays in two rodent species (up to very high doses) to carcinogenicity in rats at very low doses in the absence of apparent genotoxicity. Despite of the presence of the vinyl group potentially metabolized to an epoxide followed by covalent binding to DNA, genotoxicity was observed for only one of the considered N-vinyl compounds, N-vinyl carbazole. Carcinogenicity was investigated only for two, of which one, N-vinyl pyrrolidone was carcinogenic (but not genotoxic) and ranitidine was neither carcinogenic nor genotoxic. As far as investigated, neither a metabolically formed epoxide nor a therefrom derived diol has been reported for any of the considered N-vinyl compounds. It is concluded that the information collected in this review will further the understanding of the carcinogenic potentials of N-vinyl compounds and may eventually allow approaching their prediction and prevention. A suggestion how to prevent genotoxicity in designing of N-vinyl compounds is presented. However, the available information is scarce and further research especially on the metabolism of N-vinyl compounds is highly desirable.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, 55263, Ingelheim, Germany
| | - N Honarvar
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | - E Fabian
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | - F I Berger
- Regulatory Toxicology of Chemicals, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany.
| |
Collapse
|
7
|
Taniguchi-Takizawa T, Kato H, Shimizu M, Yamazaki H. Predicted Contributions of Flavin-containing Monooxygenases to the N-oxygenation of Drug Candidates Based on their Estimated Base Dissociation Constants. Curr Drug Metab 2021; 22:208-214. [PMID: 33290197 DOI: 10.2174/1389200221666201207195758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
AIMS Base dissociation constants of 30 model chemicals were investigated to constitute potential determinant factors predicting the contributions of flavin-containing monooxygenases (FMOs). BACKGROUND The contributions of FMOs to the metabolic elimination of new drug candidates could be underestimated under certain experimental conditions during drug development. OBJECTIVE A method for predicting metabolic sites and the contributions of FMOs to N-oxygenations is proposed using a molecular descriptor, the base dissociation constant (pKa base), which can be estimated in silico using commonly available chemoinformatic prediction systems. METHODS Model drugs and their oxidative pathways were surveyed in the literature to investigate the roles of FMOs in their N-oxygenations. The acid and base dissociation constants of the nitrogen moieties of 30 model substrates were estimated using well-established chemoinformatic software. RESULTS The base dissociation constants of 30 model chemicals were classified into two groups based on the reported optimal in vitro pH of 8.4 for FMO enzymes as a key determinant factor. Among 18 substrates (e.g., trimethylamine, benzydamine, and itopride) with pKa (base) values in the range of 8.4-9.8, all N-oxygenated metabolites were reported to be predominantly catalyzed by FMOs. Except for three cases (xanomeline; L-775,606; and tozasertib), the nine substrates with pKa (base) values in the range 2.7-7.9 were only moderately or minorly N-oxygenated by FMOs in addition to their major metabolic pathway of oxidation mediated by cytochrome P450s. N-Oxygenation of T-1032 (with a pKa of 4.8) is mediated predominantly by P450 3A5, but not by FMO1/3. CONCLUSION The predicted contributions of FMOs to the N-oxygenation of drug candidates can be simply estimated using classic base dissociation constants.
Collapse
Affiliation(s)
- Tomomi Taniguchi-Takizawa
- Discovery Technology Laboratories, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Harutoshi Kato
- Drug Metabolism and Pharmacokinetics Laboratories, Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
8
|
In vivo drug interactions of itopride and trimethylamine mediated by flavin-containing monooxygenase 3 in humanized-liver mice. Drug Metab Pharmacokinet 2020; 37:100369. [PMID: 33513464 DOI: 10.1016/j.dmpk.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Flavin-containing monooxygenase (FMO) catalyzes the oxygenation of a wide variety of medicines and dietary-derived compounds. However, little information is available regarding drug interactions mediated by FMO3 in vivo. Consequently, we investigated interactions between FMO substrates in humanized-liver mice. Trimethylamine-d9 and itopride were, respectively, intravenously and orally administered to humanized-liver mice (n = 5-7). The pharmacokinetic profiles of itopride (the victim drug) in the presence of trimethylamine (the perpetrator drug) were determined for 24 h after co-administration using liquid chromatography/tandem mass spectrometry. Itopride (10 mg/kg) was extensively oxygenated in humanized-liver mice to its N-oxide. The plasma concentrations of itopride N-oxide after co-administration of itopride and trimethylamine (10 and 100 mg/kg) were significantly suppressed in a dose-dependent manner, but only during the early phase, i.e., up to 2 h after co-administration. With the higher dose of trimethylamine, the areas under the concentration-time curves of itopride and its N-oxide significantly increased (1.6-fold) and decreased (to 60%), respectively; modeling suggested that these modified pharmacokinetics resulted from suppression of the in vivo hepatic intrinsic clearance (to 67%). These results suggest that food-derived trimethylamine may result in interactions with FMO drug substrates immediately after administration; however, the potential for this to occur in vivo may be limited.
Collapse
|
9
|
Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020; 11:589. [PMID: 32670352 PMCID: PMC7330086 DOI: 10.3389/fgene.2020.00589] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
Collapse
Affiliation(s)
- Shanshan Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanyun Wei
- College of Life Sciences, Nantong University, Nantong, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yonglei Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Aoxiang Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Masuyama Y, Nishikawa M, Yasuda K, Sakaki T, Ikushiro S. Whole-cell dependent biosynthesis of N- and S-oxides using human flavin containing monooxygenases expressing budding yeast. Drug Metab Pharmacokinet 2020; 35:274-280. [PMID: 32305264 DOI: 10.1016/j.dmpk.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 10/24/2022]
Abstract
Flavin containing monooxygenases (FMOs) represent one of the predominant types of phase I drug metabolizing enzymes (DMEs), and thus play an important role in the metabolism of xeno- and endobiotics for the generation of their corresponding oxides. These oxides often display biological activities, however they are difficult to study since their chemical or biological synthesis is generally challenging even though only small amounts are required to evaluate their efficacy and safety. Previously, we constructed a DME expression system for cytochrome P450, UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) using yeast cells, and successfully produced xenobiotic metabolites in a whole-cell dependent manner. In this study, we developed a heterologous expression system for human FMOs, including FMO1-FMO5, in Saccharomyces cerevisiae and examined its N- and S-oxide productivity. The recombinant yeast cells expressed each of the FMO successfully, and the FMO4 transformant produced N- and S-oxide metabolites at several milligrams per liter within 24 h. This whole-cell dependent biosynthesis enabled the production of N- and S-oxides without the use of the expensive cofactor NADPH. Such novel yeast expression system could be a powerful tool for the production of oxide metabolites.
Collapse
Affiliation(s)
- Yuuka Masuyama
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
11
|
Liu J, Lai L, Lin J, Zheng J, Nie X, Zhu X, Xue J, Liu T. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota. Int J Biol Sci 2020; 16:790-802. [PMID: 32071549 PMCID: PMC7019130 DOI: 10.7150/ijbs.40934] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) leads to the development of cardiovascular and chronic kidney diseases, but there are currently no potent drugs that inhibit the production or toxicity of TMAO. In this study, high-fat diet-fed ApoE-/- mice were treated with finasteride, ranitidine, and andrioe. Subsequently, the distribution and quantity of gut microbiota in the faeces of the mice in each group were analysed using 16S rRNA sequencing of the V3+V4 regions. Pathological examination confirmed that both ranitidine and finasteride reduced atherosclerosis and renal damage in mice. HPLC analysis also indicated that ranitidine and finasteride significantly reduced the synthesis of TMAO and the TMAO precursor delta-Valerobetaine in their livers. The 16S rRNA sequencing showed that all 3 drugs significantly increased the richness and diversity of gut microbiota in the model mice. Bioinformatic analysis revealed that the faeces of mice treated with ranitidine and finasteride, had significant increases in the number of microbes in the families g_Helicobacter, f_Desulfovibrionaceae, Mucispirillum_schaedleri_ASF457, and g_Blautia, whereas the relative abundances of microbes in the families Enterobacter_sp._IPC1-8 and g_Bacteroides were significantly reduced. The microbiota metabolic pathways, such as nucleotide and cofactor and vitamin metabolism were also significantly increased, whereas the activities of metabolic signalling pathways related to glycan biosynthesis and metabolism and cardiovascular diseases were significantly reduced. Therefore, our study indicates that in addition to their known pharmacological effects, ranitidine and finasteride also exhibit potential cardiovascular and renal protective effects. They inhibit the synthesis and metabolism of TMAO and delay the deposition of lipids and endotoxins through improving the composition of the gut microbiota.
Collapse
Affiliation(s)
- Junfeng Liu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Jiajia Zheng
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoye Zhu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
12
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
13
|
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica 2019; 50:19-33. [DOI: 10.1080/00498254.2019.1643515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian R. Phillips
- Research Department of Structural and Molecular Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth A. Shephard
- Research Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
14
|
Li Z, Zhang Y, Gao Y, Xiang Y, Zhang W, Lu C, Zhuang X. Atipamezole is a promising non-discriminative inhibitor against pan-CYP450 including diclofenac 4′-hydroxylation: A comparison with ABT for drug ADME optimization and mechanism study. Eur J Pharm Sci 2019; 130:156-165. [DOI: 10.1016/j.ejps.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
|
15
|
Nguyen PTT, Parvez MM, Kim MJ, Yoo SE, Ahn S, Ghim JL, Shin JG. Physiologically Based Pharmacokinetic Modeling Approach to Predict Drug-Drug Interactions With Ethionamide Involving Impact of Genetic Polymorphism on FMO3. J Clin Pharmacol 2019; 59:880-889. [PMID: 30690726 DOI: 10.1002/jcph.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022]
Abstract
The widely used second-line antituberculosis drug ethionamide shows wide interindividual variability in its disposition; however, the relevant factors affecting this phenomenon have not been characterized. We previously reported the major contribution of flavin-containing monooxygenase 3 (FMO3) in the reductive elimination pathway of ethionamide. In this study, ethionamide metabolism was potentially inhibited by methimazole in vitro. The drug-drug interaction leading to methimazole affecting the disposition of ethionamide mediated by FMO3 was then quantitated using a bottom-up approach with a physiologically based pharmacokinetic framework. The maximum concentration (Cmax ) and area under the curve (AUC) of ethionamide were estimated to increase by 13% and 16%, respectively, when coadministered with methimazole. Subsequently, we explored the effect of FMO3 genetic polymorphism on metabolic capacity, by constructing 2 common functional variants, Lys158 -FMO3 and Gly308 -FMO3. Compared to the wild type, recombinant Lys158 -FMO3 and Gly308 -FMO3 variants significantly decreased the intrinsic clearance of ethionamide by 2% and 24%, respectively. Two prevalent functional variants of FMO3 were predicted to affect ethionamide disposition, with mean ratios of Cmax and AUC of up to 1.5 and 1.7, respectively, in comparison with the wild type. In comparing single ethionamide administration with the wild type, simulations of the combined effects of comedications and FMO3 genetic polymorphism estimated that the Cmax and AUC ratios of ethionamide increased up to 1.7 and 2.0, respectively. These findings suggested that FMO3-mediated drug-drug interaction and genetic polymorphism could be important determinants of interindividual heterogeneity in ethionamide disposition that need to be considered comprehensively to optimize the personalized dosing of ethionamide.
Collapse
Affiliation(s)
- Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Md Masud Parvez
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Min Jung Kim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Yoo
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jong-Lyul Ghim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
16
|
Nishimuta H, Watanabe T, Bando K. Quantitative Prediction of Human Hepatic Clearance for P450 and Non-P450 Substrates from In Vivo Monkey Pharmacokinetics Study and In Vitro Metabolic Stability Tests Using Hepatocytes. AAPS JOURNAL 2019; 21:20. [PMID: 30673906 DOI: 10.1208/s12248-019-0294-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023]
Abstract
Accurate prediction of human pharmacokinetics for drugs remains challenging, especially for non-cytochrome P450 (P450) substrates. Hepatocytes might be suitable for predicting hepatic intrinsic clearance (CLint) of new chemical entities, because they can be applied to various compounds regardless of the metabolic enzymes. However, it was reported that hepatic CLint is underestimated in hepatocytes. The purpose of the present study was to confirm the predictability of human hepatic clearance for P450 and non-P450 substrates in hepatocytes and the utility of animal scaling factors for the prediction using hepatocytes. CLint values for 30 substrates of P450, UDP-glucuronosyltransferase, flavin-containing monooxygenase, esterases, reductases, and aldehyde oxidase in human microsomes, human S9 and human, rat, and monkey hepatocytes were estimated. Hepatocytes were incubated in serum of each species. Furthermore, CLint values in human hepatocytes were corrected with empirical, monkey, and rat scaling factors. CLint values in hepatocytes for most compounds were underestimated compared to observed values regardless of the metabolic enzyme, and the predictability was improved by using the scaling factors. The prediction using human hepatocytes corrected with monkey scaling factor showed the highest predictability for both P450 and non-P450 substrates among the predictions using liver microsomes, liver S9, and hepatocytes with or without scaling factors. CLint values by this method for 80% and 90% of all compounds were within 2- and 3-fold of observed values, respectively. This method is accurate and useful for estimating new chemical entities, with no need to care about cofactors, localization of metabolic enzymes, or protein binding in plasma and incubation mixture.
Collapse
Affiliation(s)
- Haruka Nishimuta
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan.
| | - Takao Watanabe
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Kiyoko Bando
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| |
Collapse
|
17
|
Gao S, Xiong W, Wei L, Liu J, Liu X, Xie J, Song X, Bi J, Li B. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica 2018; 146:287-302. [DOI: 10.1007/s10709-018-0020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
18
|
Choi YJ, Lee JY, Ryu CS, Chi YH, Paik SH, Kim SK. Role of cytochrome P450 enzymes in fimasartan metabolism in vitro. Food Chem Toxicol 2018; 115:375-384. [PMID: 29596975 DOI: 10.1016/j.fct.2018.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 02/05/2023]
Abstract
Fimasartan (FMS), an angiotensin II receptor antagonist, is metabolized to FMS S-oxide, FMS N-glucuronide, oxidative desulfurized FMS (BR-A-557), and hydroxy-n-butyl FMSs. The purpose of this study was to characterize enzymes involved in NADPH-dependent FMS metabolism using recombinant enzymes such as cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO), as well as selective chemical inhibitors. The results showed that CYP, but not FMO, plays a major role in FMS metabolism. CYP2C9, CYP3A4, and CYP3A5 were involved in the formation of FMS S-oxide, which was further metabolized to BR-A-557 by CYP3A4/5. CYP2C9 played an exclusive role in n-butyl hydroxylation. The specificity constant (kcat/Km) values for S-oxidation by CYP2C9, CYP3A4, and CYP3A5 were 0.21, 0.34, and 0.19 μM-1∙min-1, respectively. The kcat/Km values of hydroxylation at the 1-, 2-/3-, and 4-n-butyl group in CYP2C9 were 0.0076, 0.041, and 0.035 μM-1∙min-1, respectively. The kcat and Km values provide information for the prediction of FMS metabolism in vivo. In addition, simultaneous determination of the FMS metabolites may be used to evaluate CYP2C9 and CYP3A4/5 activity.
Collapse
Affiliation(s)
- Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Seon Ryu
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Ha Chi
- Central Research Institute, Boryung Pharm. co., Ltd. Ansan, Gyeonggi 425-839, Republic of Korea
| | - Soo Heui Paik
- College of Pharmacy, Sunchon National University, Suncheon-si, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Kiss ÁF, Vaskó D, Déri MT, Tóth K, Monostory K. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction. Pharmacol Rep 2017; 70:525-532. [PMID: 29665549 DOI: 10.1016/j.pharep.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND CYP2C19 is an important drug-metabolizing enzyme, responsible for metabolism of approximately 10% of the drugs on the market. Large inter-individual differences exist in metabolic activities, which are primarily attributed to genetic polymorphism of CYP2C19 gene. Conflicting results have been published about the role of CYP2C19 polymorphisms in metabolism of CYP2C19 substrates and clinical outcomes; thus, we aimed to investigate CYP2C19 genotype-phenotype associations, and we sought to elicit potential causes of discrepancies in the genotype-based prediction by incorporating the liver donors' demographic data, drug administration events and pathological conditions. METHODS (S)-Mephenytoin was used to assess CYP2C19 activities in human liver microsomes derived from 114 Hungarian organ donors. CYP2C19 genotype was determined by SNP genotyping for CYP2C19*2, CYP2C19*3, CYP2C19*4 and CYP2C19*17 variants, and CYP2C19 mRNA levels were measured by qPCR method. Clinical data of the donors were considered in the genotype-based phenotype prediction. RESULTS CYP2C19 phenotype of 40% of the donors was well-predicted from the genotype data, whereas the phenotype of 13% was underestimated displaying higher activity, and of 47% was overestimated displaying lower activity than predicted from CYP2C19 genotype. Among the donors with overestimated phenotype, one was treated with CYP2C19 substrate/inhibitor, 9 were on amoxicillin-clavulanic acid therapy, 7 were chronic alcohol consumers and 9 had disease with inflammatory processes. CONCLUSIONS CYP2C19 genotype only partially determines the CYP2C19 phenotypic appearance; co-medication, diseases with inflammatory processes and aspecific factors, such as chronic alcohol consumption and amoxicillin-clavulanic acid therapy (or any drug therapy resulting in liver injury) seem to be potential phenotype-modifying factors.
Collapse
Affiliation(s)
- Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dorottya Vaskó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Máté Tamás Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Jones BC, Srivastava A, Colclough N, Wilson J, Reddy VP, Amberntsson S, Li D. An Investigation into the Prediction of in Vivo Clearance for a Range of Flavin-containing Monooxygenase Substrates. Drug Metab Dispos 2017; 45:1060-1067. [PMID: 28784689 DOI: 10.1124/dmd.117.077396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022] Open
Abstract
Flavin-containing monooxygenases (FMO) are metabolic enzymes mediating the oxygenation of nucleophilic atoms such as nitrogen, sulfur, phosphorus, and selenium. These enzymes share similar properties to the cytochrome P450 system but can be differentiated through heat inactivation and selective substrate inhibition by methimazole. This study investigated 10 compounds with varying degrees of FMO involvement to determine the nature of the correlation between human in vitro and in vivo unbound intrinsic clearance. To confirm and quantify the extent of FMO involvement six of the compounds were investigated in human liver microsomal (HLM) in vitro assays using heat inactivation and methimazole substrate inhibition. Under these conditions FMO contribution varied from 21% (imipramine) to 96% (itopride). Human hepatocyte and HLM intrinsic clearance (CLint) data were scaled using standard methods to determine the predicted unbound intrinsic clearance (predicted CLint u) for each compound. This was compared with observed unbound intrinsic clearance (observed CLint u) values back calculated from human pharmacokinetic studies. A good correlation was observed between the predicted and observed CLint u using hepatocytes (R2 = 0.69), with 8 of the 10 compounds investigated within or close to a factor of 2. For HLM the in vitro-in vivo correlation was maintained (R2 = 0.84) but the accuracy was reduced with only 3 out of 10 compounds falling within, or close to, twofold. This study demonstrates that human hepatocytes and HLM can be used with standard scaling approaches to predict the human in vivo clearance for FMO substrates.
Collapse
Affiliation(s)
- Barry C Jones
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Abhishek Srivastava
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Nicola Colclough
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Joanne Wilson
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Venkatesh Pilla Reddy
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Sara Amberntsson
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| | - Danxi Li
- Oncology IMED, Astrazeneca, Cambridge, United Kingdom (B.C.J., N.C., J.W., V.P.R.), DSM Astrazeneca, Cambridge, United Kingdom (A.S.); DSM Astrazeneca, Gothenburg, Sweden (S.A.); and Pharmaron, Beijing, China (D.L.)
| |
Collapse
|
21
|
Ulrich S, Ricken R, Adli M. Tranylcypromine in mind (Part I): Review of pharmacology. Eur Neuropsychopharmacol 2017; 27:697-713. [PMID: 28655495 DOI: 10.1016/j.euroneuro.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
It has been over 50 years since a review has focused exclusively on the monoamine oxidase (MAO) inhibitor tranylcypromine (TCP). A new review has therefore been conducted for TCP in two parts which are written to be read preferably in close conjunction: Part I - pharmacodynamics, pharmacokinetics, drug interactions, toxicology; and Part II - clinical studies with meta-analysis of controlled studies in depression, practice of TCP treatment, place in therapy. Pharmacological data of this review part I characterize TCP as an irreversible and nonselective MAO-A/B inhibitor at low therapeutic doses of 20mg/day with supplementary norepinephrine reuptake inhibition at higher doses of 40-60mg/day. Serotonin, norepinephrine, dopamine, and trace amines, such as the "endogenous amphetamine" phenylethylamine, are increased in brain, which leads to changes in neuroplasticity by e.g. increased neurotrophic growth factors and translates to reduced stress-induced hypersecretion of corticotropin releasing factor (CRF) and positive testing in animal studies of depression. TCP has a pharmacokinetic half-life (t1/2) of only 2h which is considerably lower than for most other antidepressant drugs. However, a very long pharmacodynamic half-life of about one week is found because of the irreversible MAO inhibition. New studies show that, except for cytochrome P450 (CYP) 2A6, no other drug metabolizing CYP-enzymes are inhibited by TCP at therapeutic doses which defines a low potential of pharmacokinetic interactions in the direction from TCP to other drugs. Insufficient information is available, however, for plasma concentrations of TCP influenced by comedication. More quantitative data are also needed for TCP metabolites such as p-hydroxytranylcypromine and N-acetyltranylcypromine. Pharmacodynamic drug interactions comprise for instance severe serotonin toxicity (SST) with serotonergic drugs and hypertensive crisis with indirect sympathomimetics. Because of the risk of severe food interaction, TCP treatment remains beset with the need for a mandatory tyramine-restricted diet. Toxicity in overdose is similar to amitriptyline and imipramine according to the distance of therapeutic to toxic doses. In conclusion, TCP is characterized by an exceptional pharmacology which is different to most other antidepressant drugs, and a more special evaluation of clinical efficacy and safety may therefore be needed.
Collapse
Affiliation(s)
- Sven Ulrich
- Aristo Pharma GmbH, Wallenroder Str. 8-10, 13435 Berlin, Germany.
| | - Roland Ricken
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
22
|
Effects of FMO3 Polymorphisms on Pharmacokinetics of Sulindac in Chinese Healthy Male Volunteers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4189678. [PMID: 28331852 PMCID: PMC5346382 DOI: 10.1155/2017/4189678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023]
Abstract
Sulindac is a nonsteroidal anti-inflammatory drug, which is clinically used for the ailments of various inflammations. This study investigated the allele frequencies of FMO3 E158K and E308G and evaluated the influences of these two genetic polymorphisms on the pharmacokinetics of sulindac and its metabolites in Chinese healthy male volunteers. Eight FMO3 wild-type (FMO3 HHDD) subjects and seven FMO3 homozygotes E158K and E308G mutant (FMO3 hhdd) subjects were recruited from 247 healthy male volunteers genotyped by PCR-RFLP method. The plasma concentrations of sulindac, sulindac sulfide, and sulindac sulfone were determined by UPLC, while the pharmacokinetic parameters of the two different FMO3 genotypes were compared with each other. The frequencies of FMO3 E158K and E308G were 20.3% and 20.1%, respectively, which were in line with Hardy-Weinberg equilibrium (D′ = 0.977, r2 = 0.944). The mean values of Cmax, AUC0–24, and AUC0–∞ of sulindac were significantly higher in FMO3 hhdd group than those of FMO3 HHDD group (P < 0.05), while the pharmacokinetic parameters except Tmax of sulindac sulfide and sulindac sulfone showed no statistical difference between the two groups. The two FMO3 mutants were in close linkage disequilibrium and might play an important role in the pharmacokinetics of sulindac in Chinese healthy male volunteers.
Collapse
|
23
|
Fu CW, Lin TH. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors. PLoS One 2017; 12:e0169910. [PMID: 28072829 PMCID: PMC5224990 DOI: 10.1371/journal.pone.0169910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.
Collapse
Affiliation(s)
- Chien-wei Fu
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
| | - Thy-Hou Lin
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
24
|
Phillips IR, Shephard EA. Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 2016; 13:167-181. [PMID: 27678284 DOI: 10.1080/17425255.2017.1239718] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Flavin-containing monooxygenases (FMOs) play an important role in drug metabolism. Areas covered: We focus on the role of FMOs in the metabolism of drugs in human and mouse. We describe FMO genes and proteins of human and mouse; the catalytic mechanism of FMOs and their significance for drug metabolism; differences between FMOs and CYPs; factors contributing to potential underestimation of the contribution of FMOs to drug metabolism; the developmental and tissue-specific expression of FMO genes and differences between human and mouse; and factors that induce or inhibit FMOs. We discuss the contribution of FMOs of human and mouse to the metabolism of drugs and how genetic variation of FMOs affects drug metabolism. Finally, we discuss the utility of animal models for FMO-mediated drug metabolism in humans. Expert opinion: The contribution of FMOs to drug metabolism may be underestimated. As FMOs are not readily induced or inhibited and their reactions are generally detoxifications, the design of drugs that are metabolized predominantly by FMOs offers clinical advantages. Fmo1(-/-),Fmo2(-/-),Fmo4(-/-) mice provide a good animal model for FMO-mediated drug metabolism in humans. Identification of roles for FMO1 and FMO5 in endogenous metabolism has implications for drug therapy and initiates an exciting area of research.
Collapse
Affiliation(s)
- Ian R Phillips
- a Institute of Structural and Molecular Biology , University College London , London , UK.,b School of Biological and Chemical Sciences , Queen Mary University of London , London , UK
| | - Elizabeth A Shephard
- a Institute of Structural and Molecular Biology , University College London , London , UK
| |
Collapse
|
25
|
Christophoridis C, Nika MC, Aalizadeh R, Thomaidis NS. Ozonation of ranitidine: Effect of experimental parameters and identification of transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:170-182. [PMID: 27133934 DOI: 10.1016/j.scitotenv.2016.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/16/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
This study focuses on the effect of experimental parameters on the removal of ranitidine (RAN) during ozonation and the identification of the formed transformation products (TPs). The influence of pH value, the initial concentrations, the inorganic and the organic matter on RAN's removal were evaluated. Results indicated high reactivity of RAN with molecular aqueous ozone. Initial ozone concentration and pH were proven the major process parameters. Alkaline pH values promoted degradation and overall mineralization. Dissolved organic matter reacts competitively to RAN with the oxidants (ozone and/or radicals), influencing the target compound's removal. The presence of inorganic ions in the matrix did not seem to affect RAN ozonation. A total of eleven TPs were identified and structurally elucidated, with the complementary use of both Reversed Phase (RP) and Hydrophilic Interaction Liquid Chromatography (HILIC) quadrupole time of flight tandem mass spectrometry (Q-ToF-MS/MS). Most of the TPs (TP-304, TP-315b, TP-299b, TP-333, TP-283) were generated by the attack of ozone at the double bond or the adjacent secondary amine, with the abstraction of NO2 moiety, forming TPs with an aldehyde group and an imine bond. Oxidized derivatives with a carboxylic group (TP-315a, TP-331a, TP-331b, TP-299a) were also formed. RAN S-oxide was identified as an ozonation TP (TP-330) and its structure was confirmed through the analysis of a reference standard. TP-214 was also produced during ozonation, through the CN bond rupture adjacent to the NO2 moiety. HILIC was used complementary to RP, either for the separation and identification of TPs with isomeric structures that may have been co-eluted in RPLC or for the detection of new TPs that were not eluted in the RP chromatographic system. Retention time prediction was used as a supporting tool for the identification of TPs and results were in accordance with the experimental ones in both RP and HILIC.
Collapse
Affiliation(s)
- Christophoros Christophoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece.
| |
Collapse
|
26
|
Jattinagoudar LN, Nandibewoor ST, Chimatadar SA. Investigation of electron-transfer reaction between alkaline hexacyanoferrate(III) and ranitidine hydrochloride – a histamine H2receptor antagonist, in the presence of homogenous ruthenium(III) catalyst. J Sulphur Chem 2015. [DOI: 10.1080/17415993.2015.1078804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Zane NR, Thakker DR. Response to: "Prediction of Voriconazole Non-Linear Pharmacokinetics Using a Paediatric Physiologically Based Pharmacokinetic Modelling Approach". Clin Pharmacokinet 2015; 54:569-72. [PMID: 25735635 DOI: 10.1007/s40262-015-0254-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nicole R Zane
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy at The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA,
| | | |
Collapse
|
28
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Kurbanoglu S, Mayorga-Martinez CC, Medina-Sánchez M, Rivas L, Ozkan SA, Merkoçi A. Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle‐based lab‐on‐a‐chip system. Biosens Bioelectron 2015; 67:670-6. [DOI: 10.1016/j.bios.2014.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 11/27/2022]
|
30
|
DFT study on the oxygen transfer mechanism in nitroethenediamine based H2-receptor antagonists using the bis-dithiolene complex as the model catalyst for N-oxide reductase enzyme. J Inorg Biochem 2014; 142:84-91. [PMID: 25450022 DOI: 10.1016/j.jinorgbio.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
Nitroethenediamine is an important functional unit, which is present in H2-receptor antagonists. These drugs show low bioavailability due to the bacterial degradation caused by the N-oxide reductase type of enzymes present in the human colon. Quantum chemical studies have been carried out to elucidate the mechanism of metabolic degradation of nitroethenediamine in the active site of N-oxide reductase. Three different pathways have been explored for the N-oxide bond cleavage by the model system, Mo(IV) bis-dithiolene complex [Mo(OMe)(mdt)2](-), (where mdt=1,2-dimethyl-ethene-1,2-dithiolate) using B3LYP/6-311+G(d,p) and M06/6-311+G(d,p) Density Functional Theory methods. The oxygen atom transfer from the nitrogen atom of nitroethenediamine to the Mo(IV) complex, involves simultaneous weakening of the N-oxide bond and the formation of Mo-O bond through a least motion path. During this transfer, Mo center is converted from a square pyramidal geometry to a distorted octahedral geometry, to facilitate the process of oxygen atom transfer. The energy barrier for the oxygen atom transfer from the imine tautomer has been estimated to be 25.9kcal/mol however, the overall reaction has been found to be endothermic. On the other hand, oxygen transfer reaction from the nitronic acid tautomer requires 30.5kcal/mol energy leading to a highly exothermic metabolite (M-1) directly hence, this path can be considered thermodynamically favorable for this metabolite. The alternative path involving the oxygen atom transfer from the enamine tautomer requires comparatively a higher energy barrier (32.6kcal/mol) and leads to a slightly endothermic metabolite. This study established the structural and energetic details associated with the Mo(IV) bis-dithiolene complex that catalyzes the degradation of nitroethenediamine based drug molecules.
Collapse
|
31
|
Zhou LP, Tan ZR, Chen H, Guo D, Chen Y, Huang WH, Wang LS, Zhang GG. Effect of two-linked mutations of the FMO3 gene on itopride metabolism in Chinese healthy volunteers. Eur J Clin Pharmacol 2014; 70:1333-8. [DOI: 10.1007/s00228-014-1724-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
|
32
|
Cruciani G, Valeri A, Goracci L, Pellegrino RM, Buonerba F, Baroni M. Flavin monooxygenase metabolism: why medicinal chemists should matter. J Med Chem 2014; 57:6183-96. [PMID: 25003501 DOI: 10.1021/jm5007098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FMO enzymes (FMOs) play a key role in the processes of detoxification and/or bioactivation of specific pharmaceuticals and xenobiotics bearing nucleophilic centers. The N-oxide and S-oxide metabolites produced by FMOs are often active metabolites. The FMOs are more active than cytochromes in the brain and work in tandem with CYP3A4 in the liver. FMOs might reduce the risk of phospholipidosis of CAD-like drugs, although some FMOs metabolites seem to be neurotoxic and hepatotoxic. However, in silico methods for FMO metabolism prediction are not yet available. This paper reports, for the first time, a substrate-specificity and catalytic-activity model for FMO3, the most relevant isoform of the FMOs in humans. The application of this model to a series of compounds with unknown FMO metabolism is also reported. The model has also been very useful to design compounds with optimal clearance and in finding erroneous literature data, particularly cases in which substances have been reported to be FMO3 substrates when, in reality, the experimentally validated in silico model correctly predicts that they are not.
Collapse
Affiliation(s)
- Gabriele Cruciani
- Laboratory for Chemoinformatics and Molecular Modelling, Department of Chemistry, Biology and Biotechnology, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Song M, Do H, Kwon OK, Yang EJ, Bae JS, Jeong TC, Song KS, Lee S. A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity. Biomol Ther (Seoul) 2014; 22:155-60. [PMID: 24753822 PMCID: PMC3975472 DOI: 10.4062/biomolther.2013.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 03/12/2014] [Indexed: 11/05/2022] Open
Abstract
Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms (IC50 values, 3.2-33.7 μM). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.
Collapse
Affiliation(s)
- Min Song
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - HyunHee Do
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeungsan 712-749, Republic of Korea
| | - Kyung-Sik Song
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
34
|
Türkanoğlu Özçelik A, Can Demirdöğen B, Demirkaya Ş, Adalı O. Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke. Gene 2013; 521:116-21. [DOI: 10.1016/j.gene.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/09/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
|
35
|
Cheikh Rouhou M, Rheault I, Haddad S. Modulation of trichloroethylene in vitro metabolism by different drugs in rats. Toxicol In Vitro 2013; 27:34-43. [DOI: 10.1016/j.tiv.2012.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/10/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Mouna Cheikh Rouhou
- TOXEN, Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888 Succ Centre-ville, Montreal, Canada H3C 3P8
| | | | | |
Collapse
|
36
|
Taxak N, Parmar V, Patel DS, Kotasthane A, Bharatam PV. S-Oxidation of Thiazolidinedione with Hydrogen Peroxide, Peroxynitrous Acid, and C4a-Hydroperoxyflavin: A Theoretical Study. J Phys Chem A 2011; 115:891-8. [DOI: 10.1021/jp109935k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikhil Taxak
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Vinod Parmar
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Dhilon S. Patel
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Anuja Kotasthane
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| |
Collapse
|
37
|
Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010; 42:268-354. [PMID: 19961320 DOI: 10.3109/03602530903286476] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human CYP1A2 is one of the major CYPs in human liver and metabolizes a number of clinical drugs (e.g., clozapine, tacrine, tizanidine, and theophylline; n > 110), a number of procarcinogens (e.g., benzo[a]pyrene and aromatic amines), and several important endogenous compounds (e.g., steroids). CYP1A2 is subject to reversible and/or irreversible inhibition by a number of drugs, natural substances, and other compounds. The CYP1A gene cluster has been mapped on to chromosome 15q24.1, with close link between CYP1A1 and 1A2 sharing a common 5'-flanking region. The human CYP1A2 gene spans almost 7.8 kb comprising seven exons and six introns and codes a 515-residue protein with a molecular mass of 58,294 Da. The recently resolved CYP1A2 structure has a relatively compact, planar active site cavity that is highly adapted for the size and shape of its substrates. The architecture of the active site of 1A2 is characterized by multiple residues on helices F and I that constitutes two parallel substrate binding platforms on either side of the cavity. A large interindividual variability in the expression and activity of CYP1A2 has been observed, which is largely caused by genetic, epigenetic and environmental factors (e.g., smoking). CYP1A2 is primarily regulated by the aromatic hydrocarbon receptor (AhR) and CYP1A2 is induced through AhR-mediated transactivation following ligand binding and nuclear translocation. Induction or inhibition of CYP1A2 may provide partial explanation for some clinical drug interactions. To date, more than 15 variant alleles and a series of subvariants of the CYP1A2 gene have been identified and some of them have been associated with altered drug clearance and response and disease susceptibility. Further studies are warranted to explore the clinical and toxicological significance of altered CYP1A2 expression and activity caused by genetic, epigenetic, and environmental factors.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- Discpline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
38
|
Rydberg P, Vasanthanathan P, Oostenbrink C, Olsen L. Fast prediction of cytochrome P450 mediated drug metabolism. ChemMedChem 2010; 4:2070-9. [PMID: 19852016 DOI: 10.1002/cmdc.200900363] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90 % of the metabolites. The rules employed are relatively few and general, and when combined with solvent-accessible surface area calculations to account for steric accessibility, the method gives a major P450 metabolite as first-ranked position for 75 % of the substrates, and ranked in the top three for 90 % of substrates for a set of 20 substrates. In combination with docking, it can predict isoform-specific metabolism, and we apply this on CYP1A2 with very good results on 81 substrates, for which we find a major metabolite ranked in the top three for 90 % of the substrates (100 % in the training set and 87 % in the larger test set).
Collapse
Affiliation(s)
- Patrik Rydberg
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
39
|
Deng X, Luyendyk JP, Ganey PE, Roth RA. Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models. Pharmacol Rev 2010; 61:262-82. [PMID: 19805476 DOI: 10.1124/pr.109.001727] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as "idiosyncratic." Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
40
|
Brown CM, Reisfeld B, Mayeno AN. Cytochromes P450: A Structure-Based Summary of Biotransformations Using Representative Substrates. Drug Metab Rev 2008. [DOI: 10.1080/03602530701836662] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Motika MS, Zhang J, Cashman JR. Flavin-containing monooxygenase 3 and human disease. Expert Opin Drug Metab Toxicol 2008; 3:831-45. [PMID: 18028028 DOI: 10.1517/17425255.3.6.831] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes information concerning the association of the human flavin-containing monooxygenase 3 (FMO3) and human diseases. Human FMO3 oxygenates a wide variety of nucleophilic heteroatom-containing xenobiotics, including endogenous substrates and various clinically important drugs. In this article, the authors discuss the association of FMO3 with human disease, including: i) direct association of FMO3 genetic mutations to human genetic disease; ii) association of FMO3 genetic polymorphism to altered drug metabolism and, therefore, indirect association of FMO3 with drug therapeutic efficacy of human disease; and iii) the potential impact and/or effect of FMO3 transcriptional regulation during disease states. Even though many studies discussed for the latter two points are at a preliminary stage and require much more research to bring to a definite conclusion, the authors include these studies to stimulate general interest and invite further discussion.
Collapse
Affiliation(s)
- Meike S Motika
- Human Biomolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | |
Collapse
|
42
|
Hisamuddin IM, Yang VW. Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives. Pharmacogenomics 2007; 8:635-43. [PMID: 17559352 PMCID: PMC2213907 DOI: 10.2217/14622416.8.6.635] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Flavin-containing monooxygenase 3 (FMO3) is a hepatic microsomal enzyme that oxidizes a host of drugs, xenobiotics and other chemicals. Numerous variants in the gene encoding FMO3 have been identified, some of which result in altered enzymatic activity and, consequently, altered substrate metabolism. Studies also implicate individual and ethnic differences in the frequency of FMO3 polymorphisms. In addition, new variants continue to be identified with potentially important clinical implications. For example, the role of FMO3 variants in the pathophysiology of gastrointestinal diseases is an evolving area of research. Two commonly occurring polymorphisms of FMO3, E158K and E308G, have been associated with a reduction in polyp burden in patients with familial adenomatous polyposis who were treated with sulindac sulfide, an FMO3 substrate. These findings suggest a potential role for prospective genotyping of common FMO3 polymorphisms in the treatment of disease states that involve the use of drugs metabolized by FMO3. This review summarizes the current state of research on the genetic polymorphisms of FMO3, with a focus on their clinical implications in gastrointestinal diseases.
Collapse
Affiliation(s)
- Irfan M Hisamuddin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA
| | - Vincent W Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 201 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, 201 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA 30322, USA, Tel.: +1 404 727 5638; Fax: +1 404 727 5767; E-mail:
| |
Collapse
|
43
|
Abstract
Medications to address gastrointestinal disorders are among the most commonly dispensed somatic medications. The authors examine proton pump inhibitors, H(2) blockers, 5-HT(3) receptor-antagonists, and a few other drugs that are used to address this domain of medical concerns. The metabolic pathways, interactions with the P-glycoprotein transporter, and capabilities of inhibiting or inducing metabolic enzymes are elucidated for each drug. Specific drug-drug interactions with each agent are also detailed, including both psychotropic and non-psychotropic agents. Also, the article explores how different genotypic variants for specific cytochrome P450 enzymes have an impact on the effectiveness and likelihood of drug-drug interactions relating to specific gastro-intestinal medications.
Collapse
Affiliation(s)
- Gary H Wynn
- Walter Reed Army Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
44
|
Lee MD, Ayanoglu E, Gong L. Drug-induced changes in P450 enzyme expression at the gene expression level: a new dimension to the analysis of drug-drug interactions. Xenobiotica 2007; 36:1013-80. [PMID: 17118918 DOI: 10.1080/00498250600861785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-drug interactions (DDIs) caused by direct chemical inhibition of key drug-metabolizing cytochrome P450 enzymes by a co-administered drug have been well documented and well understood. However, many other well-documented DDIs cannot be so readily explained. Recent investigations into drug and other xenobiotic-mediated expression changes of P450 genes have broadened our understanding of drug metabolism and DDI. In order to gain additional information on DDI, we have integrated existing information on drugs that are substrates, inhibitors, or inducers of important drug-metabolizing P450s with new data on drug-mediated expression changes of the same set of cytochrome P450s from a large-scale microarray gene expression database of drug-treated rat tissues. Existing information on substrates and inhibitors has been updated and reorganized into drug-cytochrome P450 matrices in order to facilitate comparative analysis of new information on inducers and suppressors. When examined at the gene expression level, a total of 119 currently marketed drugs from 265 examined were found to be cytochrome P450 inducers, and 83 were found to be suppressors. The value of this new information is illustrated with a more detailed examination of the DDI between PPARalpha agonists and HMG-CoA reductase inhibitors. This paper proposes that the well-documented, but poorly understood, increase in incidence of rhabdomyolysis when a PPARalpha agonist is co-administered with a HMG-CoA reductase inhibitor is at least in part the result of PPARalpha-induced general suppression of drug metabolism enzymes in liver. The authors believe this type of information will provide insights to other poorly understood DDI questions and stimulate further laboratory and clinical investigations on xenobiotic-mediated induction and suppression of drug metabolism.
Collapse
Affiliation(s)
- M D Lee
- Iconix Biosciences, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
45
|
Vyas PM, Roychowdhury S, Koukouritaki SB, Hines RN, Krueger SK, Williams DE, Nauseef WM, Svensson CK. Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: II. Expression and role of flavin-containing monooxygenases and peroxidases. J Pharmacol Exp Ther 2006; 319:497-505. [PMID: 16857727 DOI: 10.1124/jpet.106.105874] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arylamine compounds, such as sulfamethoxazole (SMX) and dapsone (DDS), are metabolized in epidermal keratinocytes to arylhydroxylamine metabolites that auto-oxidize to arylnitroso derivatives, which in turn bind to cellular proteins and can act as antigens/immunogens. Previous studies have demonstrated that neither cytochromes P450 nor cyclooxygenases mediate this bioactivation in normal human epidermal keratinocytes (NHEKs). In this investigation, we demonstrated that methimazole (MMZ), a prototypical substrate of the flavin-containing monooxygenases (FMOs), attenuated the protein haptenation observed in NHEKs exposed to SMX or DDS. In addition, recombinant FMO1 and FMO3 were able to bioactivate both SMX and DDS, resulting in covalent adduct formation. Western blot analysis confirmed the presence of FMO3 in NHEKs, whereas FMO1 was not detectable. In addition to MMZ, 4-aminobenzoic acid hydrazide (ABH) also attenuated SMX- and DDS-dependent protein haptenation in NHEKs. ABH did not alter the bioactivation of these drugs by recombinant FMO3, suggesting its inhibitory effect in NHEKs was due to its known ability to inhibit peroxidases. Studies confirmed the presence of peroxidase activity in NHEKs; however, immunoblot analysis and reverse transcription-polymerase chain reaction indicated that myeloperoxidase, lactoperoxidase, and thyroid peroxidase were absent. Thus, our results suggest an important role for FMO3 and yet-to-be identified peroxidases in the bioactivation of sulfonamides in NHEKs.
Collapse
Affiliation(s)
- Piyush M Vyas
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou Q, Ruan ZR, Yuan H, Jiang B, Xu DH. Pharmacokinetics and bioequivalence of ranitidine and bismuth derived from two compound preparations. World J Gastroenterol 2006; 12:2742-8. [PMID: 16718762 PMCID: PMC4130984 DOI: 10.3748/wjg.v12.i17.2742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the bioequivalence of ranitidine and bismuth derived from two compound preparations.
METHODS: The bioavailability was measured in 20 healthy male Chinese volunteers following a single oral dose (equivalent to 200 mg of ranitidine and 220 mg of bismuth) of the test or reference products in the fasting state. Then blood samples were collected for 24 h. Plasma concentrations of ranitidine and bismuth were analyzed by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The non-compartmental method was used for pharmacokinetic analysis. Log-transformed Cmax, AUC(0-t) and AUC(0-∞) were tested for bioequivalence using ANOVA and Schuirmann two-one sided t-test. Tmax was analyzed by Wilcoxon’s test.
RESULTS: Various pharmacokinetic parameters of ranitidine derived from the two compound preparations, including Cmax, AUC(0-t), AUC(0-∞), Tmax and T1/2, were nearly consistent with previous observations. These parameters derived from test and reference drug were as follows: Cmax (0.67 ± 0.21 vs 0.68 ± 0.22 mg/L), AUC(0-t) (3.1 ± 0.6 vs 3.0 ± 0.7 mg/L per hour), AUC(0-∞) (3.3 ± 0.6 vs 3.2 ± 0.8 mg/L per hour), Tmax (2.3 ± 0.9 vs 2.1 ± 0.9 h) and T1/2 (2.8 ± 0.3 vs 3.1 ± 0.4 h). In addition, double-peak absorption profiles of ranitidine were found in some Chinese volunteers. For bismuth, those parameters derived from test and reference drug were as follows: Cmax (11.80 ± 7.36 vs 11.40 ± 6.55 μg/L), AUC(0-t) (46.65 ± 16.97 vs 47.03 ± 21.49 μg/L per hour), Tmax (0.50 ± 0.20 vs 0.50 ± 0.20 h) and T1/2 (10.2 ± 2.3 vs 13.0 ± 6.9 h). Ninety percent of confidence intervals for the test/reference ratio of Cmax, AUC(0-t) and AUC(0-) derived from both ranitidine and bismuth were found within the bioequivalence acceptable range of 80%-125%. No significant difference was found in Tmax derived from both ranitidine and bismuth.
CONCLUSION: The two compound preparations are bioequivalent and may be prescribed interchangeably.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Clinical Pharmacology, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China.
| | | | | | | | | |
Collapse
|
47
|
Zhou J, Shephard EA. Mutation, polymorphism and perspectives for the future of human flavin-containing monooxygenase 3. Mutat Res 2006; 612:165-171. [PMID: 16481213 DOI: 10.1016/j.mrrev.2005.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/12/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Flavin-containing monooxygenases (FMOs) catalyze NADPH-dependent monooxygenation of soft-nucleophilic nitrogen, sulfur, and phosphorous atoms contained within various drugs, pesticides, and xenobiotics. Flavin-containing monooxygenase 3 (FMO3) is responsible for the majority of FMO-mediated xenobiotic metabolism in the adult human liver. Mutations in the FMO3 gene can result in defective trimethylamine (TMA) N-oxygenation, which gives rise to the disorder known as trimethylaminuria (TMAU) or "fish-odour syndrome". To date 18 mutations of FMO3 gene have been reported that cause TMAU, and polymorphic variants of the gene have also been identified. Interindividual variability in the expression of FMO3 may affect drug and foreign chemical metabolism in the liver and other tissues. It is important therefore to study how base sequence variation of the FMO3 gene might affect the ability of individuals and different ethnic population groups to deal with the variety of environmental chemicals and pharmaceutical products that are substrates for FMO3.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Occupational and Environmental Health, Soochow University, 462# Zhuhui Road, Suzhou 215007, China.
| | - Elizabeth A Shephard
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
48
|
Chen J, Halls SC, Alfaro JF, Zhou Z, Hu M. Potential beneficial metabolic interactions between tamoxifen and isoflavones via cytochrome P450-mediated pathways in female rat liver microsomes. Pharm Res 2005; 21:2095-104. [PMID: 15587933 DOI: 10.1023/b:pham.0000048202.92930.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE This study aims to evaluate a cytochrome P450-based tamoxifen-isoflavone interaction and to determine the mechanisms responsible for inhibitory effects of isoflavones (e.g., genistein) on the formation of alpha-hydroxytamoxifen. METHODS Metabolism studies were performed in vitro using female rat liver microsomes. The effects of genistein and an isoflavone mixture on tamoxifen metabolism and the inhibition mechanism were determined using standard kinetic analysis, preincubation, and selective chemical inhibitors of P450. RESULTS Metabolism of tamoxifen was saturable with Km values of 4.9+/-0.6, 14.6+/-2.2, 25+/-5.9 microM and Vmax values of 34.7+/-1.4, 297.5+/-19.2, 1867+/-231 pmol min(-1) mg(-1) for a-hydroxylation, N-desmethylation, and N-oxidation, respectively. Genistein (25 microM) inhibited alpha-hydroxylation at 2.5 microM tamoxifen by 64% (p < 0.001) but did not affect the 4-hydroxylation, N-desmethylation, and N-oxidation. A combination of three (genistein, daidzein, and glycitein) to five isoflavones (plus biochanin A and formononetin) inhibited tamoxifen alpha-hydroxylation to a greater extent but did not decrease the formation of identified metabolites. The inhibition on alpha-hydroxylation by genistein was mixed-typed with a Ki, value of 10.6 microM. Studies using selective chemical inhibitors showed that tamoxifen alpha-hydroxylation was mainly mediated by rat CYP1A2 and CYP3A1/2 and that genistein 3'-hydroxylation was mainly mediated by rat CYP1A2, CYP2C6 and CYP2D1. CONCLUSIONS Genistein and its isoflavone analogs have the potential to decrease side effects of tamoxifen through metabolic interactions that inhibit the formation of a-hydroxytamoxifen via inhibition of CYP1A2.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
49
|
Blake MJ, Castro L, Leeder JS, Kearns GL. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med 2005; 10:123-38. [PMID: 15701578 DOI: 10.1016/j.siny.2004.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fetal exposure to xenobiotics is modulated to a considerable degree by the metabolic capabilities of the mother and the placenta. However, once liberated from the uterine environment the neonate is instantly exposed to a wide array of new macromolecules in the form of byproducts of cellular metabolism, dietary constituents, environmental toxins and pharmacologic agents. The rapid and efficient biotransformation of these compounds by Phase I and Phase II drug-metabolizing enzymes is an essential process if the infant is to avoid the accumulation of reactive compounds that could produce cellular injury or tissue dysfunction. Genetic polymorphisms and environmental factors are known to contribute dramatically to individual variation in the activity of drug-metabolizing enzymes. More recently, it has become apparent that programmed, developmental, regulatory events occur - independent of genotype - which further add to individual variation in drug metabolism. An appreciation of the impact of ontogeny on the expression and functional activity of the major drug-metabolizing enzymes enables the practicing clinician to predict the ultimate consequence of drug administration in the neonate to help guide optimal drug therapy.
Collapse
Affiliation(s)
- Michael J Blake
- Department of Pediatrics, University of Missouri - Kansas City, Division of Pediatric Pharmacology and Medical Toxicology, The Children's Mercy Hospitals and Clinics, 2401 Gillham Road, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
50
|
Ryu SD, Kang JH, Yi HG, Nahm CH, Park CS. Hepatic flavin-containing monooxygenase activity attenuated by cGMP-independent nitric oxide-mediated mRNA destabilization. Biochem Biophys Res Commun 2004; 324:409-16. [PMID: 15465034 DOI: 10.1016/j.bbrc.2004.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Indexed: 10/26/2022]
Abstract
To identify the novel mechanism by which nitric oxide (NO) suppresses flavin-containing monooxygenase (FMO) activity in endotoxemic rat livers, NO-overproducing conditions were induced in primary cultured rat hepatocytes by treatment with a mixture (LCM) of lipopolysaccharide and proinflammatory cytokines (IL-1beta, TNF-alpha, and IFN-gamma), or by the addition of a pure NO donor, spermine-NONOate. mRNA levels of the major hepatic form, FMO1, decreased via a cGMP-independent destabilizing effect of NO rather than by decreased transcription. The decrease in the mRNA levels caused by LCM-induced inducible NO synthase (iNOS) was completely blocked by co-treatment with aminoguanidine, a selective iNOS inhibitor. Furthermore, spermine-NONOate, but not the cGMP analog, 8-bromo-cGMP, dose- and time-dependently attenuated FMO1 mRNA stability in actinomycin-D-pretreated cells, resulting in decreases in protein levels and biochemical activity. These results suggest that NO acts directly in a cGMP-independent mechanism by decreasing the half-life of FMO1 mRNA, thereby inducing impairment of FMO-related functions in endotoxemia.
Collapse
Affiliation(s)
- Seung-Duk Ryu
- Department of Pharmacology and Toxicology, College of Medicine, Medicinal Toxicology Research Center, CDIR, Inha University, Incheon 400-103, Republic of Korea
| | | | | | | | | |
Collapse
|