1
|
Chen Z, Zhang X, Liu N, Zhang T. Protective Effect of Rutaecarpine in Streptozotocin-Induced Diabetes Cataracts Through the Inhibition of Aldose Reductase Activity in Male Albino Rats. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.147.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
2
|
Mori A, Yano E, Nishikiori M, Fujino S, Nakahara T. N-methyl-D-aspartic acid receptor-mediated vasodilation is attenuated in the retinas of diabetic rats. Curr Eye Res 2022; 47:1193-1199. [PMID: 35485610 DOI: 10.1080/02713683.2022.2072896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Activation of N-methyl-d-aspartic acid (NMDA) receptors enhances nitric oxide (NO) production in retinal neuronal cells, and in turn, NO released from neuronal cells induces glial cell-mediated dilation of retinal arterioles in rats. The purpose of this study was to examine how neuronal cell-dependent, glial cell-mediated vasodilation is impacted in diabetic rat retinas. MATERIALS AND METHODS Diabetes was induced in 6-week-old male Wistar rats by combining streptozotocin injection and D-glucose feeding. Two weeks later, the dilator function of retinal arterioles was assessed. RESULTS Compared with non-diabetic rats, the dilator responses of retinal arterioles induced by intravitreal injection of NMDA and NOR3, an NO donor, were reduced in diabetic rats. Following the blockade of large-conductance Ca2+-activated K+ (BKCa) channels with iberiotoxin, no significant difference in the retinal vasodilator response to NOR3 was observed between non-diabetic and diabetic rats. Intravitreal injection of 14,15-epoxyeicosatrienoic acid, a vasodilatory factor released from glial cells, dilated retinal arterioles, and the response was diminished by diabetes. CONCLUSION These findings suggest that the impaired BKCa channel function in vascular cells is responsible for the diminished neuronal cell-dependent, glial cell-mediated dilation of retinal arterioles during the early stage of diabetes.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Present address: Asami Mori, Ph.D., Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Erika Yano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Nishikiori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saho Fujino
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Higashi Y, Higashi K, Mori A, Sakamoto K, Ishii K, Nakahara T. Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2019; 41:1586-1592. [PMID: 30270328 DOI: 10.1248/bpb.b18-00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol, which is a polyphenol found in grapes, peanuts, and other plants, has health benefits for various chronic diseases. The aim of the present study was to examine the effect of resveratrol on cataract formation in diabetic rats. Male Wistar rats (7-week-old) were treated with streptozotocin, and the streptozotocin-treated animals were administered 5% D-glucose in drinking water to promote the formation of cataracts by inducing severe hyperglycemia. Resveratrol supplementation (10 or 30 mg/kg/d) in drinking water was initiated immediately after induction of diabetes was confirmed. The full lens images of the horizontal plane were captured with the digital camera system which we developed. Cataract formation was assessed by an observer-based scoring method and by quantitative analysis of digital images of the lens. Cataracts at the peripheral region of the lens were detected 2 weeks after induction of hyperglycemia and progressed depending on the length of the diabetic period. The majority of them developed severe cataracts after 9 weeks of hyperglycemia. Resveratrol did not prevent the appearance of diabetic cataracts but significantly delayed the progression of cataracts compared with controls. The contents of sorbitol and protein carbonyls in lenses of diabetic rats were higher than those of control rats. Resveratrol suppressed the increase in protein carbonyls, but not of sorbitol, in diabetic lenses. These results suggest that resveratrol delays the progression of diabetic cataracts partially through attenuation of oxidative damage to lens proteins. Resveratrol may be beneficial in preventing the progression of diabetic cataracts.
Collapse
Affiliation(s)
- Yoshihiro Higashi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kentaro Higashi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
4
|
Jensen PS, Aalkjaer C, Bek T. The vasodilating effect of glucose differs among vessels at different branching level in the porcine retina ex vivo. Exp Eye Res 2018; 179:150-156. [PMID: 30419216 DOI: 10.1016/j.exer.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy is characterized by retinal lesions related to disturbances in retinal blood flow. The metabolic dysregulation in diabetes involves hyperglycemia which in both clinical and experimental studies has been shown to induce dilatation of larger retinal vessels, which has been suggested to be mediated by nitric oxide (NO). However, the effects of glucose on the diameter of smaller retinal vessels that are the site of development of diabetic retinopathy are unknown. Diameter changes in porcine retinal arterioles, pre-capillary arterioles and capillaries were studied ex vivo during acute changes in intraluminal glucose concentrations that mimicked changes in plasma glucose in diabetic patients. The experiments were repeated during blocking of NO-synthesis. Intravascular application of 2 mM glucose dilated arterioles and capillaries significantly, while 20 mM glucose dilated precapillary arterioles significantly. Intravascular application of 20 mM glucose dilated precapillary arterioles previously exposed to 2 mM glucose, while no significant diameter changes were observed after application of 2 mM glucose in vessels previously exposed to 20 mM glucose. No diameter changes were observed after application of 5.5 mM glucose in vessels previously exposed to both 2 mM and 20 mM glucose in either order. There was no significant difference between the diameter responses in the absence and presence of NO-synthesis blocker. Glucose induced dilatation of porcine precapillary arterioles ex vivo differs from the response in larger arterioles and capillaries, and the response is unaffected by the blocking of NO-synthesis. This may have implications for understanding the pathophysiology of diseases in the retinal microcirculation, such as diabetic retinopathy.
Collapse
Affiliation(s)
- Peter Skov Jensen
- Department of Ophthalmology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark.
| | - Christian Aalkjaer
- Department of Biomedicine (physiology), University of Aarhus, DK-8000, Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Hein TW, Xu W, Xu X, Kuo L. Acute and Chronic Hyperglycemia Elicit JIP1/JNK-Mediated Endothelial Vasodilator Dysfunction of Retinal Arterioles. Invest Ophthalmol Vis Sci 2017; 57:4333-40. [PMID: 27556216 PMCID: PMC5015966 DOI: 10.1167/iovs.16-19990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Hyperglycemia, a hallmark of diabetes mellitus, is associated with retinal inflammation and impairment of endothelium-dependent nitric oxide (NO)–mediated dilation of retinal arterioles. However, molecular mechanisms involved in this diminished endothelial vasodilator function remain unclear. We examined whether inflammatory stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38, contribute to retinal arteriolar dysfunction during exposure to acute and chronic hyperglycemia. Methods Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks; chronic hyperglycemia, 471 ± 23 mg/dL) or age-matched control pigs (euglycemia, 79 ± 5 mg/dL), and then cannulated and pressurized for vasoreactivity study. For acute hyperglycemia study, vessels from nondiabetic pigs were exposed intraluminally to high glucose (25 mM ≈ 450 mg/dL) for 2 hours, and normal glucose (5 mM ≈ 90 mg/dL) served as the control. Results Endothelium-dependent vasodilation to bradykinin was reduced in a similar manner after exposure to acute or chronic hyperglycemia. Administration of NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) nearly abolished vasodilations either in control (euglycemia and normal glucose) or hyperglycemic (acute and chronic) vessels. Treatment of either acute or chronic hyperglycemic vessels with JNK inhibitor SP600125 or JNK-interacting protein-1 (JIP1) inhibitor BI-78D3, but not p38 inhibitor SB203580, preserved bradykinin-induced dilation in an L-NAME–sensitive manner. By contrast, endothelium-independent vasodilation to sodium nitroprusside was unaffected by acute or chronic hyperglycemia. Conclusions Activation of JIP1/JNK signaling in retinal arterioles during exposure to acute or chronic hyperglycemia leads to selective impairment of endothelium-dependent NO-mediated dilation. Therapeutic targeting of the vascular JNK pathway may improve retinal endothelial vasodilator function during early diabetes.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Surgery, Baylor Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| | - Wenjuan Xu
- Department of Surgery, Baylor Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| | - Xin Xu
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| | - Lih Kuo
- Department of Surgery, Baylor Scott & White Eye Institute, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States 2Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas, United States
| |
Collapse
|
6
|
Lee JY, Huo TI, Wang SS, Huang HC, Lee FY, Lin HC, Chuang CL, Lee SD. Diabetes diminishes the portal-systemic collateral vascular response to vasopressin via vasopressin receptor and Gα proteins regulations in cirrhotic rats. PLoS One 2013; 8:e67703. [PMID: 23874439 PMCID: PMC3706475 DOI: 10.1371/journal.pone.0067703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/22/2013] [Indexed: 12/25/2022] Open
Abstract
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.
Collapse
Affiliation(s)
- Jing-Yi Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sun-Sang Wang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Affair and Planning, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FYL); (HCH)
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FYL); (HCH)
| | - Han-Chieh Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Divisions of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Hein TW, Potts LB, Xu W, Yuen JZ, Kuo L. Temporal development of retinal arteriolar endothelial dysfunction in porcine type 1 diabetes. Invest Ophthalmol Vis Sci 2012; 53:7943-9. [PMID: 23139282 DOI: 10.1167/iovs.12-11005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Although hyperglycemia is implicated in retinal vascular dysfunction associated with the development of diabetic retinopathy, the temporal influence of hyperglycemia on retinal arteriolar reactivity remains unclear. Development of a large animal model of diabetes relevant to the human retina for evaluation of vascular function is also lacking. Herein, we examined nitric oxide (NO)-mediated dilation and endothelin-1 (ET-1)-induced constriction in retinal arterioles at various time periods in a porcine model of type 1 diabetes. METHODS Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2, 6, and 12 weeks of hyperglycemia, 427 ± 23 mg/dL) and age-matched control pigs (73 ± 4 mg/dL), and then cannulated and pressurized for vasoreactivity study using videomicroscopic techniques. RESULTS Retinal arterioles isolated from control and diabetic pigs developed comparable levels of myogenic tone. The endothelium-dependent NO-mediated vasodilations to bradykinin and stepwise increases in luminal flow were significantly reduced within 2 weeks of hyperglycemia. The inhibitory effect was comparable following 6 and 12 weeks of hyperglycemia. However, the endothelium-independent vasodilation to sodium nitroprusside was unaffected. Constriction of retinal arterioles to ET-1 was unaltered at all time periods of hyperglycemia. CONCLUSIONS Our findings provide the first direct evidence for selective impairment of endothelium-dependent NO-mediated dilation of retinal arterioles within 2 weeks of hyperglycemia in a pig model of diabetes. By contrast, the ability of arteriolar smooth muscle to dilate to NO donor or contract to ET-1 was unaffected throughout the study period. This endothelial vasodilator dysfunction during early diabetes may contribute to development of retinopathy with chronic hyperglycemia.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Surgery, Scott & White Memorial Hospital, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA.
| | | | | | | | | |
Collapse
|
8
|
Kawakubo K, Mori A, Sakamoto K, Nakahara T, Ishii K. GP-1447, an inhibitor of aldose reductase, prevents the progression of diabetic cataract in rats. Biol Pharm Bull 2012; 35:866-72. [PMID: 22687477 DOI: 10.1248/bpb.35.866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of GP-1447 (3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]-5-methylphenyl acetic acid) on existing cataracts and sorbitol content in the lens in rats with streptozotocin-induced diabetes. GP-1447 is an inhibitor of aldose reductase, which is the first enzyme in the polyol pathway. Cataracts in the central region of the lens were observed in 7 of 14 eyes (50%) by the fifth week after induction of diabetes, and development of mature cataracts was observed in most lenses by the ninth week. In diabetic rats that received GP-1447 treatment beginning in the fifth week after induction of diabetes, progression of cataracts was observed for 1 week after initiation of treatment. Thereafter, the severity of cataracts did not change substantially. Sorbitol levels in the lens peaked during the first week of diabetes, and this increase was maintained during the 9-week observation period. Elevated sorbitol levels in the lenses of diabetic rats gradually declined after GP-1447 treatment was started on the fifth week after induction of diabetes. Cataracts and sorbitol elevation were not observed in the lenses of controls or diabetic rats treated with GP-1447 immediately after induction of diabetes. These results suggest that the polyol pathway plays an important role in both the appearance and progression of cataracts in diabetic rats. Inhibition of aldose reductase could significantly prevent progression of existing cataracts.
Collapse
Affiliation(s)
- Ken Kawakubo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|