1
|
Pulskamp TG, Johnson LM, Berlau DJ. Novel non-opioid analgesics in pain management. Pain Manag 2024; 14:641-651. [PMID: 39692452 PMCID: PMC11702995 DOI: 10.1080/17581869.2024.2442292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Effective pain management has long been hindered by the limitations and risks associated with opioid analgesics, necessitating the exploration of novel, non-opioid alternatives. A comprehensive literature search was conducted using PubMed and Google Scholar during October and November 2024 to identify studies on emerging non-opioid pain management therapeutics. This review evaluates three promising classes of mechanism-specific therapeutics: nerve growth factor (NGF) monoclonal antibodies, transient receptor potential vanilloid 1 (TRPV1) antagonists, and selective sodium channel blockers. By targeting distinct pathways involved in pain sensation, these therapies aim to provide relief for various pain types, including chronic, inflammatory, and neuropathic pain, with potentially fewer side effects. Through a detailed analysis of their mechanisms of action and current evidence, this review highlights the clinical potential of each class, addressing both their efficacy and safety challenges. Ultimately, these emerging therapies represent significant advancements in non-opioid pain management, with the potential to reshape standard approaches to patient care.
Collapse
|
2
|
Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol 2024; 964:176302. [PMID: 38154767 DOI: 10.1016/j.ejphar.2023.176302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid β, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Pharmaceutical Control Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kumar PS, Radhakrishnan A, Mukherjee T, Khamaru S, Chattopadhyay S, Chattopadhyay S. Understanding the role of Ca 2+ via transient receptor potential (TRP) channel in viral infection: Implications in developing future antiviral strategies. Virus Res 2023; 323:198992. [PMID: 36309316 PMCID: PMC10194134 DOI: 10.1016/j.virusres.2022.198992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation-specific permeable channels primarily conducting Ca2+ions across various membranes of the cell. The perturbation of the Ca2+ homeostasis is the hallmark of viral infection. Viruses hijack the host cell Ca2+ signaling, employing tailored Ca2+ requirements via TRP channels to meet their own cellular demands. This review summarizes the importance of Ca2+ across diverse viruses based on the Baltimore classification and focuses on the associated role of Ca2+-conducting TRP channels in viral pathophysiology. More emphasis has been given to the role of the TRP channel in viral life-cycle events such as viral fusion, viral entry, viral replication, virion maturation, and egress. Additionally, this review highlights the TRP channel as a store-operated channel which has been discussed vividly. The TRP channels form an essential aspect of host-virus interaction by virtue of its Ca2+ permeability. These channels are directly involved in regulating the viral calcium dynamics in host cells and thereby affect the viral infection. Considering its immense potential in regulating viral infection, the TRP channels may act as a target for antiviral therapeutics.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India; Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
4
|
Isagulyan E, Tkachenko V, Semenov D, Asriyants S, Dorokhov E, Makashova E, Aslakhanova K, Tomskiy A. The Effectiveness of Various Types of Electrical Stimulation of the Spinal Cord for Chronic Pain in Patients with Postherpetic Neuralgia: A Literature Review. Pain Res Manag 2023; 2023:6015680. [PMID: 37007861 PMCID: PMC10065853 DOI: 10.1155/2023/6015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 04/04/2023]
Abstract
Introduction Postherpetic neuralgia (PHN) is a severe condition that remains a challenge to treat. Spinal cord stimulation (SCS) is used in cases of insufficient efficacy of conservative treatment. However, in contrast to many other neuropathic pain syndromes, there is a huge problem in reaching long-term stable pain relief in patients with PHN using conventional tonic SCS. The objective of this article was to present a review of the current management strategies of PHN, their efficacy, and safety. Materials and Methods We searched for articles containing the keywords "spinal cord stimulation AND postherpetic neuralgia," "high-frequency stimulation AND postherpetic neuralgia," "burst stimulation AND postherpetic neuralgia" and "dorsal root ganglion stimulation AND postherpetic neuralgia" in Pubmed, Web of Science, and Scopus databases. The search was limited to human studies published in the English language. There were no publication period limitations. Bibliographies and references of selected publications on neurostimulation for PHN were further manually screened. The full text of each article was studied once the abstract was analyzed by the searching reviewer and found appropriate. The initial search yielded 115 articles. Initial screening based on abstract and title allowed us to exclude 29 articles (letters, editorials, and conference abstracts). The full-text analysis allowed us to exclude another 74 articles (fundamental research articles, research utilizing animal subjects, and systemic and nonsystemic reviews) and results of PHN treatment presented with other conditions, leaving 12 articles for the final bibliography. Results 12 articles reporting on the treatment of 134 patients with PHN were analyzed, with a disproportionally large amount of traditional SCS treatment than that to alternative SCS: DRGS (13 patients), burst SCS (1 patient), and high-frequency SCS (2 patients). Long-term pain relief was achieved in 91 patients (67.9%). The mean VAS score improvement was 61.4% with a mean follow-up time of 12.85 months. Although the number of patients in alternative SCS studies was very limited, almost all of them showed good responses to therapy with more than 50% VAS improvement and reduction of analgesic dosage. The article contains a review analysis of 12 articles concerning the current methods of treatment for postherpetic neuralgia including conservative treatment, spinal cord stimulation, and novel neuromodulation strategies. Available information on the pathophysiology of PHN and the effect or stimulation on its course, together with a number of technical nuances concerning various types of neurostimulation are also elucidated in this article. A number of alternative invasive treatments of PHN are also discussed. Conclusions Spinal cord stimulation is an established treatment option for patients with pharmacologically resistant PHN. High-frequency stimulation, burst stimulation, and dorsal root ganglion stimulation are promising options in the management of PHN due to the absence of paresthesias which can be painful for patients with PHN. But more research is still required to recommend the widespread use of these new methods.
Collapse
Affiliation(s)
- Emil Isagulyan
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Vasily Tkachenko
- Central State Medical Academy of Russian Federation, Marshalla Timoshenko Street, 19, Moscow 121359, Russia
| | - Denis Semenov
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Svetlana Asriyants
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Evgeny Dorokhov
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Elizaveta Makashova
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Karina Aslakhanova
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| | - Alexei Tomskiy
- Burdenko Institute of Neurosurgery, National Medical Research Center for Neurosurgery Named after Academician N. N. Burdenko, 4th Tverskaya-Yamskaya Street 16, Moscow 125047, Russia
| |
Collapse
|
5
|
Manti S, Piedimonte G. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma. Front Pediatr 2022; 10:998296. [PMID: 36204661 PMCID: PMC9530042 DOI: 10.3389/fped.2022.998296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is recognized as an important risk factor for wheezing and asthma, since it commonly affects babies during lung development. While the role of RSV in the onset of atopic asthma is widely recognized, its impact on the onset of non-atopic asthma, mediated via other and independent causal pathways, has long been also suspected, but the association is less clear. Following RSV infection, the release of local pro-inflammatory molecules, the dysfunction of neural pathways, and the compromised epithelial integrity can become chronic and influence airway development, leading to bronchial hyperreactivity and asthma, regardless of atopic status. After a brief review of the RSV structure and its interaction with the immune system and neuronal pathways, this review summarizes the current evidence about the RSV-mediated pathogenic pathways in predisposing and inducing airway dysfunction and non-allergic asthma development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Pediatric Unit, Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Liviero F, Campisi M, Mason P, Pavanello S. Transient Receptor Potential Vanilloid Subtype 1: Potential Role in Infection, Susceptibility, Symptoms and Treatment of COVID-19. Front Med (Lausanne) 2021; 8:753819. [PMID: 34805220 PMCID: PMC8599155 DOI: 10.3389/fmed.2021.753819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The battle against the new coronavirus that continues to kill millions of people will be still long. Novel strategies are demanded to control infection, mitigate symptoms and treatment of COVID-19. This is even more imperative given the long sequels that the disease has on the health of the infected. The discovery that S protein includes two ankyrin binding motifs (S-ARBMs) and that the transient receptor potential vanilloid subtype 1 (TRPV-1) cation channels contain these ankyrin repeat domains (TRPs-ARDs) suggest that TRPV-1, the most studied member of the TRPV channel family, can play a role in binding SARS-CoV-2. This hypothesis is strengthened by studies showing that other respiratory viruses bind the TRPV-1 on sensory nerves and epithelial cells in the airways. Furthermore, the pathophysiology in COVID-19 patients is similar to the effects generated by TRPV-1 stimulation. Lastly, treatment with agonists that down-regulate or inactivate TRPV-1 can have a beneficial action on impaired lung functions and clearance of infection. In this review, we explore the role of the TRPV-1 channel in the infection, susceptibility, pathogenesis, and treatment of COVID-19, with the aim of looking at novel strategies to control infection and mitigate symptoms, and trying to translate this knowledge into new preventive and therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padua, Padova, Italy
| |
Collapse
|
7
|
Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, Datey A, Sahu RP, Goswami C, Chattopadhyay S, Chattopadhyay S. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol 2020; 166:139-155. [PMID: 33125586 DOI: 10.1007/s00705-020-04852-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5'-iodoresiniferatoxin (5'-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.,Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ankita Datey
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ram P Sahu
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
8
|
Amirkhanloo F, Karimi G, Yousefi-Manesh H, Abdollahi A, Roohbakhsh A, Dehpour AR. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin Pharmacol Toxicol 2020; 127:405-418. [PMID: 32542990 DOI: 10.1111/bcpt.13454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Vincristine (VCR) induces peripheral neuropathy. We aimed to assess the efficacy of modafinil on VCR-induced neuropathy in rats. Neuropathy was induced by intraperitoneal (i.p.) injections of VCR (0.1 mg/kg). Neuropathic groups received modafinil (5, 25 and 50 mg/kg); gabapentin (20 mg/kg); and a combination of modafinil (5 and 50 mg/kg) and gabapentin (20 mg/kg,). Then, electrophysiological, behavioural, biochemical and pathological evaluations were performed. Latencies of tail-flick and von Frey filament tests, motor nerve conduction velocity (MNCV) and excitation of nerve conduction were decreased. Moreover, the transient receptor potential cation channel ankyrin 1 (TRPA1) level was increased, while TRPV1 and N-Methyl-D-aspartate (NMDA) levels remained unchanged. Tumour necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) levels were markedly elevated. Pre-treatment with modafinil prevented sensorimotor neuropathy by raising latencies, MNCV and excitation, reducing TRPA1, TNF-α and IL-1β levels. Modafinil improved behavioural, electrophysiological and pathological disturbances. The results showed that TRPA1 has a more important role than NMDA and TRPV1, in VCR-induced neuropathic pain. In addition, inflammatory mediators, TNF-α and IL-1β, were involved. Further, the combination of modafinil and gabapentin improved the neuroprotective effect of gabapentin. So, modafinil might be a neuroprotective agent in the prevention of VCR-induced neuropathy.
Collapse
Affiliation(s)
- Fatemeh Amirkhanloo
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Sakakibara S, Imamachi N, Sakakihara M, Katsube Y, Hattori M, Saito Y. Effects of an intrathecal TRPV1 antagonist, SB366791, on morphine-induced itch, body temperature, and antinociception in mice. J Pain Res 2019; 12:2629-2636. [PMID: 31695478 PMCID: PMC6718059 DOI: 10.2147/jpr.s217439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Transient receptor potential vanilloid 1 (TRPV1) not only is activated by multiple stimuli but also is involved with histamine-induced itch. The effects of TRPV1 on morphine-induced itch are unknown. We examined the effects of intrathecal administration of TRPV1 antagonist on morphine-induced itch, body temperature, and antinociception for mice. Methods Each C57/BL6j mouse was intrathecally administered with one of the following solutions: morphine, SB366791 (as the TRPV1 antagonist), morphine + SB366791, saline, or vehicle. For each mouse, each instance of observed scratching behavior was counted, the body temperature was measured, and the nociceptive threshold was determined using the tail-immersion test. Results SB366791 dose-dependently reduced the scratching behavior induced by the administration of morphine. SB366791 and the morphine + SB366791 groups did not manifest an increase in body temperature. Antinociceptive effects were observed to occur dose-dependently for morphine but not for SB366791. Compared with morphine alone, the administration of morphine + SB366791 did not reduce significant antinociceptive effects. Conclusion We propose that an intrathecal TRPV1 antagonist, SB366791, reduced morphine-induced itch without causing hyperthermia and did not suppress morphine-induced antinociception for mice.
Collapse
Affiliation(s)
- Satoshi Sakakibara
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Noritaka Imamachi
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Manabu Sakakihara
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yukiko Katsube
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mai Hattori
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yoji Saito
- Department of Anesthesiology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
11
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
12
|
Hitomi S, Ono K, Yamaguchi K, Terawaki K, Imai R, Kubota K, Omiya Y, Hattori T, Kase Y, Inenaga K. The traditional Japanese medicine hangeshashinto alleviates oral ulcer-induced pain in a rat model. Arch Oral Biol 2016; 66:30-7. [PMID: 26878477 DOI: 10.1016/j.archoralbio.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/15/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recent studies have demonstrated that mouthwash made with the traditional Japanese medicine hangeshashinto exhibits anti-inflammatory action and alleviates oral mucositis scores, including pain complaints, in patients undergoing chemoradiotherapy. However, no study has demonstrated the mechanism underlying how hangeshashinto provides pain relief in oral ulcers. DESIGN The analgesic effects on pain-related behaviors following the topical application of hangeshashinto were evaluated in an oral ulcer rat model treated with acetic acid using recently developed methods. Indomethacin, the representative anti-inflammatory agent, was intraperitoneally administered. The tissue permeability of the oral mucosa was histologically evaluated after applying the fluorescent substance FluoroGold. RESULTS The topical application of hangeshashinto in ulcerative oral mucosa suppressed mechanical pain hypersensitivity over 60 min, without any effects on healthy mucosa. The same drug application also inhibited oral ulcer-induced spontaneous pain. Indomethacin administration failed to block the mechanical pain hypersensitivity, though it did largely block spontaneous pain. Topical anesthesia with lidocaine showed hyposensitivity to mechanical stimulation in healthy mucosa. In the ulcer regions in which the oral epithelial barrier was destroyed, deep parenchyma was stained with FluoroGold, in contrast to healthy oral mucosa, in which staining was limiting to the superficial site. CONCLUSIONS Hangeshashinto leads to long-lasting analgesic effects, specifically in the ulcer region by destroying the epithelial barrier. Hangeshashinto alleviates oral ulcer-induced pain in inflammation-dependent and/or independent manner.
Collapse
Affiliation(s)
- Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - Kiichiro Yamaguchi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; Division of Dental Anesthesiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kiyoshi Terawaki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Ryota Imai
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kunitsugu Kubota
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yuji Omiya
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshihara, Amicho, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
13
|
Ren AJ, Wang K, Zhang H, Liu A, Ma X, Liang Q, Cao D, Wood JN, He DZ, Ding YQ, Yuan WJ, Xie Z, Zhang WJ. ZBTB20 regulates nociception and pain sensation by modulating TRP channel expression in nociceptive sensory neurons. Nat Commun 2014; 5:4984. [PMID: 25369838 PMCID: PMC6687506 DOI: 10.1038/ncomms5984] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
In mammals, pain sensation is initiated by the detection of noxious stimuli through specialized transduction ion channels and receptors in nociceptive sensory neurons. Transient receptor potential (TRP) channels are the key sensory transducers that confer nociceptors distinct sensory modalities. However, the regulatory mechanisms about their expression are poorly defined. Here we show that the zinc-finger protein ZBTB20 regulates TRP channels expression in nociceptors. ZBTB20 is highly expressed in nociceptive sensory neurons of dorsal root ganglia. Disruption of ZBTB20 in nociceptors led to a marked decrease in the expression levels of TRPV1, TRPA1 and TRPM8 and the response of calcium flux and whole-cell currents evoked by their respective specific agonists. Phenotypically, the mice lacking ZBTB20 specifically in nociceptors showed a defect in nociception and pain sensation in response to thermal, mechanical and inflammatory stimulation. Our findings point to ZBTB20 as a critical regulator of nociception and pain sensation by modulating TRP channels expression in nociceptors.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Kai Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Huan Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Anjun Liu
- 1] Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China [2] Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Qing Liang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Dongmei Cao
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - John N Wood
- Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68102, USA
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Wen-Jun Yuan
- Department of Physiology and Neurobiology, Key Lab of Ministry of Education in Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan 750004, China
| | - Zhifang Xie
- 1] Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China [2] Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Inhibition of FAAH, TRPV1, and COX2 by NSAID-serotonin conjugates. Bioorg Med Chem Lett 2014; 24:5695-5698. [PMID: 25467164 DOI: 10.1016/j.bmcl.2014.10.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
Serotonin was linked by amidation to the carboxylic acid groups of a series of structurally diverse NSAIDs. The resulting NSAID-serotonin conjugates were tested in vitro for their ability to inhibit FAAH, TRPV1, and COX2. Ibuprofen-5-HT and Flurbiprofen-5-HT inhibited all three targets with approximately the same potency as N-arachidonoyl serotonin (AA-5-HT), while Fenoprofen-5-HT and Naproxen-5-HT showed activity as dual inhibitors of TRPV1 and COX2.
Collapse
|
15
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
16
|
Sugimoto Y, Kojima Y, Inayoshi A, Inoue K, Miura-Kusaka H, Mori K, Saku O, Ishida H, Atsumi E, Nakasato Y, Shirakura S, Toki SI, Shinoda K, Suzuki N. K-685, a TRPV1 Antagonist, Blocks PKC-Sensitized TRPV1 Activation and Improves the Inflammatory Pain in a Rat Complete Freund’s Adjuvant Model. J Pharmacol Sci 2013; 123:256-66. [DOI: 10.1254/jphs.13088fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|