1
|
Miao X, Ye H, Cui X, Guo X, Su F. Resveratrol attenuates efavirenz-induced hepatic steatosis and hypercholesterolemia in mice by inhibiting pregnane X receptor activation and decreasing inflammation. Nutr Res 2023; 119:119-131. [PMID: 37826994 DOI: 10.1016/j.nutres.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Efavirenz (EFV), a widely prescribed antiviral medication, has been implicated in dyslipidemia and can activate the pregnane X receptor (PXR), leading to hepatic steatosis and hypercholesterolemia in mice. Resveratrol (RES) can ameliorate hepatic steatosis and functions as a partial PXR agonist, capable of mitigating PXR expression induced by other PXR agonists. Therefore, we hypothesized that RES could attenuate EFV-induced hepatic steatosis and hypercholesterolemia by downregulating PXR expression and suppressing inflammatory cytokine production. Here, we conducted an in vivo study involving 6-week-old male mice, which were divided into 4 groups for a 7-day intervention: control (carrier solution), EFV (80 mg/kg), RES (50 mg/kg), and RES + EFV groups. Serum and hepatic tissue samples were collected to assess cholesterol and triglyceride concentrations. Hepatic lipid accumulation was evaluated through hematoxylin-eosin and oil red O staining. Polymerase chain reaction and western blot were performed to quantify hepatic inflammatory factors, lipogenic gene, and PXR expression. Our results indicated that hepatic lipid droplet accumulation was reduced in the RES + EFV group compared with the EFV group. Similarly, the expressions of hepatic inflammatory factors were attenuated in the RES + EFV group relative to the EFV group. Furthermore, RES counteracted the upregulation of hepatic lipid-metabolizing enzymes induced by EFV at both the transcriptional and protein levels. Importantly, PXR expression was downregulated in the RES + EFV group compared with the EFV group. Conclusively, our findings suggest that RES effectively mitigates EFV-induced hepatic steatosis and hypercholesterolemia by inhibiting PXR activation and decreasing inflammation.
Collapse
Affiliation(s)
- Xingguo Miao
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China; Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiaoya Cui
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiuxiu Guo
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Feifei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
2
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
4
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
5
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Egusquiza RJ, Ambrosio ME, Wang SG, Kay KM, Zhang C, Lehmler HJ, Blumberg B. Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal and Chronic Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47011. [PMID: 32352317 PMCID: PMC7228131 DOI: 10.1289/ehp6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are environmental toxicants; PCB exposure has been associated with adverse effects on wildlife and humans. However, the mechanisms underlying these adverse effects are not fully understood. The steroid and xenobiotic receptor [SXR; also known as the pregnane X receptor (PXR) and formally known as NR1I2] is a nuclear hormone receptor that regulates inducible metabolism of drugs and xenobiotics and is activated or inhibited by various PCB congeners. OBJECTIVES The aim of this study was to investigate the effects of exposure to PCB-153, the most prevalent PCB congener in human tissues, on SXR knockout mice (SXRKO) and to elucidate the role of SXR in PCB-153 metabolism and promotion of its harmful effects. METHODS Wild-type (WT) and SXRKO mice were chronically or perinatally exposed to a low dose (54μg/kg/d) of PCB-153. Blood, livers, and spleens were analyzed using transcriptome sequencing (RNA-seq) and molecular techniques to investigate the impacts of exposure on metabolism, oxidative stress, and hematological parameters. RESULTS SXRKO mice perinatally exposed to PCB-153 displayed elevated oxidative stress, symptoms of hemolytic anemia, and premature death. Transcriptomal analysis revealed that expression of genes involved in metabolic processes was altered in SXRKO mice. Elevated levels of the PCB-153 metabolite, 3-OH-PCB-153, were found in exposed SXRKO mice compared to exposed WT mice. Blood hemoglobin (HGB) levels were lower throughout the lifespan, and the occurrence of intestinal tumors was larger in SXRKO mice chronically exposed to PCB-153 compared to vehicle and WT controls. DISCUSSION Our results suggest that altered metabolism induced by SXR loss of function resulted in the accumulation of hydroxylated metabolites upon exposure to PCB-153, leading to oxidative stress, hemolytic anemia, and tumor development in a mouse model. These results support a major role for SXR/PXR in protection against xenobiotic-induced oxidative stress by maintaining proper metabolism in response to PCB-153 exposure. This role of SXR could be generally applicable to other environmental toxicants as well as pharmaceutical drugs. https://doi.org/10.1289/EHP6262.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Maria Elena Ambrosio
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Shuyi Gin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Kaelen Marie Kay
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Hyrsova L, Vanduchova A, Dusek J, Smutny T, Carazo A, Maresova V, Trejtnar F, Barta P, Anzenbacher P, Dvorak Z, Pavek P. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol Lett 2018; 300:81-91. [PMID: 30394306 DOI: 10.1016/j.toxlet.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
Resveratrol (RSV) is a stilbene phytochemical common in food and red wine. RSV inhibits cytochrome P450 CYP3A4 activity and interacts with the pregnane X receptor (PXR), the central regulator of drug/xenobiotic metabolizing enzyme expression. In this work, we comprehensively examined the effects of 13 stilbenes (trans- and cis-resveratrol, trans- and cis-piceatannol, oxyresveratrol, pterostilbene, pinostilbene, a,b-dihydroresveratrol, trans- and cis-trismethoxyresveratrol, trans-3,4,5,4'-tetramethoxystilbene, trans-2,4,3',5'-tetramethoxystilbene, trans-4-methoxystilbene), on CYP3A4 and CYP2B6 mRNA induction, and on CYP3A4/5, CYP2C8/9/19, CYP2D6, CYP2A6, CYP2E1, CYP1A2 and CYP2B6 cytochrome P450 enzyme activities. Expression experiments in five different primary human hepatocyte preparations, reporter gene assays, and ligand binding assays with pregnane X (PXR) and constitutive androstane (CAR) receptors were performed. Inhibition of cytochrome P450 enzymes was examined in human microsomes. We found that only polymethoxylated stilbenes are prone to significantly induce CYP2B6 or CYP3A4 in primary human hepatocytes via pregnane X receptor (PXR) interaction. Natural resveratrol derivatives such as trans- and cis-RSV, oxyresveratrol, pinostilbene and pterostilbene significantly inhibit CYP3A4/5 enzymatic activities; however, only trans-RSV significantly inhibits CYP3A4/5 activity (both testosterone 6β-hydroxylation and midazolam 1´-hydroxylation) in micromolar concentrations by a non-competitive mechanism, suggesting a potential risk of food-drug interactions with CYP3A4/5 substrates.
Collapse
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Alena Vanduchova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic; Institute of Molecular and Translational Medicine (IMTM), Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Veronika Maresova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 3, CZ775 15, Olomouc, Czech Republic
| | - Zdenek Dvorak
- Department of Cellular Biology and Genetics, Faculty of Sciences, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, CZ500 05, Czech Republic.
| |
Collapse
|
8
|
Dolezelova E, Prasnicka A, Cermanova J, Carazo A, Hyrsova L, Hroch M, Mokry J, Adamcova M, Mrkvicova A, Pavek P, Micuda S. Resveratrol modifies biliary secretion of cholephilic compounds in sham-operated and cholestatic rats. World J Gastroenterol 2017; 23:7678-7692. [PMID: 29209109 PMCID: PMC5703928 DOI: 10.3748/wjg.v23.i43.7678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of resveratrol on biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
METHODS Resveratrol (RSV) or saline were administered to rats by daily oral gavage for 28 d after sham operation or reversible bile duct obstruction (BDO). Bile was collected 24 h after the last gavage during an intravenous bolus dose of the Mdr1/Mrp2 substrate azithromycin. Bile acids, glutathione and azithromycin were measured in bile to quantify their level of biliary secretion. Liver expression of enzymes and transporters relevant for bile production and biliary secretion of major bile constituents and drugs were analyzed at the mRNA and protein levels using qRT-PCR and Western blot analysis, respectively. The TR-FRET PXR Competitive Binding Assay kit was used to determine the agonism of RSV at the pregnane X receptor.
RESULTS RSV increased bile flow in sham-operated rats due to increased biliary secretion of bile acids (BA) and glutathione. This effect was accompanied by the induction of the hepatic rate-limiting transporters for bile acids and glutathione, Bsep and Mrp2, respectively. RSV also induced Cyp7a1, an enzyme that is crucial for bile acid synthesis; Mrp4, a transporter important for BA secretion from hepatocytes to blood; and Mdr1, the major apical transporter for xenobiotics. The findings were supported by increased biliary secretion of azithromycin. The TR-FRET PXR competitive binding assay confirmed RSV as a weak agonist of the human nuclear receptor PXR, which is a transcriptional regulator of Mdr1/Mrp2. RSV demonstrated significant hepatoprotective properties against BDO-induced cirrhosis. RSV also reduced bile flow in BDO rats without any corresponding change in the levels of the transporters and enzymes involved in RSV-mediated hepatoprotection.
CONCLUSION Resveratrol administration for 28 d has a distinct effect on bile flow and biliary secretion of cholephilic compounds in healthy and bile duct-obstructed rats.
Collapse
Affiliation(s)
- Eva Dolezelova
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Prasnicka
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Michaela Adamcova
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Alena Mrkvicova
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Guthrie AR, Chow HS, Martinez JA. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol Res Perspect 2017; 5:e00294. [PMID: 28596842 PMCID: PMC5461649 DOI: 10.1002/prp2.294] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in vitro evidence often contrasts with animal studies and clinical trials. Reasons for these variances could include the low bioavailability of resveratrol and the effects of resveratrol metabolites. Due to resveratrol's interactions with drug-metabolizing enzymes and drug transporters, individuals concurrently taking pharmacological doses of resveratrol with other supplements or medications could potentially experience nutrient-drug interactions. This review summarizes the known effects of resveratrol and its main metabolites on drug metabolism in order to help characterize which populations might benefit from resveratrol for the prevention of cancer, as well as those that may need to avoid supplementation due to potential drug interactions.
Collapse
Affiliation(s)
- Ariane R. Guthrie
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
| | | | - Jessica A. Martinez
- Department of Nutritional SciencesUniversity of ArizonaTucsonArizona
- University of Arizona Cancer CenterTucsonArizona
| |
Collapse
|
10
|
Chandran A, Vishveshwara S. Exploration of the conformational landscape in pregnane X receptor reveals a new binding pocket. Protein Sci 2016; 25:1989-2005. [PMID: 27515410 DOI: 10.1002/pro.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/07/2016] [Indexed: 11/06/2022]
Abstract
Ligand-regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug-drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely "expanded" and "contracted", in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single "ligand-adaptable" conformational state. Ensemble-based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named "α8 pocket", whose opening-closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure-based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a "tightly-contracted" conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.
Collapse
Affiliation(s)
- Aneesh Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Ling Z, Shu N, Xu P, Wang F, Zhong Z, Sun B, Li F, Zhang M, Zhao K, Tang X, Wang Z, Zhu L, Liu L, Liu X. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes. Biochem Pharmacol 2015; 100:98-111. [PMID: 26616219 DOI: 10.1016/j.bcp.2015.11.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation.
Collapse
Affiliation(s)
- Zhaoli Ling
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Nan Shu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Binbin Sun
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Li
- College of Chinese Pharmacy, Shanxi University of Chinese Medicine, Shanxi, Xianyang 712046, China
| | - Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Kaijing Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiange Tang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjian Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|