1
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Eldesoqui M, Ahmed ME, Abdel-Kareem MA, Badawy MM, Dawood AF, Mohamed AS, Ibrahim AM, El-Mansi AA, El-Sherbiny M, Hendawy M. Curcumin Mitigates Malathion-Induced Renal Injury: Suppression of Apoptosis and Modulation of NF-κβ/TNF-α and Nrf2, and HO-1 Signaling. Metabolites 2023; 13:1117. [PMID: 37999213 PMCID: PMC10673029 DOI: 10.3390/metabo13111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Malathion is one of the most used organophosphorus pesticides that is used for many reasons such as agriculture and industry. Human exposure to malathion may occur through various means, such as eating food that has been treated with it. Malathion not only increases oxidative stress but also decreases the antioxidant capacity. Curcumin is a powerful antioxidant with many pharmacological actions. Curcumin can act as a free radical scavenger and inhibit the activation and nuclear translocation of NF-κB. Curcumin could combat the lipid peroxidation and antioxidant depletion that trigger the apoptotic pathways. This study aims to examine the antioxidant, anti-inflammatory, and antiapoptotic effects of curcumin. Twenty-four Sprague Dawley rats were divided into four groups (six rats each): control, curcumin, malathion, and malathion + curcumin groups. At the assigned time, blood samples were used for the assessment of serum creatinine, and the kidneys were excised and washed; parts of them were used for the assessment of total oxidant status (TOS), oxidative stress index (OSI), the oxidative stress marker malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH) activity, other parts were fixed in formalin for further staining. Histopathological evaluation was performed for the fixed specimens after staining with H&E, sirus red, and the immunohistochemical staining for NF-κβ, TNF-α, Caspase-3, Nrf2, and HO-1. Curcumin significantly decreases the serum creatinine after malathion exposure and significantly restores the oxidant/antioxidant balance by increasing TAC and GSH and decreasing TOS, OSI, and MDA. Curcumin exerts its reno-protective effect and restores the histological architecture of the kidney by downregulating the immune expression of NF-κβ, TNF-α, and Caspase-3 and upregulating the expression of Nrf2 and HO-1. This study concluded that curcumin protects against nephrotoxicity caused by malathion by exerting its antioxidant, anti-inflammatory, and anti-apoptotic capabilities.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Magda E. Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
| | - Mona A. Abdel-Kareem
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt;
| | - Mohamed Moharram Badawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaty Shawky Mohamed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Ahmed A. El-Mansi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Mohamad El-Sherbiny
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Mahmoud Hendawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
| |
Collapse
|
3
|
Li T, Jing W, Fu W, Yan Z, Ma Y, Li X, Ji H, Zhang R. Melanin theranostic nanoplatform as an efficient drug delivery system for imaging-guided renal fibrosis therapy. BIOMATERIALS ADVANCES 2023; 147:213333. [PMID: 36801511 DOI: 10.1016/j.bioadv.2023.213333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As renal fibrosis nanotherapeutics, the endogenous biomaterial melanin not only has natural biocompatibility and biodegradability but also has inherent photoacoustic imaging ability and certain anti-inflammatory effects. These properties determine that melanin can not only as a carrier of medication but also track the biodistribution and renal uptake of drugs in vivo by photoacoustic imaging in real-time. Curcumin is a natural compound with biological activity, which has excellent ROS scavenging ability and good anti-inflammatory property. These materials appear more advantages in the development of nanoscale diagnostic and therapeutic platforms for future clinical translation. Herein, this study developed curcumin-loaded melanin nanoparticles (MNP-PEG-CUR NPs) as an efficient medication delivery system for photoacoustic imaging guidance renal fibrosis treatment. The nanoparticles are about 10 nm in size, exhibit good renal clearance efficiency, excellent photoacoustic imaging ability, and good in vitro and in vivo biocompatibility. These preliminary results indicated that MNP-PEG-CUR have clinically applicable potential as a therapeutic nanoplatform for renal fibrosis.
Collapse
Affiliation(s)
- Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, People's Republic of China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Wenyu Jing
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Weihua Fu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Zirui Yan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yuan Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xueqi Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Huifang Ji
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Ruiping Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China.
| |
Collapse
|
4
|
Chen Y, Huang C, Duan ZB, Chen YX, Xu CY. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway. Am J Physiol Cell Physiol 2023; 324:C292-C306. [PMID: 36440854 DOI: 10.1152/ajpcell.00382.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal fibrosis is the final pathway for chronic kidney disease to end-stage renal failure. Noncoding RNAs have been reported to play a crucial role in renal fibrosis. Here, the effects of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and miR-31 on renal fibrosis and their regulatory mechanism were evaluated. RT-qPCR was used to assess NEAT1, miR-31, and RhoA levels. Western blot was performed to analyze the expression of fibrosis markers, RhoA, rho-related kinase (ROCK1), and connective tissue growth factor (CTGF). RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and luciferase reporter assays verified the interaction between miR-31 and NEAT1 or RhoA. Renal fibrosis and injury were observed by Masson and hematoxylin and eosin (H&E) staining. The expression level of inflammatory cytokines was detected by ELISA. Immunohistochemistry (IHC) was performed to examine the expression levels of α-smooth muscle actin (α-SMA) and RhoA in renal tissues. We showed that NEAT1 was highly expressed, whereas miR-31 was decreased in renal fibrosis. NEAT1 was found to directly bind miR-31 to positively regulate RhoA expression. Furthermore, NEAT1 silencing inhibited renal fibrosis and inflammation and suppressed the RhoA/ROCK1 signaling pathway. However, knockdown of miR-31 could reverse these effects. NEAT1 silencing or overexpression of miR-31 alleviated renal fibrosis in vivo. In conclusion, NEAT1 accelerates renal fibrosis progression via negative regulation of miR-31 and the activation of RhoA/ROCK1 pathway, thereby upregulating the expression level of CTGF, providing a theoretical basis for treatment and prognostic evaluation of renal fibrosis.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Bin Duan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yaribeygi H, Maleki M, Majeed M, Jamialahmadi T, Sahebkar A. Renoprotective Roles of Curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:531-544. [PMID: 34981504 DOI: 10.1007/978-3-030-73234-9_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of herb-based therapies is increasing over the past decades. These agents have been reported to provide many beneficial effects in many experimental and clinical studies. Curcumin is one of these agents which has potent pharmacological effects enabling it for the prevent and treatment of many diseases and pathologies such as renal disorders, hyperglycemia, oxidative stress, hypertension, and dyslipidemia. However, the exact molecular mechanisms mediating these renoprotective effects of curcumin are not well established. So, in the current study, we surveyed for possible renoprotective roles of curcumin and concluded how curcumin protects against renal injuries.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
8
|
Abstract
Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phos-phorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Yeo Jin Hwang
- Division of Electronics & Information System, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jun-Hyuk Choi
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
9
|
Curcumin Reinforces MiR-29a Expression, Reducing Mesangial Fibrosis in a Model of Diabetic Fibrotic Kidney via Modulation of CB1R Signaling. Processes (Basel) 2021. [DOI: 10.3390/pr9040694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Renal fibrosis is a hallmark event in the pathogenesis of diabetic nephropathy. Considerable evidence now supports that multiple intracellular signaling pathways are critically involved in renal fibrosis. Previously, our studies have shown that dysregulation of the MicroRNA 29a (miR-29a)- or cannabinoid type 1 receptor (CB1R)-mediated signaling cascade in renal glomeruli substantially contributes to diabetic renal fibrosis. The purpose of the current study was to explore whether curcumin, a natural polyphenolic compound with potential renoprotective activity, could modulate the miR-29a/CB1R signaling axis to attenuate renal fibrosis. In this study, rat renal mesangial cells cultured in high glucose (HG) and the diabetic db/db mice were used as an in vitro and in vivo model of diabetes, respectively. Our results showed that in rat renal mesangial cells, curcumin treatment substantially counteracted HG-induced changes in the expressions of miR-29a, CB1R, peroxisome proliferator-activated receptor gamma (PPAR-γ), and a profibrotic marker type IV collagen (collagen IV), as assessed by quantitative Real-Time Polymerase chain reaction (RT-PCR). Furthermore, in the db/db mouse model, administration of curcumin markedly lowered urinary albumin excretion, and reduced deposition of extracellular matrices including collagen IV in renal tissues. Importantly, quantitative RT-PCR, in situ hybridization, and immunohistochemical analysis revealed that curcumin treatment consistently blocked diabetes-induced downregulation of miR-29a and upregulation of CB1R in renal glomeruli. Collectively, our study provides novel evidence showing that curcumin can rescue the dysregulated miR-29a/CB1R signaling pathway in glomerular mesangium to ameliorate diabetic renal fibrosis.
Collapse
|
10
|
Zhou Y, Lan H, Dong Z, Cao W, Zeng Z, Song JL. Dietary proanthocyanidins alleviated ovarian fibrosis in letrozole-induced polycystic ovary syndrome in rats. J Food Biochem 2021; 45:e13723. [PMID: 33818798 DOI: 10.1111/jfbc.13723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of proanthocyanidins (PCs) on ovarian fibrosis in letrozole-induced polycystic ovary syndrome (PCOS) in rats. The administration of PCs effectively reduced the body weight (BW) and relative ovarian weight in PCOS rats. ELISA results revealed that PCs significantly reduced the level of serum T, LH, LH/FSH in the PCOS group. In addition, qRT-PCR results revealed that treatment with PCs significantly increased the main antioxidant enzymes (Cat, Sod2, Gpx3, Mgst1, Gsta4, Sod1 and Prdx3) in PCOS rats. Also, the expression analysis of proteins by Western blotting revealed that PCs significantly decreased the level of TGF-βR1, p-Smad3, p-Smad2 and Smad4 and reversed the downregulation of Smad7 in PCOS rats. The study suggested that PCs improved ovarian fibrosis in PCOS rats by regulating the serum hormone level, inhibiting oxidative stress and suppressing the activation of the TGF-β1/Smads signaling pathway. PRACTICAL APPLICATIONS: Currently, plant extracts are being widely used to treat female reproductive and metabolic disorders. Particularly, proanthocyanidins (PCs), the well-known natural polyphenolic compounds, which are a significant source of antioxidants present in many colored fruits, are consumed as fruits as well as a dietary supplement to prevent many disorders. Recent pharmacological studies have reported that PCs have many health beneficial properties, such as antioxidant activity, improving cholesterol homeostasis, blood lipid regulatory properties, microcirculation improvement effect, antitumor activity and anti-aging activity. Despite these properties of PCs, the antifibrosis effect of PCs has not been studied to date. The main purpose of this study was to research the role and the mechanisms of PCs in ovarian fibrosis in PCOS rats.
Collapse
Affiliation(s)
- Yanyuan Zhou
- Department of Analytical Chemistry & Drug Analysis, School of Pharmacy, Guilin Medical University, Guilin, China
| | - Huan Lan
- Department of Analytical Chemistry & Drug Analysis, School of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhewen Dong
- Department of Analytical Chemistry & Drug Analysis, School of Pharmacy, Guilin Medical University, Guilin, China
| | - Wenjing Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China
| | - Zhen Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,Department of Maternal and Child Health, XiangYa School of Public Health, Central South University, Changsha, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
11
|
Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis. Biomedicines 2021; 9:biomedicines9040358. [PMID: 33808509 PMCID: PMC8065974 DOI: 10.3390/biomedicines9040358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-β, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.
Collapse
|
12
|
Li L, Zhou G, Fu R, He Y, Xiao L, Peng F, Yuan C. Polysaccharides extracted from balanophora polyandra Griff (BPP) ameliorate renal Fibrosis and EMT via inhibiting the Hedgehog pathway. J Cell Mol Med 2021; 25:2828-2840. [PMID: 33507617 PMCID: PMC7957266 DOI: 10.1111/jcmm.16313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a crucial pathological change leading to chronic kidney disease (CKD). Currently, no effective medicines have been available for treating it. In our research, we examined the effects of polysaccharides extracted from Balanophora polyandra Griff (BPPs) on kidney fibrosis and epithelial to mesenchymal transition (EMT) in vivo and in vitro, aiming to explore the underlying mechanisms. By using the mice with unilateral urethral obstruction (UUO) as experimental subjects, we examined the medicinal values of BPPs on alleviating RIF. The effects of BPPs were evaluated by examining the histological staining and relative mRNA and protein expression levels of the related genes. The possible underlying mechanisms were further explored with human normal renal proximal tubular epithelia (HK‐2 cells) as in vitro model. In UUO mice, BPP treatment could significantly alleviate interstitial fibrosis through reducing the components (Collagens I, III and IV) of extracellular matrix (ECM), and reducing the activation of fibroblasts producing these components, as revealed by inhibiting the hallmarks (fibronectin and α‐SMA) of fibroblast activation. Furthermore, BPP administration increased the expression levels of matrix metalloproteinases (MMPs) and declined those of tissue inhibitors of metalloproteinases (TIMPs). BPPs markedly ameliorated EMT in both the kidneys of UUO mice and TGF‐β1 treated HK‐2 cells. Moreover, BPP treatment decreased the expression levels of several transcriptional factors involved in regulating E‐cadherin expression, including snail, twist and ZEB1. Additionally, the Hedgehog pathway was found to be closely correlated with renal fibrosis and EMT. Altogether, our results clearly demonstrated that BPP treatment effectively inhibited the Hedgehog pathway both in renal tissues of UUO mice and TGF‐β1‐treated HK‐2 cells. Thus, BPPs ameliorated RIF and EMT in vivo and in vitro via suppressing Hedgehog signalling pathway.
Collapse
Affiliation(s)
- Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Rui Fu
- Department of Psychiatry and Psychology, Stomatological Hospital of Jingmen City, Jingmen, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Li Xiao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
He X, Li G, Chen Y, Xiao Q, Yu X, Yu X, Lu X, Xiang Z. Pharmacokinetics and Pharmacodynamics of the Combination of Rhein and Curcumin in the Treatment of Chronic Kidney Disease in Rats. Front Pharmacol 2020; 11:573118. [PMID: 33424589 PMCID: PMC7785804 DOI: 10.3389/fphar.2020.573118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: The interaction between the components of traditional Chinese medicine (TCM) is an important basis for their synergy. Rhein and curcumin exert various pharmacological activities, including anti-tumour, anti-inflammatory, antioxidant, anti-fibrosis and renoprotective effects. However, no investigation has reported the synergistic anti-fibrosis effect yet. This study aims at determine the pharmacokinetics and pharmacodynamics of the combination of rhein and curcumin in the treatment for chronic kidney disease in rats. Design: Fifty two male Sprague-Dawley (SD) rats were randomly divided into rhein group, curcumin group and their combination group for pharmacodynamics studies. HE and Masson staining was conducted to observe the changes of renal morphology. Kits were used to detect the level of urea nitrogen (BUN) and creatinine (Scr). For pharmacokinetic study, 36 SD rats were randomly divided into rhein group, curcumin group and a combination group, the content of rhein and curcumin in plasma and renal tissue was determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In additon, molecular docking method and cell experiments was used to disclose the interaction mechanism between curcumin and rhein. Results: The pharmacodynamic results showed that the degree of renal fibrosis was improved obviously by co-administration rhein and curcumin. Meanwhile, compared to single administration, the Cmax and AUC of rhein and curcumin in plasma and renal tissue were enhanced significantly after co-administration. Moreover, the result of molecular docking and cell experiments showed that both two compounds could interact with P-gp, CYP2C9 and CYP2C19. Conclusion: Together, these findings demonstrated that rhein and curcumin had a synergistic effect in ameliorateing chonic kidney disease, providing an important explanation on the synergistic mechanism of curcumin and rhein from a pharmacokinetic viewpoint.
Collapse
Affiliation(s)
- Xiaoying He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guowei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiming Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinwei Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyang Lu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Wang Z, Chen Z, Li B, Zhang B, Du Y, Liu Y, He Y, Chen X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. PHARMACEUTICAL BIOLOGY 2020; 58:828-837. [PMID: 32866059 PMCID: PMC7470153 DOI: 10.1080/13880209.2020.1809462] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Renal interstitial fibrosis (RIF) is characterized by the accumulation of inflammatory cytokines and epithelial-mesenchymal transition (EMT). Curcumin exerts antifibrogenic, anti-inflammatory and antiproliferative effects. OBJECTIVE To explore the mechanisms underlying the effects of curcumin on RIF. MATERIALS AND METHODS Eight-week-old male C57BL/6 mice were intragastrically administered curcumin (50 mg/kg/day) for 14 days after undergoing unilateral ureteral obstruction (UUO) operations. Renal function (blood urea nitrogen [BUN] and serum creatinine [Scr]) and inflammatory cytokine levels were tested using colorimetric assays and ELISA, respectively. EMT markers were evaluated through immunohistochemistry, western blotting and qPCR. Transforming growth factor beta 1 (TGF-β1; 10 ng/mL) and lipopolysaccharides (LPS; 100 ng/mL) were used to stimulate EMT and an inflammatory response in human renal proximal tubular epithelial (HK-2) cells, respectively, for further investigation. RESULTS In vivo, curcumin significantly improved the levels of BUN and Scr by 28.7% and 21.3%, respectively. Moreover, curcumin reduced the levels of IL-6, IL-1β and TNF-α by 22.5%, 30.3% and 26.7%, respectively, and suppressed vimentin expression in UUO mice. In vitro, curcumin reduced the expression of vimentin and α-smooth muscle actin in TGF-β1-induced HK-2 cells. In LPS-induced HK-2 cells, curcumin decreased the release of IL-6, IL-1β and TNF-α by 43.4%, 38.1% and 28.3%, respectively. In addition, curcumin reduced the expression of TLR4, p-PI3K, p-AKT, p-NF- κB and p-IκBα in both LPS- and TGF-β1-induced HK-2 cells. DISCUSSION AND CONCLUSIONS Curcumin repressed EMT and the inflammatory response by inhibiting the TLR4/NF-κB and PI3K/AKT pathways, demonstrating its potential utility in RIF treatment.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongchao Du
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- CONTACT Yao He
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- Xiang Chen Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
16
|
Li L, Wang C, Gu Y. Collagen IV, a promising serum biomarker for evaluating the prognosis of revascularization in a 2-kidney, 1-clip hypertensive rat model. Interact Cardiovasc Thorac Surg 2020; 30:483-490. [PMID: 31725159 DOI: 10.1093/icvts/ivz275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The goal of this study was to investigate the expression of serum collagen IV and its value for evaluating the prognosis of revascularization in a 2-kidney, 1-clip hypertensive rat model. METHODS A total of 40 Sprague-Dawley rats were randomly and evenly divided into a control group and 3-, 10- and 20-day (D) groups (namely, the ischaemic time for 3, 10 and 20 days, respectively). The systolic blood pressure and laboratory values such as serum creatinine and collagen IV levels were measured before and after clipping the renal artery. Histological Masson staining and immunohistochemical staining of collagen IV were conducted in a kidney specimen from each group to assess the severity of renal fibrosis and the level of collagen IV expression. RESULTS After clipping, systolic blood pressure in the 3D, 10D and 20D groups increased significantly from 108 ± 8 to 126 ± 7 and from 153 ± 8 to 157 ± 6 mmHg, respectively (10D vs 20D group, P = 0.224; between other groups, P < 0.001). The expression of serum creatinine in the 3D, 10D and 20D groups increased significantly from 35.39 ± 5.64 to 57.53 ± 7.05, 101.86 ± 8.94 and 119.76 ± 9.37 mmol/l, respectively (between each group: P < 0.001). Serum collagen IV levels in the 10D and 20D groups increased significantly from 38.5 ± 10.4 to 60.8 ± 15.0 and 87.3 ± 11.5 ng/ml, respectively (control vs 3D group, P = 0.718; between other groups, P < 0.001). The Masson staining indicated that sclerotic changes in the glomeruli of the 10D and 20D groups significantly increased from 2.20 ± 1.03 to 15.20 ± 5.03 and 28.20 ± 7.07%, respectively (control vs 3D group, P = 0.175; between other groups, P < 0.001). The grade of tubulointerstitial damage in the 3D, 10D and 20D groups increased significantly from 0.30 ± 0.48 to 1.90 ± 0.74, 1.80 ± 0.79 and 3.20 ± 0.79, respectively (3D vs 10D group, P = 0.755; between other groups, P < 0.001). The semi-quantification from immunohistochemical staining indicated that the percentage of collagen IV positive areas in the 3D, 10D and 20D groups increased significantly from 3.50 ± 1.58 to 8.60 ± 2.11, 16.60 ± 8.55 and 23.10 ± 6.15, respectively (control vs 3D group, P = 0.043; 3D vs 10D group, P = 0.002; 10D vs 20D group, P = 0.011; between other groups, P < 0.001). The area under the curve of the receiver operating characteristic curve was 0.783 (P = 0.008; 95% confidence interval 0.634-0.932). There were positive associations of serum collagen IV levels with systolic blood pressure, serum creatinine and collagen IV quantification in kidney with correlation coefficients of 0.665, 0.775 and 0.628, respectively (P < 0.001). CONCLUSIONS As the clear ischaemia time-response relationship identified in our study indicates, the increase in serum collagen IV levels may be a satisfactory biomarker to indicate a poor prognosis of renal artery revascularization in a 2-kidney, 1-clip hypertensive rat model. However, it is perhaps not a good early biomarker for the early detection of renovascular hypertension.
Collapse
Affiliation(s)
- Liqiang Li
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Gao Y, Yuan D, Gai L, Wu X, Shi Y, He Y, Liu C, Zhang C, Zhou G, Yuan C. Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling. J Ginseng Res 2020; 45:408-419. [PMID: 34025134 PMCID: PMC8134850 DOI: 10.1016/j.jgr.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Background The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.
Collapse
Key Words
- ARE, antioxidant response element
- Aging
- COX2, cyclooxygenase-2
- Cys C, cystatin C
- ECM, extracellular matrix
- HO-1, human heme oxygenase 1
- IL-6, interleukin-6
- IκB, inhibitor of NF-κB
- LPO, lipid peroxides
- MCP-1, monocyte chemoattractant protein-1
- MMPs, matrix metalloproteinases
- NF-κB, nuclear factor kappa-B
- NQO1, recombinant NADH dehydrogenase quinone 1
- Nrf2, nuclear factor erythroid 2-related factor 2
- Nrf2-ARE signaling pathways
- PJ, Panax japonicas
- Renal fibrosis
- SD, Sprague-Dawley
- SPJ-H, high-dose of SPJ
- SPJ-L, low-dose of SPJ
- SPJs, saponins from panax japonicus
- TGF-β1, tumor growth factor-β1
- TGF-β1/Smad
- TIMPs, tissue inhibitors of metalloproteinases
- TNF-α, tumor necrosis factor-α
- Total saponins of panax japonicus
- UA, uric acid
- α-SMA, α-smooth muscle aorta
- β2-MG, β2-microglobulin
Collapse
Affiliation(s)
- Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Liyue Gai
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Xuelian Wu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
19
|
Liu H, Guo Y, Zhu R, Wang L, Chen B, Tian Y, Li R, Ma R, Jia Q, Zhang H, Xia B, Li Y, Wang X, Zhu X, Zhang R, Brӧmme D, Gao S, Zhang D, Pei X. Fructus Ligustri Lucidi
preserves bone quality through induction of canonical Wnt/β‐catenin signaling pathway in ovariectomized rats. Phytother Res 2020; 35:424-441. [DOI: 10.1002/ptr.6817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Haixia Liu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yubo Guo
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Lili Wang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rufeng Ma
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Hao Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yu Li
- Department of Histology and Embryology, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xinxiang Wang
- Center for Experimental Medicine The Second Affiliated Hospital of Beijing University of Chinese Medicine Beijing China
| | - Xiaofeng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Ronghua Zhang
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Dieter Brӧmme
- Faculty of Dentistry University of British Columbia Vancouver British Columbia Canada
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xiaohua Pei
- The Fangshan Hospital of BUCM Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
20
|
Wu X, Liu M, Wei G, Guan Y, Duan J, Xi M, Wang J. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: role of SIRT3-FOXO3α signalling pathway. ACTA ACUST UNITED AC 2020; 72:699-708. [PMID: 32196681 DOI: 10.1111/jphp.13234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the antifibrosis and anti-oxidation of rhein in vivo and in vitro, and to evaluate potential mechanisms involved in the treatment of chronic kidney disease (CKD). METHODS In experimental animal studies, CKD was established by 5/6 nephrectomy (5/6Nx). Serum creatinine (Scr) and blood urea nitrogen (BUN) were determined. Histopathologic tests were performed by HE and Masson trichrome stained. The level of ROS was investigated by fluorescence microplate with the probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). The protein expressions of p47phox and gp91phox were measured in 5/6Nx rats. In HK-2 cells, the expression of SIRT3 and Foxo3α was measured in SIRT3 knockdown conditions. The indicators of oxidation and fibrosisi were measured in SIRT3 knockdown conditions. KEY FINDINGS The results showed that, in addition to reducing renal interstitial pathologic injury and collagen fibrils, rhein administration improved renal function. The protective mechanisms were attributed to active SIRT3/FOXO3α signalling pathway and then play the anti-oxidative capacity of rhein, as well as to subsequent antifibrotic effect. CONCLUSION Taken together, rhein protected kidney through SIRT3/FOXO3a involvement. The anti-oxidative capacity of rhein contributed to the protective effects including the subsequent antifibrotic responses.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Li Y, Liu Y, Huang Y, Yang K, Xiao T, Xiong J, Wang K, Liu C, He T, Yu Y, Han W, Wang Y, Bi X, Zhang J, Huang Y, Zhang B, Zhao J. IRF-1 promotes renal fibrosis by downregulation of Klotho. FASEB J 2020; 34:4415-4429. [PMID: 31965641 DOI: 10.1096/fj.201902446r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
Although the key role of renal fibrosis in the progression of chronic kidney disease (CKD) is well known, the causes of renal fibrosis are not fully clarified. In this study, interferon regulatory factor 1 (IRF-1), a mammalian transcription factor, was highly expressed in fibrotic kidney of CKD patients. Concordantly, the expression level of IRF-1 was significantly elevated in the kidney of unilateral ureteral obstruction (UUO) and Adriamycin nephropathy (ADR) mice. In tubular epithelial cells, overexpression of IRF-1 could induce profibrotic markers expression, which accompanied by dramatic downregulation of Klotho, an important inhibitor of renal fibrosis. Luciferase reporter analysis and ChIP assay revealed that IRF-1 repressed Klotho expression by downregulation of C/EBP-β, which regulates Klotho gene transcription via directly binding to its promoter. Further investigation showed that tumor necrosis factor-alpha may be an important inducement for the increase of IRF-1 in tubular epithelial cells after UUO and genetic deletion of IRF-1 attenuated renal fibrosis in UUO mice. Hence, these findings demonstrate that IRF-1 contributes to the pathogenesis of renal fibrosis by downregulation of Klotho, and suppresses IRF-1 may be a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tangli Xiao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kailong Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanlin Yu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenhao Han
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingbo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunjian Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
22
|
Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. Altern Ther Health Med 2019; 19:280. [PMID: 31647008 PMCID: PMC6813077 DOI: 10.1186/s12906-019-2702-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
Abstract
Background Peritoneal fibrosis (PF) remains a serious complication of long-term peritoneal dialysis (PD). The goal of this study was to investigate the anti-fibrotic effects of curcumin on the PF response to PD and its’ mechanism. Methods Male Sprague–Dawley rats were infused with 20 mL of 4.25% glucose-based standard PD fluid for 8 consecutive weeks to establish PF model and then divided into five groups: Control, received sham operation and 0.9% physiological saline; PD, received 4.25% standard PD fluid; Curcumin, PD rats injected intraperitoeally with curcumin for 8 weeks at doses of 10, 20 or 40 mg/kg. Masson’s staining was performed to evaluate the extent of PF. Peritoneal Equilibration Test (PET) was conducted to assess ultrafiltration volume (UFV) and mass transfer of glucose (MTG), quantitative RT-PCR, and immunohistochemistry or western blotting were performed to measure the expression levels of inflammation and fibrosis-associated factors. We also detected the TGF-β1 in peritoneal fluid by ELISA. Results Compared with the control group, the PD rats showed decreased UFV (2.54 ± 0.48 to 9.87 ± 0.78 mL, p < 0.05] and increased MTG (18.99 ± 0.86 to 10.85 ± 0.65 mmol/kg, p < 0.05) as well as obvious fibroproliferative response, with markedly increased peritoneal thickness (178.33 ± 4.42 to 25.26 ± 0.32um, p < 0.05) and higher expression of a-SMA, collagen I and TGF-β1. Treatment with curcumin significantly increased UFV, reduced MTG and peritoneal thickness of PD rats. The elevated TGF-β1 in peritoneal fluid of PD rats was significantly decreased by curcumin. It attenuated the increase in protein and mRNA of TGF-β1, α-SMA and collagen I in peritoneum of PD rats. The mRNA expressions of TAK1, JNK and p38, as well as the protein expressions of p-TAK1, p-JNK and p-p38 in peritoneum of PD rats were reduced by curcumin. Conclusions Present results demonstrate that curcumin showed a protective effect on PD-related PF and suggest an implication of TAK1, p38 and JNK pathway in mediating the benefical effects of curcumin.
Collapse
|
23
|
Meng X, Wang H, Song X, Clifton AC, Xiao J. The potential role of senescence in limiting fibrosis caused by aging. J Cell Physiol 2019; 235:4046-4059. [PMID: 31637710 DOI: 10.1002/jcp.29313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Fibrosis-related diseases carry with them a high mortality rate and their morbidity increases with age. Recent findings indicate that induced senescence in myofibroblasts can limit or reduce myocardial fibrosis, cirrhosis, and idiopathic pulmonary fibrosis, while also accelerating wound healing. However, more senescent cells are accumulated as organisms age, which exacerbates aging-related diseases. These two contradictory theories inspired us to summarize papers on the restrictive effect of senescence on fibrosis and to input the key findings into simple software that we developed to assist with data organization and presentation. In this review, we illustrate that senescent cells secrete more matrix metalloproteinases to solubilize excess collagen, while chemokines and cytokines activate immune cells to eliminate senescent cells. In the elderly, it is perhaps more effective to limit fibrosis by inducing myofibroblast senescence and then removing senescent cells that are not cleared via normal mechanisms by antisenescence therapies.
Collapse
Affiliation(s)
- Xinghua Meng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agriculture University, Harbin, P. R. China
| | - Haoran Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agriculture University, Harbin, P. R. China
| | - Xiaopeng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agriculture University, Harbin, P. R. China
| | - Alancia C Clifton
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agriculture University, Harbin, P. R. China
| | - Jianhua Xiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agriculture University, Harbin, P. R. China
| |
Collapse
|
24
|
Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:303-313. [PMID: 31612257 DOI: 10.1007/s00210-019-01734-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Renal fibrosis is a progressive process resulting from a sustained injury that may ultimately cause renal failure. Cisplatin is an antitumor drug that induces renal injury and nephrotoxicity and is widely employed as a model for acute and chronic renal injury. Several signaling pathways are implicated in fibrogenic cell activation among which is Hedgehog (Hh) signaling. We here investigated the effects of arsenic trioxide (Ars) and curcumin in ameliorating cisplatin-induced kidney fibrosis via regulating Hh signaling. Cisplatin (4.5 mg/kg) was administered in Sprague-Dawley rats for two consecutive days and renal fibrosis was induced after 21 days. Once renal fibrosis was confirmed, Ars (3.5 mg/kg/day, orally) and curcumin (200 mg/kg/day, orally) were administered daily for another 21 days. Ars and curcumin corrected kidney function markers as creatinine clearance and urea nitrogen. Both agents ameliorated fibrosis as shown by lowered TGF-β1 mRNA levels, α-SMA protein levels, and hydroxylproline content. Cisplatin-activated Hh signaling which was blocked by both Ars and curcumin as demonstrated by decreased mRNA levels of Shh, Smo, and Ptch and suppressed renal Gli1 and Gli2 protein levels. Our results indicate new therapeutic roles for Ars and curcumin and suggest that blocking Hh signaling may be a promising approach for alleviating renal fibrosis. Symbols indicate α-SMA, alpha-smooth muscle actin; TGF-β, transforming growth factor-beta; Ptch, patched; Smo, smoothened; Shh, sonic hedgehog; Ihh, Indian hedgehog; Dhh, desert hedgehog; and SUFU, suppressor of fused.
Collapse
|
25
|
Zhuang Z, Yu D, Chen Z, Liu D, Yuan G, Yirong N, Sun L, Liu Y, He R, Wang K. Curcumin Inhibits Joint Contracture through PTEN Demethylation and Targeting PI3K/Akt/mTOR Pathway in Myofibroblasts from Human Joint Capsule. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4301238. [PMID: 31511778 PMCID: PMC6712967 DOI: 10.1155/2019/4301238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Joint contracture is increasingly regarded as a clinical problem that leads to irreversible dysfunction of the joint. It is a pathophysiological process following joint injury, which is marked by the activation of myofibroblasts. There is currently no effective treatment for the prevention of joint contracture. Curcumin is a polyphenol pigment extracted from turmeric, which possesses anti-inflammatory, antioxidative, and antitumor properties. In the present study, we demonstrated that curcumin exerts a protective effect against joint contracture via the inhibition of myofibroblast proliferation and migration in a time- and concentration-dependent manner. Moreover, we indicated that phosphatase and tension homolog (PTEN) was downregulated in myofibroblasts in vitro and in the contracture capsule tissues of patients in vivo. Additionally, western blot analysis revealed a negative correlation between the expression levels of PTEN and the fibrosis marker protein alpha smooth muscle cell actin. Methylation-specific PCR results suggested that curcumin was able to demethylate PTEN in a similar manner to the demethylation agent 5-azacytidine, increasing PTEN expression and further inhibiting phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling. In conclusion, our data illustrate part of the mechanism of curcumin inhibition in joint contracture. These results support the hypothesis that curcumin may potentially be used as a novel candidate for the treatment of joint contracture.
Collapse
Affiliation(s)
- Ze Zhuang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Dongjie Yu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Dezhao Liu
- Departments of Anesthesiolgy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Guohui Yuan
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ni Yirong
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Linlin Sun
- Departments of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Yuangao Liu
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Ronghan He
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Kun Wang
- Departments of Joint Surgery and Orthopedic Trauma, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
26
|
Zhao JL, Guo MZ, Zhu JJ, Zhang T, Min DY. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cell Mol Biol Lett 2019; 24:32. [PMID: 31143210 PMCID: PMC6532179 DOI: 10.1186/s11658-019-0157-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/09/2019] [Indexed: 11/11/2022] Open
Abstract
Objective Peritoneal fibrosis remains a serious complication of long-term peritoneal dialysis (PD) leading to peritoneal membrane ultrafiltration failure. Epithelial–mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Curcumin has been previously shown to inhibit EMT of renal tubular epithelial cells and prevent renal fibrosis. There are only limited reports on inhibition of PMCs-EMT by curcumin. This study aimed to investigate the effect of curcumin on the regulation of EMT and related pathway in PMCs treated with glucose-based PD. Methods EMT of human peritoneal mesothelial cells (HMrSV5) was induced with glucose-based peritoneal dialysis solutions (PDS). Cells were divided into a control group, PDS group, and PDS group receiving varied concentrations of curcumin. Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability, and a transwell migration assay was used to verify the capacity of curcumin to inhibit EMT in HMrSV5 cells. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the EMT. Results High glucose PDS decreased cell viability and increased migratory capacity. Curcumin reversed growth inhibition and migration capability of human peritoneal mesothelial cells (HPMCs). In HMrSV5 cells, high glucose PDS also decreased expression of epithelial markers, and increased expression of mesenchymal markers, a characteristic of EMT. Real-time RT-PCR and western blot revealed that, compared to the 4.25% Dianeal treated cells, curcumin treatment resulted in increased expression of E-cadherin (epithelial marker), and decreased expression of α-SMA (mesenchymal markers) (P < 0.05). Furthermore, curcumin reduced mRNA expression of two extracellular matrix protein, collagen I and fibronectin. Curcumin also reduced TGF-β1 mRNA and supernatant TGF-β1 protein content in the PDS-treated HMrSV5 cells (P < 0.05). Furthermore, it significantly reduced protein expression of p-TAK1, p-JNK and p-p38 in PDS-treated HMrSV5 cells. Conclusions Our results demonstrate that curcumin showed an obvious protective effect on PDS-induced EMT of HMrSV5 cells and suggest implication of the TAK1, p38 and JNK pathway in mediating the effects of curcumin in EMT of MCs.
Collapse
Affiliation(s)
- Jun-Li Zhao
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Mei-Zi Guo
- 2Department of Geriatrics, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Jun-Jun Zhu
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Ting Zhang
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| | - Dan-Yan Min
- 1Department of Nephrology, Shanghai University of Medicine & Health Sciences affiliated Zhoupu Hospital, Pudong New District, Shanghai, 201318 China
| |
Collapse
|
27
|
Bahrami A, Majeed M, Sahebkar A. Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol (Dordr) 2019; 42:405-421. [PMID: 30980365 DOI: 10.1007/s13402-019-00442-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is involved in tumor progression, invasion, migration and metastasis. EMT is a process by which polarized epithelial cells acquire motile mesothelial phenotypic features. This process is initiated by disassembly of cell-cell contacts through the loss of epithelial markers and replacement of these markers by mesenchymal markers. Reconstruction of the cytoskeleton and degradation of the tumor basement membrane ensures the spread of invasive malignant tumor cells to distant locations. Accumulating evidence indicates that curcumin, as a well-known phytochemical, can inhibit EMT/metastasis through various mechanisms and pathways in human tumors. CONCLUSIONS In this review, we summarize the mechanisms by which curcumin may affect EMT in cells under pathological conditions to understand its potential as a novel anti-tumor agent. Curcumin can exert chemo-preventive effects by inhibition and reversal of the EMT process through both TGF-β-dependent (e.g. in hepatoma and retinal pigment epithelial cancer) and -independent (e.g. in oral cancer, colorectal cancer, pancreatic cancer, hepatocellular carcinoma, breast cancer, melanoma, prostate cancer, bladder cancer, thyroid cancer and lung cancer) pathways. Curcumin can also mitigate chemoresistance through EMT suppression and promotion of the antiproliferative effects of conventional chemotherapeutics. Therefore, curcumin has the potential to be used as a novel adjunctive agent to prevent tumor metastasis, which may at least partly be attributed to its hampering of the EMT process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Amirhossein Sahebkar
- Department of Medical Biotechnology Research Center, School of Medicine, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Unilateral Ureteral Obstruction as a Model to Investigate Fibrosis-Attenuating Treatments. Biomolecules 2019; 9:biom9040141. [PMID: 30965656 PMCID: PMC6523883 DOI: 10.3390/biom9040141] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal fibrosis is the common pathway for most forms of progressive renal disease. The Unilateral Ureteral Obstruction (UUO) model is used to cause renal fibrosis, where the primary feature of UUO is tubular injury as a result of obstructed urine flow. Furthermore, experimental UUO in rodents is believed to mimic human chronic obstructive nephropathy in an accelerated manner. Renal fibrosis is the common pathway for most forms of progressive renal disease. Removing the obstruction may not be sufficient to reverse fibrosis, so an accompanying treatment may be of benefit. In this review, we have done a revision on treatments shown to ameliorate fibrosis in the context of the UUO experimental model. The treatments inhibit the production of fibrotic and inflammatory proteins such as Transforming Growth Factor β1 (TGF-β1), Tumor Necrosis Factor α (TNF-α), collagen and fibronectin, Heat Shock Protein 47 (HSP47), suppress the proliferation of fibroblasts, prevent epithelial-to-mesenchymal transition, reduce oxidative stress, inhibit the action of the Nuclear Factor κB (NF-κB), reduce the phosphorylation of mothers against decapentaplegic homolog (SMAD) family members 2 and 3 (Smad2/3) or Mitogen-Activated Protein Kinases (MAPKs), inhibit the activation of the renin-angiotensin system. Summaries of the UUO experimental methods and alterations observed in the UUO experiments are included.
Collapse
|
29
|
Ji J, Tao P, He L. Kangxianling decoction prevents renal fibrosis in rats with 5/6 nephrectomy and inhibits Ang II-induced ECM production in glomerular mesangial cells. J Pharmacol Sci 2019; 139:367-372. [PMID: 30929858 DOI: 10.1016/j.jphs.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis is a common pathological change in all stages of kidney disease. Kangxianling decoction was widely used in patients with chronic kidney disease, which could improve symptoms such as poor appetite, edema, and fatigue. However, its effect on renal fibrosis remains to be studied. In this study, we investigated its effects on renal fibrosis in a rat model of 5/6 Nephrectomy (5/6 N) in vivo and in angiotensin II (Ang II)-treated rat glomerular mesangial cells (HBZY-1) in vitro. Our data showed that 5/6 N induced renal fibrosis and combined with the activation of JNK signaling, the upregulation of transforming growth factor-β (TGF-β), collagen I (Col-I) and fibronectin (FN). The administration of kangxianling decoction inhibited the activation of JNK signaling and attenuated the deposition of extracellular matrix (ECM) proteins in damaged kidneys. In HBZY-1 cells, Ang II increased the protein expression of Col-I and FN. It also activates JNK signaling and TGF-β in a time-dependent manner. Treatment of the HBZY-1 cells with kangxianling decoction blocked Ang II-induced JNK activation and ECM overproduction. Our results indicated that Kangxianling Decoction could reduce renal fibrosis, accompanied by inhibiting the production of ECM proteins and JNK, along with downregulation of TGF-β, Ang II.
Collapse
Affiliation(s)
- Jing Ji
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China; Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200013, China
| | - Pengyu Tao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Liqun He
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China; Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200013, China.
| |
Collapse
|
30
|
Effect of Kangxianling Decoction on Expression of TGF- β1/Smads and Extracellular Matrix Deposition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5813549. [PMID: 30713574 PMCID: PMC6332943 DOI: 10.1155/2019/5813549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023]
Abstract
Kangxianling (KXL) decoction is a traditional Chinese herbal formulation which has been used to treat early and midterm chronic renal failure. Renal fibrosis is a common characteristic of progressive chronic kidney diseases (CKD). The formation of renal fibrosis is caused by kidney trauma, infection, and immune response. The pathophysiological mechanism of renal fibrosis was mainly due to increased collagen synthesis in the kidney, decreased degradation, and a large amount of extracellular matrix (ECM) deposition. The purpose of this study was intended to evaluate the effect of Kangxianling decoction on expression of TGF-β1/Smad signaling pathway in renal fibrosis rats. 50 specific pathogen-free Sprague Dawley (SPF SD) rats were randomly divided into five groups: control group, sham group, 5/6 nephrectomy model group, 5/6 nephrectomy model plus KXL decoction (21g /kg) group, and 5/6 nephrectomy model plus Losartan Potassium (LP) (33.3 g/kg) group. The rats were all sacrificed after two months and the left kidney tissue was sampled. HE staining was used to observe the renal pathological changes and the score of kidney damage was made. Masson staining was used to observe the degree of renal fibrosis. Immunohistochemical staining, western blot, and qRT-PCR were used to detect the expression levels of related molecules in TGF-β1/Smad signaling pathway. The results suggested that KXL could lighten renal histopathology damage, downregulate the expression of TGF-β1 (transforming growth factor-β1), Smad2/3, CTGF (connective tissue growth factor), Collagen I, and Collagen III, and upregulate the expression level of Smad7.
Collapse
|
31
|
Xia ZE, Xi JL, Shi L. 3,3'-Diindolylmethane ameliorates renal fibrosis through the inhibition of renal fibroblast activation in vivo and in vitro. Ren Fail 2018; 40:447-454. [PMID: 30101622 PMCID: PMC6095015 DOI: 10.1080/0886022x.2018.1490322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
3,3'-Diindolylmethane (DIM), a natural acid condensation extracted from cruciferous plants, exhibits anti-fibrotic effects in hepatic and cardiac fibrosis models. The effects of DIM on renal fibrosis, however, are unclear. This study aimed to explore the protective effects of DIM on renal fibrosis. Unilateral ureteral obstruction (UUO) and transforming growth factor (TGF)-β1-stimulated normal rat kidney (NRK)-49F fibroblast cell mouse models were established. The models were then treated with DIM for the assessment of its anti-fibrotic effects and mechanisms. Results of HE and Masson staining showed that DIM reduced kidney injury and production of interstitial collagens fibrosis. CTS also inhibited expression of fibronectin, collagen-1 but retain E-cadherin in the UUO model. Furthermore, DIM suppressed local fibroblast activation, as evidenced by the suppressed expression of the myofibroblast markers α-SMA and vimentin in vivo and in vitro. In addition, DIM significantly inhibited the TGF-β1-induced proliferation of NRK49F cells in a time- and dose-dependent manner. DIM decreased Smad2/3 phosphorylation but increased Smad7 expression. Results suggested that DIM inhibits TGF-β/Smad2/3 signaling to attenuate renal interstitial fibrosis via inhibiting local fibroblast activation. This mechanism is likely related to Smad7 induction.
Collapse
Affiliation(s)
- Zun-En Xia
- a Department of Clinical Laboratory , Renmin Hospital of Wuhan University , Wuhan , China
| | - Juan-Li Xi
- b Department of Gastroenterology , Wuhan Third Hospital , Wuhan , China
| | - Lei Shi
- c Department of Oncology , Renmin Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
32
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
33
|
Abstract
Renal fibrosis was a chronic and progressive process affecting kidneys in chronic kidney disease (CKD), regardless of cause. Although no effective targeted therapy yet existed to retard renal fibrosis, a number of important recent advances have highlighted the cellular and molecular mechanisms underlying the renal fibrosis. The advances including TGF-β/Smad pathway, oxidative stress and inflammation, hypoxia and gut microbiota-derived from uremic solutes were highlighted that could provide therapeutic targets. New therapeutic targets and strategies that are particularly promising for development of new treatments for patients with CKD were also highlighted.
Collapse
Affiliation(s)
- Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| |
Collapse
|
34
|
Han WQ, Xu L, Tang XF, Chen WD, Wu YJ, Gao PJ. Membrane rafts-redox signalling pathway contributes to renal fibrosis via modulation of the renal tubular epithelial-mesenchymal transition. J Physiol 2018; 596:3603-3616. [PMID: 29863758 DOI: 10.1113/jp275952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Membrane rafts (MRs)-redox signalling pathway is activated in response to transforming growth factor-β1 (TGF-β1) stimulation in renal tubular cells. This pathway contributes to TGF-1β-induced epithelial-mesenchymal transition (EMT) in renal tubular cells. The the MRs-redox signalling pathway is activated in renal tubular cells isolated from angiotensin II (AngII)-induced hypertensive rats. Inhibition of this pathway attenuated renal inflammation and fibrosis in AngII-induced hypertension. ABSTRACT The membrane rafts (MRs)-redox pathway is characterized by NADPH oxidase subunit clustering and activation through lysosome fusion, V-type proton ATPase subunit E2 (encoded by the Atp6v1e2 gene) translocation and sphingomyelin phosphodiesterase 1 (SMPD1, encoded by the SMPD1 gene) activation. In the present study, we hypothesized that the MRs-redox-derived reactive oxygen species (ROS) are involved in renal inflammation and fibrosis by promoting renal tubular epithelial-mesenchymal transition (EMT). Results show that transforming growth factor-β1 (TGF-β1) acutely induced MR formation and ROS production in NRK-52E cells, a rat renal tubular cell line. In addition, transfection of Atp6v1e2 small hairpin RNAs (shRNA) and SMPD1 shRNA attenuated TGF-β1-induced changes in EMT markers, including E-cadherin, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) in NRK-52E cells. Moreover, Erk1/2 activation may be a downstream regulator of the MRs-redox-derived ROS, because both shRNAs significantly inhibited TGF-β1-induced Erk1/2 phosphorylation. Further in vivo study shows that the renal tubular the MRs-redox signalling pathway was activated in angiotensin II (AngII)-induced hypertension, as indicated by the increased NADPH oxidase subunit Nox4 fraction in the MR domain, SMPD1 activation and increased ROS content in isolated renal tubular cells. Finally, renal transfection of Atp6v1e2 shRNA and SMPD1 shRNA significantly prevented renal fibrosis and inflammation, as indicated by the decrease of α-SMA, fibronectin, collagen I, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) in kidneys from AngII-infused rats. It was concluded that the the MRs-redox signalling pathway is involved in TGF-β1-induced renal tubular EMT and renal inflammation/fibrosis in AngII-induced hypertension.
Collapse
Affiliation(s)
- Wei-Qing Han
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Lian Xu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Feng Tang
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Wen-Dong Chen
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Yong-Jie Wu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Ping-Jin Gao
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| |
Collapse
|
35
|
Amelioratory Effects of Testosterone Propionate on Age-related Renal Fibrosis via Suppression of TGF-β1/Smad Signaling and Activation of Nrf2-ARE Signaling. Sci Rep 2018; 8:10726. [PMID: 30013094 PMCID: PMC6048025 DOI: 10.1038/s41598-018-29023-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Androgen plays a pivotal role in the progression of renal fibrosis. However, whether exogenous androgen treatment to aged male rats can improve the age-related renal fibrosis was not explored. In our study, the changes of morphological structure, renal fibrosis, ultrastructure and renal function, the expressions of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and its tissue inhibitors of metalloproteinases (TIMPs), the expressions of tumor growth factor β1 (TGF-β1)/Smad signaling and oxidative stress parameters as well as nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling were tested in kidney of aged male Wistar rats after subcutaneous testosterone propionate (TP, 2 mg/kg/d, 84-day) injection. Aged rats showed significantly renal histopathological changes, increased renal fibrosis, increased thickening of the glomerular basement membrane and the Bowman’s capsule basement membrane, declined renal functional, increased ECM, lower expressions of MMP-2 and MMP-9 and higher expressions of TIMP-1 and TIMP-2 in renal tissues and higher expressions of TGF-β1/Smad signaling, as well as lower expressions of Nrf2-ARE signaling compared to young rats. TP treatment significantly improved age-related above indexes. These results suggested that TP supplement may alleviate age-related renal fibrosis via suppression of TGF-β1/Smad signaling and activation of Nrf2-ARE signaling in aged rats.
Collapse
|
36
|
Establishing a Cell-Based High-Content Screening Assay for TCM Compounds with Anti-Renal Fibrosis Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7942614. [PMID: 30050593 PMCID: PMC6046160 DOI: 10.1155/2018/7942614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Renal fibrosis is thought to be the final common pathway leading to chronic kidney disease (CKD) and end-stage renal failure. Except for renal replacement therapy, no adequate treatment regimen is available; therefore studies on the treatment of renal fibrosis have attracted significant interest. In recent years, studies have shown that traditional Chinese medicine (TCM) may represent an attractive source to produce drugs with antifibrosis effects. The aim of this study was to establish a robust cell-based high-content screening (HCS) approach to identify TCM compounds with antifibrosis effects in NRK49F cells following TGF-β1 exposure. When designing the model, one of the most important steps involved the stability and reproducibility of this cell-based model. Therefore, we initially optimized the experimental parameters. Then, our HCS model was validated using SB525334, an inhibitor of the TGF-β1 receptor, and curcumin and emodin, two TCM compounds with well-documented anti-renal fibrosis activity. Subsequently, the proven reliable HCS model was used to screen a standard TCM compound library, which included 344 TCM molecules. Based on our HCS algorithm, a total of 16 compounds were identified to have prospective inhibitory activity. These compounds were further validated by verification experiments. Strikingly, eight compounds have been shown to inhibit renal fibrosis; six of them had rarely been described in the literature, namely, Ligustrazine, Glycyrrhizic acid, Astragaloside iv, Hydroxysafflor Yellow A, Crocin, and Gypenosides. To the best of our knowledge, this is the first study in which a HCS assay was performed to identify TCM compounds with anti-renal fibrosis effects. The HCS approach was successfully applied to screen active compounds and will be propitious to further anti-renal fibrosis drugs discovery research. Meanwhile, it may offer possibilities for identifying lead compounds for treating other diseases from registered Chinese herbal medicines.
Collapse
|
37
|
Hongtao C, Youling F, Fang H, Huihua P, Jiying Z, Jun Z. Curcumin alleviates ischemia reperfusion‐induced late kidney fibrosis through the APPL1/Akt signaling pathway. J Cell Physiol 2018; 233:8588-8596. [DOI: 10.1002/jcp.26536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Chen Hongtao
- Departmentof AnesthesiologyEighth People's Hospital of GuangzhouGuangzhouGuangdong ProvinceChina
| | - Fan Youling
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Huang Fang
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Peng Huihua
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Zhong Jiying
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| | - Zhou Jun
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| |
Collapse
|
38
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9162946. [PMID: 29849925 PMCID: PMC5932425 DOI: 10.1155/2018/9162946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Background Cadmium (Cd), a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p.) alone, Cd chloride (CdCl2) (2 mg/kg/day i.p.) alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p.) for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.
Collapse
|
40
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
41
|
Cao Q, Zhang J, Gao L, Zhang Y, Dai M, Bao M. Dickkopf‑3 upregulation mediates the cardioprotective effects of curcumin on chronic heart failure. Mol Med Rep 2018; 17:7249-7257. [PMID: 29568962 PMCID: PMC5928680 DOI: 10.3892/mmr.2018.8783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/28/2018] [Indexed: 01/20/2023] Open
Abstract
Curcumin, isolated from rhizome of turmeric, has been widely studied as a potential therapeutic drug for cancer. However, protective effects of curcumin on chronic heart failure (CHF) have not been fully studied. In the present study, the effects of curcumin on CHF and the underlying mechanisms were investigated. A total of 40 rabbits were randomized into 4 groups: Control rabbits fed with placebo (Con) or curcumin (Con‑cur), CHF rabbits fed with placebo (CHF) or curcumin (CHF‑cur). CHF was induced by volume and pressure overload. The effects of curcumin on cardiac function and left ventricular (LV) structure were assessed by echocardiography and histology. The effects of curcumin on CHF molecular biomarkers were detected by dihydroethidium and immunohistochemical staining. The effects of curcumin on Dickkopf‑related protein 3 (DKK‑3), p38 mitogen‑activated protein kinase (p38), c‑Jun N‑terminal kinase (JNK) and apoptosis signal‑regulating kinase 1 (ASK1) were assessed by immunohistochemical staining and western blot analysis. Cardiac dysfunction and LV remodeling were successfully produced by ten weeks volume overload and eight weeks pressure overload in the CHF group. Compared with the Con group, the CHF group demonstrated higher levels of CHF molecular biomarkers, a lower level of DKK‑3 expression and alterations of p38, JNK and ASK1 protein expression. Curcumin alleviated all those abnormalities markedly in the CHF‑cur group. In summary, curcumin may exert cardioprotective effects by up‑regulating DKK‑3, which in turn may inhibit p38 and JNK signaling pathways in an ASK1‑dependent way. The present study demonstrated that Dickkopf‑3 upregulation mediates the cardioprotective effects of curcumin on chronic heart failure for the first time.
Collapse
Affiliation(s)
- Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Park SA, Surh YJ. Modulation of tumor microenvironment by chemopreventive natural products. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
- Cancer Research Institute; Seoul National University; Seoul South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy; Seoul National University; Seoul South Korea
| |
Collapse
|
43
|
Qiu Z, Zhang S, Li A, Yu J, Li N, Huang F, Liu B. The role of curcumin in disruption of HIF-1α accumulation to alleviate adipose fibrosis via AMPK-mediated mTOR pathway in high-fat diet fed mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Recent Advances of Curcumin in the Prevention and Treatment of Renal Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2418671. [PMID: 28546962 PMCID: PMC5435901 DOI: 10.1155/2017/2418671] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/01/2017] [Indexed: 01/28/2023]
Abstract
Curcumin, a polyphenol derived from the turmeric, has received attention as a potential treatment for renal fibrosis primarily because it is a relatively safe and inexpensive compound that contributes to kidney health. Here, we review the literatures on the applications of curcumin in resolving renal fibrosis in animal models and summarize the mechanisms of curcumin and its analogs (C66 and (1E,4E)-1,5-bis(2-bromophenyl) penta-1,4-dien-3-one(B06)) in preventing inflammatory molecules release and reducing the deposition of extracellular matrix at the priming and activation stage of renal fibrosis in animal models by consulting PubMed and Cnki databases over the past 15 years. Curcumin exerts antifibrotic effect through reducing inflammation related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and cav-1) and inducing the expression of anti-inflammation factors (HO-1, M6PRBP1, and NEDD4) as well as targeting TGF-β/Smads, MAPK/ERK, and PPAR-γ pathways in animal models. As a food derived compound, curcumin is becoming a promising drug candidate for improving renal health.
Collapse
|
45
|
β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. J Pharmacol Sci 2017; 133:203-213. [DOI: 10.1016/j.jphs.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023] Open
|
46
|
Yu W, Wang Z, Li Y, Liu L, Liu J, Ding F, Zhang X, Cheng Z, Chen P. Effects of autophagy and endocytosis on the activity of matrix metalloproteinase‑2 in human renal proximal tubular cells under hypoxia. Mol Med Rep 2017; 15:3225-3230. [PMID: 28339082 DOI: 10.3892/mmr.2017.6358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/30/2017] [Indexed: 11/05/2022] Open
Abstract
Tubulointerstitial fibrosis is characterized by tubular atrophy with basement membrane thickening and accumulation of interstitial extracellular matrix (ECM). A decrease in the activity of matrix metalloproteinase‑2 (MMP‑2) may promote this process. Although proximal tubular cells are sensitive to oxygen deprivation, whether cellular autophagy or endocytosis induced by hypoxia can alter the activity of MMP‑2 remains to be elucidated. The aim of the present study was to investigate whether autophagy and endocytosis induced by hypoxia can have an effect on the activity of MMP‑2 in HK‑2 cells. The investigations involved exposing the HK‑2 cell line to an autophagy inhibitor, 3‑MA, or an endocytotic inhibitor, filipin. The mRNA expression of MMP‑2 was elevated in the hypoxic milieu. Furthermore, it was found that filipin increased the activity of MMP‑2 under hypoxia. These results suggested that autophagy and endocytosis were potential mediators for the altered expression of MMP‑2, and endocytosis was a potential target for regulating the activity of MMP‑2. These data suggested that hypoxia may be an important pro‑fibrogenic stimulus, which acts in part via endocytosis.
Collapse
Affiliation(s)
- Wenmin Yu
- The School of Basic Medical Science, Jiujiang University/Jiujiang Key Laboratory of Translational Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiping Li
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Liu
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Liu
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fenggan Ding
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoyi Zhang
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhengyuan Cheng
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
47
|
Cadnapaphornchai MA. Clinical Trials in Pediatric Autosomal Dominant Polycystic Kidney Disease. Front Pediatr 2017; 5:53. [PMID: 28386535 PMCID: PMC5362630 DOI: 10.3389/fped.2017.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is associated with concerning long-term implications for kidney function and cardiovascular health. Early intervention is needed in order to mitigate these long-term complications. Herein, we review important findings from recent clinical trials in ADPKD and their relevance to affected children and young adults and consider future directions for intervention. Recent clinical trials support aggressive control of blood pressure with blockade of the renin-angiotensin-aldosterone system as well as potential benefit of pravastatin therapy in children and young adults with ADPKD. There are several other candidate therapies, some of which have shown benefit in adult ADPKD, which require further investigation in affected children.
Collapse
|
48
|
Strojny B, Grodzik M, Sawosz E, Winnicka A, Kurantowicz N, Jaworski S, Kutwin M, Urbańska K, Hotowy A, Wierzbicki M, Chwalibog A. Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model. PLoS One 2016; 11:e0164637. [PMID: 27736939 PMCID: PMC5063465 DOI: 10.1371/journal.pone.0164637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022] Open
Abstract
Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Anna Winnicka
- Division of Histology and Embryology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02–786, Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Kaja Urbańska
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02–786, Warsaw, Poland
| | - Anna Hotowy
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 8 Ciszewskiego Str., 02–786, Warsaw, Poland
| | - André Chwalibog
- Division of Nano-nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
49
|
Yu W, Li Y, Wang Z, Liu L, Liu J, Ding F, Zhang X, Cheng Z, Chen P, Dou J. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing. Int J Mol Med 2016; 38:894-902. [PMID: 27432315 DOI: 10.3892/ijmm.2016.2677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/07/2016] [Indexed: 11/05/2022] Open
Abstract
Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma.
Collapse
Affiliation(s)
- Wenmin Yu
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiping Li
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Wang
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Liu
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Liu
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengan Ding
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoyi Zhang
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhengyuan Cheng
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Pingsheng Chen
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Dou
- Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
50
|
Xia J, He LQ, Su X. Interventional mechanisms of herbs or herbal extracts on renal interstitial fibrosis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2016; 14:165-73. [DOI: 10.1016/s2095-4964(16)60256-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|