1
|
Jori C, Ansari MM, Ahmad A, Ali N, Raza SS, Khan R. Biomaterial-based combinatorial approach of aescin-comprised zein-coated gelatin nanoparticles alleviates synovial inflammation in experimental inflammatory arthritis. NANOSCALE 2024; 16:7965-7975. [PMID: 38567436 DOI: 10.1039/d3nr06476j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1β and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.
Collapse
Affiliation(s)
- Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| | - Md Meraj Ansari
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Dos-Santos RC, Silva-Almeida CD, Marinho BG, Conceição RRD, Côrtes WDS, Ahmed RG, Laureano-Melo R. Perinatal N(G)-Nitro-L-arginine methyl ester administration decreases anxiety- and depression-like behaviors in adult mice. EINSTEIN-SAO PAULO 2023; 21:eAO0302. [PMID: 38055553 DOI: 10.31744/einstein_journal/2023ao0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/12/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE We hypothesized that perinatal manipulations of the nitrergic system would affect adult animal behaviors. METHODS We tested this hypothesis by perinatally administering N(G)-Nitro-L-arginine methyl ester (L-NAME), a non-specific antagonist of nitric oxide synthase for 15 days and assessed anxiety- and depression-like behaviors in adult mice. At 70 days of age, the mice were subjected to a battery of tests consisting of the open-field, light/dark box, forced swim, and tail-flick tests. The tests were performed at two-day intervals, and the order of the tests within the battery was determined according to the progressive invasiveness degree. RESULTS L-NAME-treated animals exhibited decreased anxiety-like behavior in the light/dark box and open field tests, with no change in locomotor activity. Additionally, they demonstrated decreased depression-like behavior in the forced swim test and no change in pain perception in the tail-flick test. CONCLUSION The nitrergic system is possibly involved in neural circuitry development that regulates behaviors since blocking perinatal nitric oxide production decreases anxiety- and depression-like behaviors in adult mice.
Collapse
Affiliation(s)
- Raoni Conceição Dos-Santos
- Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Bruno Guimarães Marinho
- Department of Physiological Sciences, Universidade Federal Rural Rio de Janeiro, Seropédica, RJ, Brazil
| | - Rodrigo Rodrigues da Conceição
- Department of Physiological Sciences, Universidade Federal Rural Rio de Janeiro, Seropédica, RJ, Brazil
- Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ragab Gaber Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Roberto Laureano-Melo
- Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Behavioral Physiopharmacology Laboratory, Universidade Barra Mansa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Morita M, Watanabe S, Nomura N, Takano-Matsuzaki K, Oyama M, Iwai T, Tanabe M. Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia. J Neurochem 2023; 164:658-670. [PMID: 36528843 DOI: 10.1111/jnc.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.
Collapse
Affiliation(s)
- Motoki Morita
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Natsumi Nomura
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kanako Takano-Matsuzaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
4
|
Gao J, Li C, Wang X, Sun X, Zhang R, chen C, Yu M, Liu Y, Zhu Y, Chen J. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS. Biomed Pharmacother 2022; 153:113532. [DOI: 10.1016/j.biopha.2022.113532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
|
5
|
Xie D, He F, Wang X, Wang X, Jin Q, Jin J. Diverse Krill Lipid Fractions Differentially Reduce LPS-Induced Inflammatory Markers in RAW264.7 Macrophages In Vitro. Foods 2021; 10:foods10112887. [PMID: 34829168 PMCID: PMC8617617 DOI: 10.3390/foods10112887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023] Open
Abstract
Antarctic krill oil is an emerging marine lipid and expected to be a potential functional food due to its diverse nutrients, such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), phospholipids, astaxanthin and tocopherols. Although krill oil has been previously proved to have anti-inflammatory activity, there is little information about the relationship between its chemical compositions and anti-inflammatory activity. In this study, the RAW264.7 macrophages model was used to elucidate and compare the anti-inflammatory potential of different krill lipid fractions: KLF-A, KLF-H and KLF-E, which have increasing phospholipids, EPA and DHA contents but decreasing astaxanthin and tocopherols levels. Results showed that all the krill lipid fractions alleviated the inflammatory reaction by inhibition of production of nitric oxide (NO), release of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 and gene expression of proinflammatory mediators including TNF-α, IL-1β, IL-6, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). In addition, KLF-E with the highest phospholipids, EPA and DHA contents showed the strongest inhibition effect on the LPS-induced proinflammatory mediator release and their gene expressions. The results would be helpful to provide powerful insights into the underlying anti-inflammatory mechanism of krill lipid and guiding the production of krill oil products with tailor-made anti-inflammatory activity.
Collapse
Affiliation(s)
- Dan Xie
- College of Biology and Food Engineering, Anhui Polytechnic University, Beijing Zhong Road, Wuhu 241000, China; (D.X.); (F.H.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (X.W.); (X.W.); (Q.J.)
| | - Fangyuan He
- College of Biology and Food Engineering, Anhui Polytechnic University, Beijing Zhong Road, Wuhu 241000, China; (D.X.); (F.H.)
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (X.W.); (X.W.); (Q.J.)
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (X.W.); (X.W.); (Q.J.)
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (X.W.); (X.W.); (Q.J.)
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (X.W.); (X.W.); (Q.J.)
- Correspondence: ; Tel.: +86-0510-85876799
| |
Collapse
|
6
|
Nitric oxide resets kisspeptin-excited GnRH neurons via PIP2 replenishment. Proc Natl Acad Sci U S A 2021; 118:2012339118. [PMID: 33443156 DOI: 10.1073/pnas.2012339118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fertility relies upon pulsatile release of gonadotropin-releasing hormone (GnRH) that drives pulsatile luteinizing hormone secretion. Kisspeptin (KP) neurons in the arcuate nucleus are at the center of the GnRH pulse generation and the steroid feedback control of GnRH secretion. However, KP evokes a long-lasting response in GnRH neurons that is hard to reconcile with periodic GnRH activity required to drive GnRH pulses. Using calcium imaging, we show that 1) the tetrodotoxin-insensitive calcium response evoked by KP relies upon the ongoing activity of canonical transient receptor potential channels maintaining voltage-gated calcium channels in an activated state, 2) the duration of the calcium response is determined by the rate of resynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), and 3) nitric oxide terminates the calcium response by facilitating the resynthesis of PIP2 via the canonical pathway guanylyl cyclase/3',5'-cyclic guanosine monophosphate/protein kinase G. In addition, our data indicate that exposure to nitric oxide after KP facilitates the calcium response to a subsequent KP application. This effect was replicated using electrophysiology on GnRH neurons in acute brain slices. The interplay between KP and nitric oxide signaling provides a mechanism for modulation of the refractory period of GnRH neurons after KP exposure and places nitric oxide as an important component for tonic GnRH neuronal pulses.
Collapse
|
7
|
Gomes FIF, Cunha FQ, Cunha TM. Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 2020; 176:113862. [PMID: 32081790 DOI: 10.1016/j.bcp.2020.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Pain is a classical sign of inflammation, and sensitization of primary sensory neurons (PSN) is the most important mediating mechanism. This mechanism involves direct action of inflammatory mediators such as prostaglandins and sympathetic amines. Pharmacologic control of inflammatory pain is based on two principal strategies: (i) non-steroidal anti-inflammatory drugs targeting inhibition of prostaglandin production by cyclooxygenases and preventing nociceptor sensitization in humans and animals; (ii) opioids and dipyrone that directly block nociceptor sensitization via activation of the NO signaling pathway. This review summarizes basic concepts of inflammatory pain that are necessary to understand the mechanisms of peripheral NO signaling that promote peripheral analgesia; we also discuss therapeutic perspectives based on the modulation of the NO pathway.
Collapse
Affiliation(s)
- Francisco Isaac F Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
8
|
Sabadashka M, Nagalievska M, Sybirna N. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 2020; 45:481-497. [PMID: 31908104 DOI: 10.1002/cbin.11301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/04/2020] [Indexed: 12/21/2022]
Abstract
This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.
Collapse
Affiliation(s)
- Mariya Sabadashka
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Mariia Nagalievska
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - Nataliia Sybirna
- Department of Biochemistry, Faculty of Biology, Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
9
|
Ansari MM, Ahmad A, Mishra RK, Raza SS, Khan R. Zinc Gluconate-Loaded Chitosan Nanoparticles Reduce Severity of Collagen-Induced Arthritis in Wistar Rats. ACS Biomater Sci Eng 2019; 5:3380-3397. [PMID: 33405580 DOI: 10.1021/acsbiomaterials.9b00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is the most prevalent autoimmune disease affecting about 1% world population. Zinc (Zn) is necessary for the maintenance of bone homeostasis and the level of Zn was reported to be decreased in RA patients and collagen-induced arthritic rats. Effective delivery of Zn has been reported using zinc gluconate but oral absorption of Zn from zinc gluconate (ZG) is very low in humans. Zn supplementation reduces disease severity in patients suffering from chronic, refractory RA and exerts mild and transient side effects. The aim of this study was to synthesize and characterize zinc gluconate-loaded chitosan nanoparticles (ZG-Chit NPs) and to evaluate and compare therapeutic efficacy of ZG-Chit NPs and zinc gluconate against collagen-induced RA in Wistar rats. The nanoparticles were formulated by ionic gelation method and the hydrodynamic diameter was 106.5 ± 79.55 nm as measured using DLS. The particle size, shape, and surface morphology was further confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. These nanoparticles showed good cytocompatibility against foreskin fibroblasts (BJ) and L929 cells. Arthritic rats were treated with ZG (20 mg/kg body weight, intraperitoneally) and equivalent doses of ZG-Chit NPs. The treatment of both ZG and ZG-Chit NPs reduced the severity of arthritis as evidenced by reduced joint swelling, erythema, and edema but ZG-Chit NPs exhibited superior efficacy. Furthermore, it was found that ZG and ZG-Chit NPs attenuate biomarkers of inflammation (C-reactive protein, myeloperoxidase, nitric oxide, TNF-α, and IL-1β) and oxidative stress (articular elastase, lipid peroxidation, catalase, glutathione, and superoxide dismutase). The results of the histopathology further confirmed that ZG-Chit NPs markedly suppressed infiltration of inflammatory cells as compared to ZG at the ankle joint tissue. Immunohistochemical analysis also revealed that treatment with ZG-Chit NPs resulted in reduced pro-inflammatory marker (TNF-α, IL-6, and iNOS) expression and enhanced SOD1 expression. Overall, this study suggests that ZG and ZG-Chit NPs suppressed the severity of arthritis plausibly mediated by attenuation of inflammation and oxidative stress and more importantly ZG-Chit NPs exhibited superior efficacy as compared to ZG.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
10
|
Ali Khan MS, Misbah, Ahmed N, Arifuddin M, Rehman A, Ling MP. Indole alkaloids and anti-nociceptive mechanisms of Tabernaemontana divaricata (L.) R. Br. flower methanolic extract. Food Chem Toxicol 2018; 118:953-962. [DOI: 10.1016/j.fct.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/26/2022]
|
11
|
Olabiyi AA, Carvalho FB, Bottari NB, Morsch VM, Morel AF, Oboh G, Schetinger MR. Tiger nut and walnut extracts modulate extracellular metabolism of ATP and adenosine through the NOS/cGMP/PKG signalling pathway in kidney slices. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:140-149. [PMID: 29747747 DOI: 10.1016/j.phymed.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/19/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tiger nut (Cyperus esculentus L.) and walnut (Tetracarpidium conophorum Müll. Arg.) have been reportedly used in the treatment of inflammatory diseases such as atherosclerosis, prevent heart attack and improve blood circulation, reduce serum cholesterol level as well as inhibit oxidation reactions. PURPOSE This study investigated the effect of tiger nut and walnut hydro-alcoholic extracts on extracellular metabolism of ATP through the NOS/cGMP/PKG signaling pathway induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in kidney slices. METHODS The plants were extracted for 24 h in 10 ml of 70% ethanol and 30% distilled water per gram milled material on a mechanical shaker and filtered using Whatman filter paper. The effect of the extracts on ecto-nucleotidases (NTPDase and 5' nucleotidase) and adenosine deaminase activities, nitrites and nitrates levels (NO, markers of NO production) as well as lipid and protein oxidation reactions in kidney slices were evaluated. Also, the phenolic components of the nut samples were determined using High Performance Liquid Chromatography (HPLC). RESULTS The results revealed a protective effect of tiger nut and walnut on co-incubation with L-NAME of the enzyme activities, increased NO significantly (P < 0.05) when compared to the vehicle. L-NAME also increased the thiobabituric reactive substances but co-incubation with the extracts caused a significant reduction while protein oxidation across groups showed no significant difference when compared to the vehicle group. HPLC finger printing revealed the presence of quercetin and kaempferol as the most abundant phenolic compounds in tiger nut and walnut respectively. CONCLUSION Tiger nut and walnut extracts showed a protective effect on L-NAME induced kidney slices by reducing the activities of NTPDase (ATP as substrate) and adenosine deaminase, increased NO levels as well as prevent oxidative damage. The effect observed may be attributed to the phenolic compounds present in both nuts as depicted by HPLC finger printing.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Department of Medical Biochemistry, Afe Babalola University Ado-Ekiti, P.M.B. 5454, Nigeria; Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria/RS 97105-900, Brazil.
| | - Fabiano B Carvalho
- Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Nathieli B Bottari
- Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Vera M Morsch
- Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria/RS 97105-900, Brazil
| | - Ademir F Morel
- Department of Chemistry, Center of Natural and Exacts Sciences, Federal University of Santa Maria, RS 97105-900, Brazil
| | - Ganiyu Oboh
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria.
| | - Maria Rosa Schetinger
- Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria/RS 97105-900, Brazil.
| |
Collapse
|
12
|
Mónica FZ, Antunes E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol 2017; 15:42-54. [DOI: 10.1038/nrurol.2017.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Schmidtko A. Nitric oxide-mediated pain processing in the spinal cord. Handb Exp Pharmacol 2015; 227:103-17. [PMID: 25846616 DOI: 10.1007/978-3-662-46450-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.
Collapse
Affiliation(s)
- Achim Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, ZBAF, Stockumer Str. 10, 58453, Witten, Germany,
| |
Collapse
|
14
|
Teixeira TG, Tibana RA, Nascimento DDC, de Sousa NMF, de Souza VC, Vieira DCL, Nóbrega ODT, de Almeida JA, Navalta J, Prestes J. Endothelial nitric oxide synthase Glu298Asp gene polymorphism influences body composition and biochemical parameters but not the nitric oxide response to eccentric resistance exercise in elderly obese women. Clin Physiol Funct Imaging 2015; 36:482-489. [PMID: 26046684 DOI: 10.1111/cpf.12255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/24/2015] [Indexed: 12/24/2022]
Abstract
Both endothelial nitric oxide synthase (eNOS) gene polymorphism and nitric oxide (NO) are involved in important cardiovascular, muscular and inflammatory physiological mechanisms during ageing and response to exercise. The aim of this study was to investigate the NO kinetic response following an acute eccentric resistance exercise (ERE) session and the possible effect of the Glu298Asp eNOS gene polymorphism in elderly obese women. Eighty-seven women (age 69·4 ± 6·1 years, body weight 74·9 ± 12·7 kg, height 151·9 ± 6·0 cm and BMI 32·5 ± 5·7 kg m-2 ) completed seven sets of ten eccentric repetitions at 110% of the ten repetitions maximum (10RM). NO concentrations remained elevated up to 48 h following the acute ERE session as compared with baseline, for GG and GT/TT groups (P<0·05), with no differences between genotypes. The GG genotype group had higher body weight, prevalence of obesity (BMI classification - 81% versus 56%), BMI and higher relative muscle strength, while they had significantly lower triglycerides, VLDL and urea concentrations as compared with TT/TG group. In conclusion, NO remains elevated for up to 48 h after an acute ERE session, without genotype interaction. The TT/TG genotype had a negative impact on triglycerides, VLDL and urea concentrations. Thus, T carriers should increase their attention to cardiovascular risk factor and metabolic disorders.
Collapse
Affiliation(s)
- Tatiane Gomes Teixeira
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil
| | - Ramires Alsamir Tibana
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil
| | | | | | - Vinicius Carolino de Souza
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil.,University of Brasilia, Brasilia, Brazil
| | | | | | | | - James Navalta
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jonato Prestes
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil.
| |
Collapse
|
15
|
Szuba A, Kasprowicz-Maluśki A, Wojtaszek P. Nitration of plant apoplastic proteins from cell suspension cultures. J Proteomics 2015; 120:158-68. [PMID: 25805245 DOI: 10.1016/j.jprot.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
Nitric oxide causes numerous protein modifications including nitration of tyrosine residues. This modification, though one of the greatest biological importance, is poorly recognized in plants and is usually associated with stress conditions. In this study we analyzed nitrotyrosines from suspension cultures of Arabidopsis thaliana and Nicotiana tabacum, treated with NO modulators and exposed to osmotic stress, as well as of BY2 cells long-term adapted to osmotic stress conditions. Using confocal microscopy, we showed that the cell wall area is one of the compartments most enriched in nitrotyrosines within a plant cell. Subsequently, we analyzed nitration of ionically-bound cell-wall proteins and identified selected proteins with MALDI-TOF spectrometry. Proteomic analysis indicated that there was no significant increase in the amount of nitrated proteins under the influence of NO modulators, among them 3-morpholinosydnonimine (SIN-1), considered a donor of nitrating agent, peroxynitrite. Moreover, osmotic stress conditions did not increase the level of nitration in cell wall proteins isolated from suspension cells, and in cultures long-term adapted to stress conditions; that level was even reduced in comparison with control samples. Among identified nitrotyrosine-containing proteins dominated the ones associated with carbon circulation as well as the numerous proteins responding to stress conditions, mainly peroxidases. BIOLOGICAL SIGNIFICANCE High concentrations of nitric oxide found in the cell wall and the ability to produce large amounts of ROS make the apoplast a site highly enriched in nitrotyrosines, as presented in this paper. Analysis of ionically bound fraction of the cell wall proteins indicating generally unchanged amounts of nitrotyrosines under influence of NO modulators and osmotic stress, is noticeably different from literature data concerning, however, the total plant proteins analysis. This observation is supplemented by further nitroproteome analysis, for cells long-term adapted to stressful conditions, and results showing that such conditions did not always cause an increase in nitrotyrosine content. These findings may be interpreted as characteristic features of apoplastic protein nitration.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik Poland.
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| | - Przemysław Wojtaszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-613 Poznań, Poland
| |
Collapse
|
16
|
Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 2013; 62:89-95. [PMID: 23665095 DOI: 10.1016/j.jacc.2013.03.070] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) has been suggested to be a pathophysiological modulator of cell proliferation, cell cycle arrest, and apoptosis. In this context, NO can exert opposite effects under diverse conditions. Indeed, several studies have indicated that low relative concentrations of NO seem to favor cell proliferation and antiapoptotic responses and higher levels of NO favor pathways inducing cell cycle arrest, mitochondria respiration, senescence, or apoptosis. Here we report the effects of NO on both promotion and inhibition of cell proliferation, in particular in regard to cardiovascular disease, diabetes, and stem cells. Moreover, we focus on molecular mechanisms of action involved in the control of cell cycle progression, which include both cyclic guanosine monophosphate-dependent and -independent pathways. This growing field may lead to broad and novel targeted therapies against cardiovascular diseases, especially concomitant type 2 diabetes, as well as novel bioimaging NO-based diagnostic tools.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy; Fondazione SDN, IRCCS, Naples, Italy.
| | - Giuseppe Paolisso
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Amelia Casamassimi
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | - Mohammed Al-Omran
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Michelangela Barbieri
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Linda Sommese
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | | | - Louis J Ignarro
- Department of Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Galeotti N, Ghelardini C. Reversal of NO-induced nociceptive hypersensitivity by St. John's wort and hypericin: NF-κB, CREB and STAT1 as molecular targets. Psychopharmacology (Berl) 2013; 227:149-63. [PMID: 23254377 DOI: 10.1007/s00213-012-2950-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022]
Abstract
RATIONALE Hypericum perforatum, popularly called St. John's wort (SJW), is a medicinal plant mainly used as antidepressant with a favorable safety profile than standard antidepressants. Some studies have also documented other SJW bioactivities, including pain modulation. OBJECTIVES The aim of this study was to demonstrate the capability of SJW to relieve nitric oxide (NO)-induced nociceptive hypersensitivity and identify the effective component. METHODS Nociceptive hypersensitivity induced by administration of the NO donors nitroglycerin (GTN) and sodium nitroprusside (SNP) was assessed by cold and hot plate tests. The cellular pathways and molecular targets involved were investigated by Western blotting. RESULTS GTN and SNP produced a prolonged allodynia and hyperalgesia in mice. A single oral administration of low doses of an SJW dried extract or purified hypericin reversed the NO donor-induced nociceptive behavior whereas hyperforin and flavoinoids were ineffective. Investigating into the cellular pathways involved, an increased CREB and STAT1 phosphorylation, and activation of NF-κB were detected within PAG and thalamus following NO donors' administration. These cellular events were prevented by SJW or hypericin. Since hypericin showed PKC blocking properties, a role of PKC as an upstream modulator of these transcription factors was hypothesized. NO donors increased expression and phosphorylation of protein kinase C (PKC) γ and ε isoforms, molecular events prevented by SJW or hypericin. CONCLUSIONS SJW reversed NO-induced nociceptive hypersensitivity through the blockade of a supraspinal signaling pathway involving a PKC-dependent CREB, STAT1 and NF-κB activation due to presence of hypericin. These data indicate SJW/hypericin as a therapeutic perspective for pain treatment.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | | |
Collapse
|
18
|
Li X, Yu Z, Long S, Guo Y, Duan D. Hypoglycemic Effect of Laminaria japonica Polysaccharide in a Type 2 Diabetes Mellitus Mouse Model. ISRN ENDOCRINOLOGY 2012; 2012:507462. [PMID: 23209930 PMCID: PMC3503303 DOI: 10.5402/2012/507462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/08/2012] [Indexed: 12/18/2022]
Abstract
The aim is to investigate the hypoglycemic effect of Laminaria japonica polysaccharides (LJPS) on type 2 diabetes mellitus (T2DM) mice model. 60 healthy male mice have been used in the experiment. T2DM animal mode was prepared by high fatty forage feeding and intraperitoneal injection with alloxan. Diabetic mice were orally supplied with LJPS. Then their blood was collected for various biomedical measurements of fasting blood glucose (FBG), serum insulin, and amylin. Treatment with LJPS significantly reduced fasting blood glucose (P < 0.05) and increased the levels of insulin and amylin in serum (P < 0.05). Overall, the study presented that LJPS can reverse several components of T2DM. Therefore, LJPS may become a new oral candidate medicine for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiaodan Li
- Affiliated Hospital, Medical College Qingdao University, Shandong, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
19
|
Long SH, Yu ZQ, Shuai L, Guo YL, Duan DL, Xu XY, Li XD. The hypoglycemic effect of the kelp on diabetes mellitus model induced by alloxan in rats. Int J Mol Sci 2012; 13:3354-3365. [PMID: 22489155 PMCID: PMC3317716 DOI: 10.3390/ijms13033354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 11/23/2022] Open
Abstract
Hypoglycemic effects and the use of kelp in diabetes mellitus (DM) model rats induced by alloxan were investigated. Sixty healthy male rats were used to establish DM models by injecting alloxan intraperitoneally. Kelp powder was added to the general forage for the rats. The levels of fasting blood glucose (FBG) were determined by an automatic blood glucose device. Electrochemiluminescence immunoassay was applied to determine the serum levels of insulin. The serum levels of malondialdehyde (MDA) were measured by thiobarbituric acid assay and nitric oxide (NO) by nitrate reductase assay. The activities of superoxide dismutase (SOD) were determined by xanthinoxidase assay and glutathione peroxidase (GSH-Px) by chemical colorimetry. The shape and structure of islet cells were observed with Hematine-Eosin staining, and the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in islet cells were detected by immunohistochemical assay. The results showed that the serum levels of insulin after treatment with kelp powder increased significantly compared to those in the DM-model group, while the FBG in the medium-high dose treated groups decreased significantly compared to those in the DM-model group (P < 0.05). The levels of MDA and NO in the kelp powder groups were lower than those in the DM-model group, while the activities of SOD and GSH-Px were higher than those in the DM-model group, of which a significant difference existed between the medium-high dose treated groups and the DM-model group (P < 0.05). The shape and structure of islet cells improved with the up-expressing SOD and down-expressing iNOS in the medium-high dose treated groups compared to those in the DM-model group (P < 0.05). There were no significant differences between the medium and high dose treated groups, all above indexes (P > 0.05). It is suggested that kelp might aid recovery of the the islet cell secreting function and reduce the level of FBG by an antioxidant effect.
Collapse
Affiliation(s)
- Shao-Hua Long
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Zhu-Qin Yu
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Li Shuai
- School of Chemistry, Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao Shandong 266071, China; E-Mail:
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - De-Lin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin-Ying Xu
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| | - Xiao-Dan Li
- Institute of Cerebrovascular Diseases, Affiliated Hospital, Qingdao University Medical College, Qingdao Shandong 266003, China; E-Mails: (S.-H.L.); (Z.-Q.Y.); (X.-Y.X.); (X.-D.L.)
| |
Collapse
|
20
|
Kapakos G, Bouallegue A, Daou GB, Srivastava AK. Modulatory Role of Nitric Oxide/cGMP System in Endothelin-1-Induced Signaling Responses in Vascular Smooth Muscle Cells. Curr Cardiol Rev 2011; 6:247-54. [PMID: 22043200 PMCID: PMC3083805 DOI: 10.2174/157340310793566055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 01/23/2023] Open
Abstract
Nitric oxide (NO) is an important vasoprotective molecule that serves not only as a vasodilator but also exerts antihypertrophic and antiproliferative effects in vascular smooth muscle cells (VSMC). The precise mechanism by which the antihypertrophic and antiproliferative responses of NO are mediated remains obscure. However, recent studies have suggested that one of the mechanisms by which this may be achieved includes the attenuation of signal transduction pathways responsible for inducing the hypertrophic and proliferative program in VSMC. Endothelin-1 is a powerful vasoconstrictor peptide with mitogenic and growth stimulatory properties and exerts its effects by activating multiple signaling pathways which include ERK 1/2, PKB and Rho-ROCK. Both cGMP-dependent and independent events have been reported to mediate the effect of NO on these pathways leading to its vasoprotective response. This review briefly summarizes some key studies on the modulatory effect of NO on these signaling pathways and discusses the possible role of cGMP system in this process.
Collapse
Affiliation(s)
- Georgia Kapakos
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) - Technopole Angus and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
21
|
Kothari N, Keshari RS, Bogra J, Kohli M, Abbas H, Malik A, Dikshit M, Barthwal MK. Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J Crit Care 2011; 26:435.e1-7. [DOI: 10.1016/j.jcrc.2010.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/04/2010] [Accepted: 09/07/2010] [Indexed: 10/18/2022]
|
22
|
Vattemi G, Mechref Y, Marini M, Tonin P, Minuz P, Grigoli L, Guglielmi V, Klouckova I, Chiamulera C, Meneguzzi A, Di Chio M, Tedesco V, Lovato L, Degan M, Arcaro G, Lechi A, Novotny MV, Tomelleri G. Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement. Mol Cell Proteomics 2010; 10:M110.002964. [PMID: 21156839 DOI: 10.1074/mcp.m110.002964] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress.
Collapse
Affiliation(s)
- Gaetano Vattemi
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Robbins HM, Van Stappen G, Sorgeloos P, Sung YY, MacRae TH, Bossier P. Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. ACTA ACUST UNITED AC 2010; 213:1464-70. [PMID: 20400630 DOI: 10.1242/jeb.041772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Encysted embryos (cysts) of the brine shrimp Artemia undergo diapause, a state of profound dormancy and enhanced stress tolerance. Upon exposure to the appropriate physical stimulus diapause terminates and embryos resume development. The regulation of diapause termination and post-diapause development is poorly understood at the molecular level, prompting this study on the capacity of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) to control these processes. Exposure to H(2)O(2) and NO, the latter generated by the use of three NO generators, promoted cyst development, emergence and hatching, effects nullified by catalase and the NO scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). The maximal effect of NO and H(2)O(2) on cyst development was achieved by 4 h of exposure to either chemical. NO was effective at a lower concentration than H(2)O(2) but more cysts developed in response to H(2)O(2). Promotion of development varied with incubation conditions, indicating for the first time a population of Artemia cysts potentially arrested in post-diapause and whose development was activated by either H(2)O(2) or NO. A second cyst sub-population, refractory to hatching after prolonged incubation, was considered to be in diapause, a condition broken by H(2)O(2) but not NO. These observations provide clues to the molecular mechanisms of diapause termination and development in Artemia, while enhancing the organism's value in aquaculture by affording a greater understanding of its growth and physiology.
Collapse
Affiliation(s)
- Heather M Robbins
- Department of Biology, Dalhousie University, Halifax, NS, Canada, B3H 4J1.
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Bao L, Zhu H, Huang B, Zhang H. OmpA-like protein Loa22 from Leptospira interrogans serovar Lai is cytotoxic to cultured rat renal cells and promotes inflammatory responses. Acta Biochim Biophys Sin (Shanghai) 2010; 42:70-9. [PMID: 20043049 DOI: 10.1093/abbs/gmp109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptospirosis renal disease is one of the common clinical manifestations of leptospirosis, including acute renal failure and tubulointerstitial nephritis. Outer membrane protein A-like protein Loa22 is a lipoprotein from Leptospira interrogans and has been suggested to be a corresponding virulence factor. However, the role of Loa22 in leptospiral nephropathy is not yet understood. In the present study, we constructed a vector and artificially expressed Loa22 in Escherichia coli BL21(DE)pLysS cells. After extensive purification, along with a GST tag protein control, Loa22 protein was used to test the cytotoxicity in cultured rat proximal tubule cells (NRK52E) and examine its effects on the induction of inflammatory responses. Using morphological examination, 2,3-bis(2-methoxy-4- nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazoium hydrixide absorbance, lactate dehydrogenase assays and an analysis of apoptosis via flow cytometry, it was found that Loa22 protein mediates a direct cytotoxic effect on NRK52E cells in a dose-dependent manner. Using real-time PCR, western blotting and immunofluorescence, it was found that Loa22 protein upregulates the expression of toll-like receptor 2 (TLR2), induces nitric oxide synthase and promotes the production of nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) by NRK52E cells. Additionally, using a TLR2 blocking antibody, it was found that enhanced NO and MCP-1 production by NRK52E cells after Loa22 stimulation requires the activation of TLR2. Collectively, our data suggested that Loa22 is a critical virulence factor of L. interrogans and is involved in the leptospiral nephropathy through mediating direct cytotoxicity and enhancing inflammatory responses.
Collapse
Affiliation(s)
- Ying Zhang
- Infection and Immunity Lab, West China Medical Center, Sichuan University, Chengdu, China.
| | | | | | | | | |
Collapse
|
25
|
Melisi D, Rosso F, Curcio A, Tortora C, Nieddu M, Marino G, Lettieri M, Grimaldi A, Luongo E, Romano S, Romano MF, Boatto G, Abignente E, Barbarisi A, Rimoli MG. Galactosyl derivative ofNω-nitro-L-arginine: Study of antiproliferative activity on human thyroid follicular carcinoma cells. J Cell Physiol 2009; 221:440-7. [DOI: 10.1002/jcp.21876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Schmidtko A, Tegeder I, Geisslinger G. No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 2009; 32:339-46. [PMID: 19414201 DOI: 10.1016/j.tins.2009.01.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/29/2009] [Accepted: 01/31/2009] [Indexed: 12/16/2022]
Abstract
A large body of evidence indicates that nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) essentially contribute to the processing of nociceptive signals in the spinal cord. Many animal studies have unanimously shown that inhibition of NO or cGMP synthesis can considerably reduce both inflammatory and neuropathic pain. However, experiments with NO donors and cGMP analogs also caused conflicting results because dual pronociceptive and antinociceptive effects of these molecules have been observed. Here, we summarize the most recent advances in the understanding of NO- and cGMP-dependent signaling pathways in the spinal cord and further unravel the role of NO and cGMP in pain processing.
Collapse
Affiliation(s)
- Achim Schmidtko
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | |
Collapse
|
27
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas' disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:660-6. [PMID: 19297613 DOI: 10.1128/cvi.00019-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we investigated whether inflammatory responses contribute to oxidative/nitrosative stress in patients with Chagas' disease. We used three tests (enzyme-linked immunosorbent assay, immuno-flow cytometry, and STAT-PAK immunochromatography) to screen human serum samples (n = 1,481) originating from Chiapas, Mexico, for Trypanosoma cruzi-specific antibodies. We identified 121 subjects who were seropositive for T. cruzi-specific antibodies, a finding indicative of an 8.5% seroprevalence in the rural population from Chiapas. Seropositive and seronegative subjects were examined for plasma levels of biomarkers of inflammation, i.e., myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and xanthine oxidase (XOD), as well as for oxidative (advanced oxidation protein products [AOPPs]) and nitrosative (3-nitrotyrosine [3NT]) biomarkers. The seropositive subjects exhibited a significant increase in MPO activity and protein level, the indicator of neutrophil activation. Subsequently, a corresponding increase in AOPP contents, formed by MPO-dependent hypochlorous acid and chloramine formation, was noted in seropositive subjects. The plasma level of 3NT was significantly increased in seropositive subjects, yet we observed no change in XOD activity (O(2)(-) source) and nitrate/nitrite contents (denotes iNOS activation and NO production), which implied that direct peroxynitrite formation does not contribute to increased nitrosative damage in chagasic subjects. Instead, a positive correlation between increased MPO activity and protein 3NT formation was observed, which suggested to us that MPO-dependent formation of nitrylchloride that occurs in the presence of physiological NO and O(2)(-) concentrations contributes to protein nitration. Overall, our data demonstrate that T. cruzi-induced neutrophil activation is pathological and contributes to MPO-mediated collateral protein oxidative and nitrosative damage in human patients with Chagas' disease. Therapies capable of suppressing MPO activity may be useful in controlling the inflammation and oxidative/nitrosative pathology in chagasic cardiomyopathy.
Collapse
|
29
|
Abstract
The brain is among the major organs generating large amounts of reactive oxygen species and is especially susceptible to oxidative stress. Glutathione (GSH) plays critical roles as an antioxidant, enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. GSH deficiency has been implicated in neurodegenerative diseases. GSH is a tripeptide comprised of glutamate, cysteine, and glycine. Cysteine is the rate-limiting substrate for GSH synthesis within neurons. Most neuronal cysteine uptake is mediated by sodium-dependent excitatory amino acid transporter (EAAT) systems, known as excitatory amino acid carrier 1 (EAAC1). Previous studies demonstrated EAAT is vulnerable to oxidative stress, leading to impaired function. A recent study found EAAC1-deficient mice to have decreased brain GSH levels and increased susceptibility to oxidative stress. The function of EAAC1 is also regulated by glutamate transporter associated protein 3-18. This review focuses on the mechanisms underlying GSH synthesis, especially those related to neuronal cysteine transport via EAAC1, as well as on the importance of GSH functions against oxidative stress.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH. Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 2008; 283:27452-27461. [PMID: 18693249 DOI: 10.1074/jbc.m802578200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.
Collapse
Affiliation(s)
- Junhua Zhang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zhonglin Xie
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yunzhou Dong
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shuangxi Wang
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Chao Liu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ming-Hui Zou
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
31
|
Zicari A, Centonze C, Realacci M, Buchetti B, Pietropolli A, Ticconi C. Estradiol 17-beta and progesterone modulate inducible nitric oxide synthase and high mobility group box 1 expression in human endometrium. Reprod Sci 2008; 15:559-66. [PMID: 18483013 DOI: 10.1177/1933719107312560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study is to investigate the effects of ovarian sex steroid hormones on the expression and the release of several locally active substances by human endometrium. Specific objectives are (1) to ascertain if estradiol 17-beta (E2) and progesterone modulate inducible nitric oxide synthase (iNOS) expression and nitric oxide release; (2) to determine whether human endometrium can express High Mobility Group Box 1 (HMGB1), a multifunctional cytokine, and whether sexual steroid hormones can modulate this expression; and (3) to evaluate whether nitric oxide can influence HMGB1 expression in this tissue. Endometrial tissue was obtained from 40 healthy premenopausal women who underwent hysteroscopy for suspected benign gynecological conditions. Endometrium was incubated with E2, progesterone, or sodium nitroprusside, a nitric oxide donor. Nitrite assay was used to quantify stable nitric oxide metabolites in culture medium, and Western blot analysis was used to detect iNOS and HMGB1. Incubation of endometrium with E2 results in an increase in iNOS expression and nitric oxide metabolite production. The opposite effect is obtained by incubating tissues with progesterone. HMGB1 is expressed by human endometrium, and its expression is increased by E2 and decreased by progesterone. Incubation with sodium nitroprusside results in a reduction in HMGB1 expression. Both E2 and progesterone modulate iNOS expression and nitric oxide production in human endometrium. HMGB1 is expressed in the human endometrium, and its expression is modulated by E2, progesterone, and nitric oxide.
Collapse
Affiliation(s)
- Alessandra Zicari
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Reinehr R, Sommerfeld A, Häussinger D. CD95 ligand is a proliferative and antiapoptotic signal in quiescent hepatic stellate cells. Gastroenterology 2008; 134:1494-506. [PMID: 18471522 DOI: 10.1053/j.gastro.2008.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/31/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Despite expression of CD95 (Fas) receptor, hepatic stellate cells (HSCs) are fairly resistant toward CD95 ligand (CD95L)-induced cell death. The underlying mechanisms and the function of the CD95 system in quiescent HSCs, however, are unknown. METHODS The effects of CD95L on quiescent, 1- to 2-day cultured rat HSCs were studied with regard to CD95 activation, signal transduction, proliferation, and apoptosis. RESULTS In quiescent HSCs, CD95L led to a rapid phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (Erk), and c-Src, but not of c-Jun-N-terminal kinase and p47(phox), an activating subunit of reduced nicotinamide adenine dinucleotide phosphate oxidase. CD95L-induced EGFR and Erk phosphorylation were abolished after proteinase inhibition by GM6001 and in the presence of neutralizing epidermal growth factor antibodies, suggestive of a ligand-dependent EGFR phosphorylation in response to CD95L. In quiescent HSCs, CD95L did not induce apoptotic cell death but stimulated HSC proliferation and triggered a rapid inactivating CD95 tyrosine nitration that was not detected in activated HSCs (10-14 days of culture). EGFR phosphorylation, HSC proliferation, and CD95 tyrosine nitration were also triggered by tumor necrosis factor alpha and tumor necrosis factor-related apoptosis-inducing ligand. CONCLUSIONS In quiescent HSCs, CD95L and other death receptor ligands are mitogens through a ligand-dependent EGFR phosphorylation. Simultaneously, an antiapoptotic signaling is triggered by CD95L-induced CD95 tyrosine nitration. This unusual response to death receptor ligands may help quiescent HSCs to participate in liver regeneration following liver injury.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
33
|
A rapid and selective mass spectrometric method for the identification of nitrated proteins. Methods Mol Biol 2008; 477:15-29. [PMID: 19082935 DOI: 10.1007/978-1-60327-517-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nitration of protein tyrosine residues represents an important posttranslational modification during development, oxidative stress, and biological aging. The major challenge in the proteomic analysis of nitroproteins is the need to discriminate modified proteins, usually occurring at substoichiometric levels, from the large amount of nonmodified proteins. Moreover, precise localization of the nitration site is often required to fully describe the biological process. Identification of the specific targets of protein oxidation was previously accomplished using immunoprecipitation techniques followed by immunochemical detection. Here, we report a totally new approach involving dansyl chloride labeling of the nitration sites which relies on the enormous potential of MS(n) analysis. The tryptic digest from the entire protein mixture is directly analyzed by MS on a linear ion trap mass spectrometer. Discrimination between nitro- and unmodified peptide is based on two selectivity criteria obtained by combining a precursor ion scan and a MS3 analysis. The novel labeling procedure was successfully applied to the identification of 3-nitrotyrosine residues in complex protein mixtures.
Collapse
|
34
|
Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. PROGRESS IN BRAIN RESEARCH 2008; 173:465-78. [PMID: 18929128 DOI: 10.1016/s0079-6123(08)01132-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The identification of mechanisms precipitating neuronal death and injury is an intense area of investigation requiring reliable models to assess the effects of neuroprotective agents. Most are suboptimal since the effects of initial damage are diffuse and may not be reproducible or easily quantifiable. The ideal laboratory model should have the ability to (a) clearly detect evidence of neuronal injury and recovery, (b) accurately measure morphologically the extent of these changes, and (c) provide functional evidence for damage and recovery. Glaucoma is a disease of visual neurons in the eye and brain. In the visual system, neuroanatomical pathways and retinotopic organization are exquisitely defined, functional modalities are highly characterized and can be dissected physiologically, visual input parameters can be modified, visual functional output can be readily tested and measured, changes in the eye and the visual brain can be directly visualized and imaged, and pathological and compensatory changes in brain centers of vision can be examined and measured specifically. For these reasons, the glaucoma disease model is ideal for the study of response and recovery to injury in the central nervous system due to anterograde and retrograde degeneration from the eye to the brain and the brain to the eye, respectively. The study of this glaucoma model of transsynaptic brain injury may be relevant to understanding more complex pathways and point to new strategies to prevent disease progression in other neurodegenerative diseases.
Collapse
|
35
|
Ascenzi P, Ciaccio C, Coletta M. Peroxynitrite-mediated oxidation of ferrous carbonylated myoglobin is limited by carbon monoxide dissociation. Biochem Biophys Res Commun 2007; 363:931-6. [PMID: 17910950 DOI: 10.1016/j.bbrc.2007.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/18/2022]
Abstract
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by ()NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h=(1.2+/-0.2)x10(-2)s(-1) and k(off(CO))=(1.4+/-0.2)x10(-2)s(-1), respectively, at pH 7.2 and 20.0 degrees C. The coincidence of values of h and k(off(CO)) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | | |
Collapse
|
36
|
Bouallegue A, Daou GB, Srivastava AK. Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol 2007; 293:H2072-9. [PMID: 17644565 DOI: 10.1152/ajpheart.01097.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the mitogenic and hypertrophic responses of growth factors and vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs). However, the mechanism by which NO exerts its antimitogenic and antihypertrophic effect remains unknown. Therefore, the aim of this study was to determine whether NO generation would modify ET-1-induced signaling pathways involved in cellular growth, proliferation, and hypertrophy in A-10 VSMCs. Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced phosphorylation of several key components of growth-promoting and hypertrophic signaling pathways such as ERK1/2, PKB, and Pyk2. On the other hand, inhibition of the endogenous NO generation with N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, increased the ET-1-induced phosphorylation of these signaling components. Since NO mediates its effect principally through a cGMP-soluble guanylyl cyclase (sGC) pathway, we investigated the role of these molecules in NO action. 8-Bromoguanosine 3',5'-cyclic monophosphate, a nonmetabolizable and cell-permeant analog of cGMP, exhibited a effect similar to that of SNAP and SNP. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-induced responses. SNAP treatment also decreased the protein synthesis induced by ET-1. Together, these data demonstrate that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB, and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be suggested that NO-induced generation of cGMP contributes to the inhibition of ET-1-induced mitogenic and hypertrophic responses in VSMCs.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/embryology
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/metabolism
- Cell Proliferation
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Dose-Response Relationship, Drug
- Endothelin-1/metabolism
- Enzyme Inhibitors/pharmacology
- Focal Adhesion Kinase 2/metabolism
- Guanylate Cyclase/antagonists & inhibitors
- Guanylate Cyclase/metabolism
- Hypertrophy/enzymology
- Hypertrophy/metabolism
- Leucine/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitroprusside/pharmacology
- Oxadiazoles/pharmacology
- Phosphorylation
- Protein Biosynthesis
- Proto-Oncogene Proteins c-akt/metabolism
- Quinoxalines/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Signal Transduction
- Soluble Guanylyl Cyclase
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Technopole Angus Campus, and Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
37
|
Forrester MT, Stamler JS. A classification scheme for redox-based modifications of proteins. Am J Respir Cell Mol Biol 2007; 36:135-7. [PMID: 17227880 DOI: 10.1165/rcmb.2006-001ed] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
38
|
Kanno SI, Kakuta M, Kitajima Y, Osanai Y, Kurauchi K, Ohtake T, Ujibe M, Uwai K, Takeshita M, Ishikawa M. Inhibitory Effect of Trimidox on Lipopolysaccharide-Induced Nitric Oxide Production in RAW 264.7 Macrophages. J Pharmacol Sci 2007; 104:278-81. [PMID: 17609582 DOI: 10.1254/jphs.sc0070073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We examined the effect of trimidox (3,4,5-trihydroxybenzamidoxime) on the production of nitric oxide (NO) by lipopolysaccharide (LPS) in mouse RAW 264.7 macrophages. Trimidox (50 - 300 microM) concentration-dependently inhibited NO production by LPS (0.01, 0.1, or 1 microg/ml) after incubation for 24 h. LPS-induced expression of inducible NO synthase (iNOS) and degradation of IkappaBalpha were prevented by trimidox. The protective effect against NO production by LPS was not only observed in prior incubation but also later incubation with trimidox until iNOS was activated by LPS. These results suggest that trimidox has a predominantly protective effect against LPS-induced production of NO via iNOS expression.
Collapse
Affiliation(s)
- Syu-ichi Kanno
- Department of Clinical Pharmacotheraputics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang BQ, Hu SJ, Qiu LH, Zhu JH, Xie XJ, Sun J, Zhu ZH, Xia Q, Bian K. Effects of Astragalus membranaceus and its main components on the acute phase endothelial dysfunction induced by homocysteine. Vascul Pharmacol 2006; 46:278-85. [PMID: 17196887 DOI: 10.1016/j.vph.2006.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 10/14/2006] [Accepted: 11/02/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study was designed to investigate the effects of Astragalus membranaceus (AM) and its main components, astragalus saponin (ASP), astragalus polysaccharide (APS) and aminobutyric acid (GABA), on homocysteine (Hcy) induced acute impairment of vascular tone and to explore whether the antioxidant mechanism was involved in AM protective effect. METHODS Inhibitory effects of Hcy and protective effects of AM and its main components on endothelium-dependent relaxation of aortic rings were determined by isometric tension recordings and nitric oxide signaling was assayed with 125I-cGMP RIA Kit. Furthermore, generation of reactive oxygen species (ROS) in endothelial cells was detected using 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCF-DA). RESULTS Hcy significantly inhibited endothelium-dependent relaxation to acetylcholine (ACh) in a dose-dependent manner, and decreased cGMP levels increased by ACh in aorta. Furthermore, superoxide dismutase (SOD), AM, and ASP markedly attenuated inhibition of vasorelaxation and downregulation of cGMP level by Hcy, and APS exerted a tendency to reverse both of the depressive responses, while GABA had no similar effects. Additionally, partially impaired relaxation by Hcy was completely blocked due to the presence of N(omega)-nitro-L-arginine-methyl ester (L-NAME), which could not be further altered by treatment with AM, ASP, APS or GABA. Finally, Hcy significantly increased intracellular ROS levels in endothelial cells as measured by CM-H2DCF-DA fluorescence. SOD, AM, ASP, and APS, but not GABA, inhibited Hcy-stimulated ROS generation. CONCLUSION This study demonstrated that AM and ASP, potently protected endothelium-dependent relaxation against the acute injury from Hcy through nitric oxide regulatory pathways, in which antioxidation played a key role.
Collapse
Affiliation(s)
- Bi-Qi Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun St, Hangzhou 310003, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|