1
|
Ersoy B, Herzog ML, Pan W, Schilling S, Endres M, Göttert R, Kronenberg GD, Gertz K. The atypical antidepressant tianeptine confers neuroprotection against oxygen-glucose deprivation. Eur Arch Psychiatry Clin Neurosci 2024; 274:777-791. [PMID: 37653354 PMCID: PMC11127858 DOI: 10.1007/s00406-023-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Proregenerative and neuroprotective effects of antidepressants are an important topic of inquiry in neuropsychiatric research. Oxygen-glucose deprivation (OGD) mimics key aspects of ischemic injury in vitro. Here, we studied the effects of 24-h pretreatment with serotonin (5-HT), citalopram (CIT), fluoxetine (FLU), and tianeptine (TIA) on primary mouse cortical neurons subjected to transient OGD. 5-HT (50 μM) significantly enhanced neuron viability as measured by MTT assay and reduced cell death and LDH release. CIT (10 μM) and FLU (1 μM) did not increase the effects of 5-HT and neither antidepressant conferred neuroprotection in the absence of supplemental 5-HT in serum-free cell culture medium. By contrast, pre-treatment with TIA (10 μM) resulted in robust neuroprotection, even in the absence of 5-HT. Furthermore, TIA inhibited mRNA transcription of candidate genes related to cell death and hypoxia and attenuated lipid peroxidation, a hallmark of neuronal injury. Finally, deep RNA sequencing of primary neurons subjected to OGD demonstrated that OGD induces many pathways relating to cell survival, the inflammation-immune response, synaptic dysregulation and apoptosis, and that TIA pretreatment counteracted these effects of OGD. In conclusion, this study highlights the comparative strength of the 5-HT independent neuroprotective effects of TIA and identifies the molecular pathways involved.
Collapse
Affiliation(s)
- Burcu Ersoy
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Louise Herzog
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Wen Pan
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Simone Schilling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Partner site, Berlin, Germany
- DZPG (German Center for Mental Health), Partner site, Berlin, Germany
| | - Ria Göttert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany
| | - Golo D Kronenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Karen Gertz
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Stroke Research Berlin, Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site, Berlin, Germany.
- Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Lewczuk A, Boratyńska-Jasińska A, Zabłocka B. Validation of the Reference Genes for Expression Analysis in the Hippocampus after Transient Ischemia/Reperfusion Injury in Gerbil Brain. Int J Mol Sci 2023; 24:ijms24032756. [PMID: 36769080 PMCID: PMC9917415 DOI: 10.3390/ijms24032756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Transient brain ischemia in gerbils is a common model to study the mechanisms of neuronal changes in the hippocampus. In cornu ammonnis 2-3, dentate gyrus (CA2-3,DG) regions of the hippocampus, neurons are resistant to 5-min ischemia/reperfusion (I/R) insult, while cornu ammonnis 1 (CA1) is found to be I/R-vulnerable. The quantitative polymerase chain reaction (qRT-PCR) is widely used to study the expression of genes involved in these phenomena. It requires stable and reliable genes for normalization, which is crucial for comparable and reproducible analyses of expression changes of the genes of interest. The aim of this study was to determine the best housekeeping gene for the I/R gerbil model in two parts of the hippocampus in controls and at 3, 48, and 72 h after recanalization. We selected and tested six reference genes frequently used in central nervous system studies: Gapdh, Actb, 18S rRNA, Hprt1, Hmbs, Ywhaz, and additionally Bud23, using RefFinder, a comprehensive tool based on four commonly used algorithms: delta cycle threshold (Ct), BestKeeper, NormFinder, and geNorm, while Hprt1 and Hmbs were the most stable ones in CA2-3,DG. Hmbs was the most stable in the whole hippocampal formation. This indicates that the general use of Hmbs, especially in combination with Gapdh, a highly expressed reference gene, seems to be suitable for qRT-PCR normalization in all hippocampal regions in this model.
Collapse
|
3
|
Pomierny B, Krzyzanowska W, Jurczyk J, Strach B, Skorkowska A, Leonovich I, Budziszewska B, Pera J. Identification of optimal reference genes for gene expression studies in a focal cerebral ischaemia model-Spatiotemporal effects. J Cell Mol Med 2022; 26:3060-3067. [PMID: 35451185 PMCID: PMC9097850 DOI: 10.1111/jcmm.17284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
A proper reference gene (RG) is required to reliably measure mRNA levels in biological samples via quantitative reverse transcription PCR (RT‐qPCR). Various experimental paradigms require specific and stable RGs. In studies using rodent models of brain ischaemia, a variety of genes, such as β‐actin (Actb), hypoxanthine phosphoribosyltransferase 1 (Hprt1), peptidyl‐propyl isomerase A (Ppia) and glyceraldehyde‐3‐phosphate dehydrogenase (Gapdh), are used as RGs. However, most of these genes have not been validated in specific experimental settings. The aim of this study was to evaluate the time‐ and brain region‐dependent expression of RG candidates in a rat model of transient middle cerebral artery occlusion (tMCAO). The following genes were selected: Actb, Hprt1, Ppia, Gapdh, tyrosine 3‐monooxygenase/tryptophan 5‐monooxygenase activation protein, zeta (Ywhaz) and beta‐2 microglobulin (B2m). Focal cerebral ischaemia was induced by 90 min of tMCAO in male Sprague‐Dawley rats. Expression was investigated at four time points (12 and 24 h; 3 and 7 days) and in three brain areas (the frontal cortex, hippocampus and dorsal striatum) within the ischaemic brain hemisphere. The RT‐qPCR results were analysed using variance analysis and the ΔCt, GeNorm, NormFinder and BestKeeper methods. Data from these algorithms were ranked using the geometric mean of ranks of each analysis. Ppia, Hprt1 and Ywhaz were the most stable genes across the analysed brain areas and time points. B2m and Actb exhibited the greatest fluctuations, and the results for Gapdh were ambiguous.
Collapse
Affiliation(s)
- Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Weronika Krzyzanowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Jurczyk
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Strach
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Alicja Skorkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Innesa Leonovich
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
4
|
Wegner S, Uhlemann R, Boujon V, Ersoy B, Endres M, Kronenberg G, Gertz K. Endothelial Cell-Specific Transcriptome Reveals Signature of Chronic Stress Related to Worse Outcome After Mild Transient Brain Ischemia in Mice. Mol Neurobiol 2019; 57:1446-1458. [PMID: 31758402 PMCID: PMC7060977 DOI: 10.1007/s12035-019-01822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Vascular mechanisms underlying the adverse effects that depression and stress-related mental disorders have on stroke outcome are only partially understood. Identifying the transcriptomic signature of chronic stress in endothelium harvested from the ischemic brain is an important step towards elucidating the biological processes involved. Here, we subjected male 129S6/SvEv mice to a 28-day model of chronic stress. The ischemic lesion was quantified after 30 min filamentous middle cerebral artery occlusion (MCAo) and 48 h reperfusion by T2-weighted MRI. RNA sequencing was used to profile transcriptomic changes in cerebrovascular endothelial cells (ECs) from the infarct. Mice subjected to the stress procedure displayed reduced weight gain, increased adrenal gland weight, and increased hypothalamic FKBP5 mRNA and protein expression. Chronic stress conferred increased lesion volume upon MCAo. Stress-exposed mice showed a higher number of differentially expressed genes between ECs isolated from the ipsilateral and contralateral hemisphere than control mice. The genes in question are enriched for roles in biological processes closely linked to endothelial proliferation and neoangiogenesis. MicroRNA-34a was associated with nine of the top 10 biological process Gene Ontology terms selectively enriched in ECs from stressed mice. Moreover, expression of mature miR-34a-5p and miR-34a-3p in ischemic brain tissue was positively related to infarct size and negatively related to sirtuin 1 (Sirt1) mRNA transcription. In conclusion, this study represents the first EC-specific transcriptomic analysis of chronic stress in brain ischemia. The stress signature uncovered relates to worse stroke outcome and is directly relevant to endothelial mechanisms in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Stephanie Wegner
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ria Uhlemann
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Valérie Boujon
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Burcu Ersoy
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Endres
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 10117, Berlin, Germany
| | - Golo Kronenberg
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,University of Leicester and Leicestershire Partnership NHS Trust, Leicester, UK
| | - Karen Gertz
- Klinik für Neurologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), Partner site Berlin, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Boujon V, Uhlemann R, Wegner S, Wright MB, Laufs U, Endres M, Kronenberg G, Gertz K. Dual PPARα/γ agonist aleglitazar confers stroke protection in a model of mild focal brain ischemia in mice. J Mol Med (Berl) 2019; 97:1127-1138. [PMID: 31147725 PMCID: PMC6647083 DOI: 10.1007/s00109-019-01801-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Abstract Peroxisome proliferator-activated receptors (PPARs) control the expression of genes involved in glucose homeostasis, lipid metabolism, inflammation, and cell differentiation. Here, we analyzed the effects of aleglitazar, a dual PPARα and PPARγ agonist with balanced affinity for either subtype, on subacute stroke outcome. Healthy young adult mice were subjected to transient 30 min middle cerebral artery occlusion (MCAo)/reperfusion. Daily treatment with aleglitazar was begun on the day of MCAo and continued until sacrifice. Blood glucose measurements and lipid profile did not differ between mice receiving aleglitazar and mice receiving vehicle after MCAo. Aleglitazar reduced the size of the ischemic lesion as assessed using NeuN immunohistochemistry on day 7. Sensorimotor performance on the rotarod was impaired during the first week after MCAo, an effect that was significantly attenuated by treatment with aleglitazar. Smaller lesion volume in mice treated with aleglitazar was accompanied by a decrease in mRNA transcription of IL-1β, Vcam-1, and Icam-1, suggesting that reduced proinflammatory signaling and reduced vascular inflammation in the ischemic hemisphere contribute to the beneficial effects of aleglitazar during the first week after stroke. Further experiments in primary murine microglia confirmed that aleglitazar reduces key aspects of microglia activation including NO production, release of proinflammatory cytokines, migration, and phagocytosis. In aggregate, a brief course of PPARα/γ agonist aleglitazar initiated post-event affords stroke protection and functional recovery in a model of mild brain ischemia. Our data underscores the theme of delayed injury processes such as neuroinflammation as promising therapeutic targets in stroke. Key messages PPARα/γ agonist aleglitazar improves stroke outcome after transient brain ischemia. Aleglitazar attenuates inflammatory responses in post-ischemic brain. Aleglitazar reduces microglia migration, phagocytosis, and release of cytokines. Beneficial effects of aleglitazar independent of glucose regulation. Aleglitazar provides extended window of opportunity for stroke treatment.
Collapse
Affiliation(s)
- Valérie Boujon
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Ria Uhlemann
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Stephanie Wegner
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthew B Wright
- pRED, Pharma Research & Early Development, F. Hoffmann-La Roche AG, Strekin AG, Basel, Switzerland
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), 10115, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 10117, Berlin, Germany
| | - Golo Kronenberg
- College of Life Sciences, University of Leicester, and Leicestershire Partnership NHS Trust, Leicester, UK
| | - Karen Gertz
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie und Centrum für Schlaganfallforschung Berlin (CSB), Charité Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Kronenberg G, Uhlemann R, Schöner J, Wegner S, Boujon V, Deigendesch N, Endres M, Gertz K. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease. Eur Arch Psychiatry Clin Neurosci 2017; 267:473-477. [PMID: 27896432 PMCID: PMC5509772 DOI: 10.1007/s00406-016-0750-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022]
Abstract
Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.
Collapse
Affiliation(s)
- Golo Kronenberg
- grid.440244.2Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany ,0000000121858338grid.10493.3fKlinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Ria Uhlemann
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Johanna Schöner
- grid.440244.2Klinik für Psychiatrie und Psychotherapie, Charité Campus Mitte, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Stephanie Wegner
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Valérie Boujon
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Nikolas Deigendesch
- 0000 0001 2218 4662grid.6363.0Institut für Neuropathologie, Charité - Universitätsmedizin, Berlin, Germany
| | - Matthias Endres
- 0000 0001 2218 4662grid.6363.0Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany ,0000 0001 2218 4662grid.6363.0Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Charitéplatz 1, 10117 Berlin, Germany ,0000 0001 2218 4662grid.6363.0Cluster of Excellence NeuroCure, Charité - Universitätsmedizin, Berlin, Germany ,grid.452396.fDZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karen Gertz
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin, Berlin, Germany. .,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
7
|
Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice. BMC Neurol 2016; 16:144. [PMID: 27538712 PMCID: PMC4991103 DOI: 10.1186/s12883-016-0670-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background VE-cadherin is the chief constituent of endothelial adherens junctions. However, the role of VE-cadherin in the pathogenesis of cerebrovascular diseases including brain ischemia has not yet been investigated. Methods VE-cadherin heterozygous (VEC+/-) mice and wildtype controls were subjected to transient brain ischemia by 30 min filamentous middle cerebral artery occlusion (MCAo)/reperfusion. Results Acute lesion sizes as assessed by MR-imaging on day 3 did not differ between genotypes. Unexpectedly, however, partial loss of VE-cadherin resulted in long-term stroke protection measured histologically on day 28. Equally surprisingly, VEC+/- mice displayed no differences in post-stroke angiogenesis compared to littermate controls, but showed increased absolute regional cerebral blood flow in ischemic striatum at four weeks. The early induction of VE-cadherin mRNA transcription after stroke was reduced in VEC+/- mice. By contrast, N-cadherin and β-catenin mRNA expression showed a delayed, but sustained, upregulation up to 28 days after MCAo, which was increased in VEC+/- mice. Furthermore, partial loss of VE-cadherin resulted in a pattern of elevated ischemia-triggered mRNA transcription of pericyte-related molecules α-smooth muscle actin (α-SMA), aminopeptidase N (CD13), and platelet-derived growth factor receptor β (PDGFR-β). Conclusions Partial loss of VE-cadherin results in long term stroke protection. On the cellular and molecular level, this effect appears to be mediated by improved endothelial/pericyte interactions and the resultant increase in cerebral blood flow. Our study reinforces accumulating evidence that long-term stroke outcome depends critically on vascular mechanisms.
Collapse
|
8
|
Timaru-Kast R, Herbig EL, Luh C, Engelhard K, Thal SC. Influence of Age on Cerebral Housekeeping Gene Expression for Normalization of Quantitative Polymerase Chain Reaction after Acute Brain Injury in Mice. J Neurotrauma 2015; 32:1777-88. [PMID: 26102571 DOI: 10.1089/neu.2014.3784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To prevent methodological errors of quantitative PCR (qPCR) normalization with reference genes is obligatory. Although known to influence gene expression, impact of age on housekeeping gene expression has not been determined after acute brain lesions such as traumatic brain injury (TBI). Therefore, expression of eight common control genes was investigated at 15 min, 24 h, and 72 h after experimental TBI in 2- and 21-month-old C57Bl6 mice. Expression of β2-microglobulin (B2M), β-actin (ActB), and porphobilinogen deaminase (PBGD) increased after TBI in both ages. β2M demonstrated age-dependent differences and highest inter- and intragroup variations. Expression of cyclophilin A, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine ribosyltransferase (HPRT), S100B, and 18SrRNA remained stable. Cyclophilin A and HPRT demonstrated strongest inter- and intragroup stability. The data indicate that the expression of most but not all control genes is stable during aging. The correct choice of housekeeping genes is of key importance to ensure adequate normalization of qPCR data. With respect to insult and age, normalization strategies should consider cyclophilin A as a single normalizer. Normalization with two reference genes is recommended with cyclophilin A and HPRT in young mice and in mixed age studies and with cyclophilin A and GAPDH in old mice. In addition, the present study suggests not to use β2-microglobulin, β-actin or PBGD as single control genes because of strong regulation after CCI in 2- and 21-month-old mice.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Elina L Herbig
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| |
Collapse
|
9
|
Uhlemann R, Gertz K, Boehmerle W, Schwarz T, Nolte C, Freyer D, Kettenmann H, Endres M, Kronenberg G. Actin dynamics shape microglia effector functions. Brain Struct Funct 2015; 221:2717-34. [PMID: 25989853 DOI: 10.1007/s00429-015-1067-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/15/2015] [Indexed: 11/28/2022]
Abstract
Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.
Collapse
Affiliation(s)
- Ria Uhlemann
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Karen Gertz
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Boehmerle
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tobias Schwarz
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christiane Nolte
- Cellular Neuroscience, Max-Delbruck-Center for Molecular Medicine, 13092, Berlin-Buch, Germany
| | - Dorette Freyer
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max-Delbruck-Center for Molecular Medicine, 13092, Berlin-Buch, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Excellence Cluster NeuroCure, 10117, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), 13347, Berlin, Germany.
| | - Golo Kronenberg
- Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Moura ACD, Lazzari VM, Agnes G, Almeida S, Giovenardi M, Veiga ABGD. Transcriptional expression study in the central nervous system of rats: what gene should be used as internal control? EINSTEIN-SAO PAULO 2015; 12:336-41. [PMID: 25295456 PMCID: PMC4872946 DOI: 10.1590/s1679-45082014ao3042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 06/26/2014] [Indexed: 11/22/2022] Open
Abstract
Objective A growing number of published articles report the expression of specific genes with different behavior patterns in rats. The levels of messenger ribonucleic acid transcripts are usually analyzed by reverse transcription followed by polymerase chain reaction and quantified after normalization with an internal control or reference gene (housekeeping gene). Nevertheless, housekeeping genes exhibit different expression in the central nervous system, depending on the physiological conditions and the area of the brain to be studied. The choice of a good internal control gene is essential for obtaining reliable results. This study evaluated the expression of three housekeeping genes (beta-actin, cyclophilin A, and ubiquitin C) in different areas of the central nervous system in rats (olfactory bulb, hippocampus, striatum, and prefrontal cortex). Methods Wistar rats (virgin females, n=6) during the diestrum period were used. Total ribonucleic acid was extracted from each region of the brain; the complementary deoxyribonucleic acid was synthesized by reverse transcription and amplified by real-time quantitative polymerase chain reaction using SYBR™ Green and primers specific for each one of the reference genes. The stability of the expression was determined using NormFinder. Results Beta-actin was the most stable gene in the hippocampus and striatum, while cyclophilin A and ubiquitin C showed greater stability in the prefrontal cortex and the olfactory bulb, respectively. Conclusion Based on our study, further studies of gene expression using rats as animal models should take into consideration these results when choosing a reliable internal control gene.
Collapse
Affiliation(s)
| | | | - Grasiela Agnes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Silvana Almeida
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
11
|
Hellmann-Regen J, Kronenberg G, Uhlemann R, Freyer D, Endres M, Gertz K. Accelerated degradation of retinoic acid by activated microglia. J Neuroimmunol 2013; 256:1-6. [DOI: 10.1016/j.jneuroim.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 01/21/2023]
|
12
|
Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya IC, Prockop DJ. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage 2012; 20:1197-207. [PMID: 22750747 PMCID: PMC3788634 DOI: 10.1016/j.joca.2012.06.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Meniscal regeneration was previously shown to be enhanced by injection of mesenchymal stem/stromal cells (MSCs) but the mode of action of the MSCs was not established. The aim of this study was to define how injection of MSCs enhances meniscal regeneration. DESIGN A hemi-meniscectomy model in rats was used. Rat-MSCs (rMSCs) or human-MSCs (hMSCs) were injected into the right knee joint after the surgery, and PBS was injected into the left. The groups were compared macroscopically and histologically at 2, 4, and 8 weeks. The changes in transcription in both human and rat genes were assayed by species-specific microarrays and real-time RT-PCRs. RESULTS Although the number of hMSCs decreased with time, hMSCs enhanced meniscal regeneration in a manner similar to rMSCs. hMSCs injection increased expression of rat type II collagen (rat-Col II), and inhibited osteoarthritis progression. The small fraction of hMSCs was activated to express high levels of a series of genes including Indian hedgehog (Ihh), parathyroid hormone-like hormone (PTHLH), and bone morphogenetic protein 2 (BMP2). The presence of hMSCs triggered the subsequent expression of rat-Col II. An antagonist of hedgehog signaling inhibited the expression of rat-Col II and an agonist increased expression of rat-Col II in the absence of hMSCs. CONCLUSIONS Despite rapid reduction in cell numbers, intra-articular injected hMSCs were activated to express Ihh, PTHLH, and BMP2 and contributed to meniscal regeneration. The hedgehog signaling was essential in enhancing the expression of rat-Col II, but several other factors provided by the hMSCs probably contributed to the repair.
Collapse
Affiliation(s)
- Masafumi Horie
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
- Section of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hosoon Choi
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Roxanne L. Reger
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Joni Ylostalo
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| | - Takeshi Muneta
- Section of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - I chiro Sekiya
- Section of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Darwin J. Prockop
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas 76502
| |
Collapse
|
13
|
Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Kröber J, Miller KR, Lindauer U, Laufs U, Dirnagl U, Heppner FL, Endres M. Essential role of interleukin-6 in post-stroke angiogenesis. ACTA ACUST UNITED AC 2012; 135:1964-80. [PMID: 22492561 DOI: 10.1093/brain/aws075] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6(-/-)) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6(-/-) mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6(-/-) mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6(-/-) mice. In addition, systemic neoangiogenesis was impaired in IL-6(-/-) mice. Transplantation of interleukin-6 competent bone marrow into IL-6(-/-) mice (IL-6(chi)) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6(chi) mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen-glucose deprivation did not. However, oxygen-glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection.
Collapse
Affiliation(s)
- Karen Gertz
- Department of Neurology, Charité– Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shaw GTW, Shih ESC, Chen CH, Hwang MJ. Preservation of ranking order in the expression of human Housekeeping genes. PLoS One 2011; 6:e29314. [PMID: 22216246 PMCID: PMC3245260 DOI: 10.1371/journal.pone.0029314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/24/2011] [Indexed: 01/26/2023] Open
Abstract
Housekeeping (HK) genes fulfill the basic needs for a cell to survive and function properly. Their ubiquitous expression, originally thought to be constant, can vary from tissue to tissue, but this variation remains largely uncharacterized and it could not be explained by previously identified properties of HK genes such as short gene length and high GC content. By analyzing microarray expression data for human genes, we uncovered a previously unnoted characteristic of HK gene expression, namely that the ranking order of their expression levels tends to be preserved from one tissue to another. Further analysis by tensor product decomposition and pathway stratification identified three main factors of the observed ranking preservation, namely that, compared to those of non-HK (NHK) genes, the expression levels of HK genes show a greater degree of dispersion (less overlap), stableness (a smaller variation in expression between tissues), and correlation of expression. Our results shed light on regulatory mechanisms of HK gene expression that are probably different for different HK genes or pathways, but are consistent and coordinated in different tissues.
Collapse
Affiliation(s)
- Grace T. W. Shaw
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Edward S. C. Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Yang Y, Rosenberg GA. MMP-mediated disruption of claudin-5 in the blood-brain barrier of rat brain after cerebral ischemia. Methods Mol Biol 2011; 762:333-45. [PMID: 21717368 DOI: 10.1007/978-1-61779-185-7_24] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) has become a major focus of attention in cerebral pathophysiology and disease progression in the central nervous system. Endothelial tight junctions, the basal lamina, and perivascular astrocytes are jointly referred to as BBB or neurovascular unit. Around the cerebral endothelial cells is the basal lamina composed primarily of laminin, fibronectin, and heparan sulfate. The basal lamina provides a structural barrier to extravasation of cellular blood elements and anchors endothelial cells to astrocytes. Barriers limiting transport into and out of the brain are found at the tight junction proteins and at the basal lamina. The relative contribution of these two sites has not been studied, but it is likely that both are disrupted to some extent in various injury scenarios. We have shown that activation of matrix metalloproteinases (MMPs) opens the BBB by degrading tight junction proteins (claudin-5 and occludin) and increases BBB permeability after stroke, and that an MMP inhibitor prevents degradation of tight junction proteins and attenuates BBB disruption.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
16
|
Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5:54-63. [PMID: 19570514 DOI: 10.1016/j.stem.2009.05.003] [Citation(s) in RCA: 1396] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/31/2009] [Accepted: 05/06/2009] [Indexed: 12/12/2022]
Abstract
Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 x 10(6) hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr, but <1000 cells appeared in six other tissues. The hMSCs in lung upregulated expression of multiple genes, with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, i.v. hMSCs, but not hMSCs transduced with TSG-6 siRNA, decreased inflammatory responses, reduced infarct size, and improved cardiac function. I.v. administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest that improvements in animal models and patients after i.v. infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thal SC, Wyschkon S, Pieter D, Engelhard K, Werner C. Selection of Endogenous Control Genes for Normalization of Gene Expression Analysis after Experimental Brain Trauma in Mice. J Neurotrauma 2008; 25:785-94. [DOI: 10.1089/neu.2007.0497] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Serge C. Thal
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Wyschkon
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany
| | - Dana Pieter
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany
| | - Christian Werner
- Department of Anesthesiology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
18
|
Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 2008; 9:53. [PMID: 18505597 PMCID: PMC2430208 DOI: 10.1186/1471-2199-9-53] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/28/2008] [Indexed: 12/21/2022] Open
Abstract
Background Cardiac arrest, and the associated arrest of blood circulation, immediately leads to permanent brain damage because of the exhaustion of oxygen, glucose and energy resources in the brain. Most hippocampal CA1 neurons die during the first week post the insult. Molecular data concerning the recovery after resuscitation are sparse and limited to the early time period. Expression analysis of marker genes via quantitative real-time RT-PCR enables to follow up the remodeling process. However, proper validation of the applied normalization strategy is a crucial prerequisite for reliable conclusions. Therefore, the present study aimed to determine the expression stability of ten commonly used reference genes (Actb, actin, beta; B2m, beta-2 microglobulin;CypA, cyclophilin A; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Hprt, hypoxanthine guanine phosphoribosyl transferase; Pgk1, phosphoglycerate kinase 1; Rpl13a, ribosomal protein L13A; Sdha, succinat dehydrogenase complex, subunit a, flavoprotein (Fp); Tbp, TATA box binding protein; Ywhaz, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide) in the rat hippocampus four, seven and twenty-one days after cardiac arrest. Moreover, experimental groups treated with the anti-inflammatory and anti-apoptotic drug minocycline have been included in the study as well. Results The microglial marker Mac-1, used as a target gene to validate the experimental model, was found to be upregulated about 10- to 20-fold after cardiac arrest. Expression stability of candidate reference genes was analyzed using geNorm and NormFinder software tools. Several of these genes behave rather stable. CypA and Pgk1 were identified by geNorm as the two most stable genes 4 and 21 days after asphyxial cardiac arrest, CypA and Gapdh at 7 days post treatment. B2m turned out to be the most variable candidate reference gene, being about 2-fold upregulated in the cardiac arrest treatment groups. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in rat hippocampus after resuscitation from cardiac arrest. For normalization purposes in gene profiling studies a combination of CypA and Pgk1 should be considered 4 and 21 days post injury, whereas CypA and Gapdh is the best combination at 7 days. CypA is most favorable if restriction to a single reference gene for all time points is required.
Collapse
Affiliation(s)
- Kristina Langnaese
- Institute of Medical Neurobiology, University of Magdeburg, Leipziger Str, 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|