1
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
2
|
Palani CD, Zhu X, Alagar M, Attucks OC, Pace BS. Bach1 inhibitor HPP-D mediates γ-globin gene activation in sickle erythroid progenitors. Blood Cells Mol Dis 2024; 104:102792. [PMID: 37633023 DOI: 10.1016/j.bcmd.2023.102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Sickle cell disease (SCD) is the most common β-hemoglobinopathy caused by various mutations in the adult β-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.
Collapse
Affiliation(s)
- Chithra D Palani
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Manickam Alagar
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Betty S Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Liu L, Zhu X, Yu A, Ward CM, Pace BS. δ-Aminolevulinate induces fetal hemoglobin expression by enhancing cellular heme biosynthesis. Exp Biol Med (Maywood) 2019; 244:1220-1232. [PMID: 31475864 DOI: 10.1177/1535370219872995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) and β-thalassemia are inherited blood disorders caused by genetic defects in the β-globin gene on chromosome 11, producing severe disease in people worldwide. Induction of fetal hemoglobin consisting of two α-globin and two γ-globin chains ameliorates the clinical symptoms of both disorders. In the present study, we investigated the ability of δ-aminolevulinate (ALA), the heme precursor, to activate γ-globin gene expression as well as its effects on cellular functions in erythroid cell systems. We demonstrated that ALA induced γ-globin expression at both the transcriptional and protein levels in the KU812 erythroid cell line. Using inhibitors targeting two enzymes in the heme biosynthesis pathway, we showed that cellular heme biosynthesis was involved in ALA-mediated γ-globin activation. Moreover, the transcription factor NRF2 (nuclear factor [erythroid-derived 2]-like 2), a critical regulator of the cellular antioxidant response, was activated by ALA and contributed to mechanisms of γ-globin activation; ALA did not affect cell proliferation and was not toxic to cells. Subsequent studies demonstrated ALA-induced γ-globin activation in erythroid progenitors generated from normal human CD34+ stem cells. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia. Impact statement Inherited mutations in the β-globin-like genes result in the most common forms of genetic blood disease including sickle cell disease (SCD) and β-thalassemia worldwide. Therefore, effective inexpensive therapies that can be distributed widely are highly desirable. Currently, drug-mediated fetal hemoglobin (HbF) induction can ameliorate clinical symptoms of SCD and β-thalassemia and is the most effective strategy for developing new therapeutic options. In the current study, we confirmed that δ-Aminolevulinate (ALA), the precursor of heme, induces γ-globin expression at both the transcriptional and translational levels in primary human erythroid progenitors. Moreover, the results indicate activation of the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) by ALA to enhance HbF expression. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Alexander Yu
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Christina M Ward
- Department of Biochemistry and Molecular Biology, Boston University, Boston, MA 02118, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Ali H, Iftikhar F, Shafi S, Siddiqui H, Khan IA, Choudhary MI, Musharraf SG. Thiourea derivatives induce fetal hemoglobin production in-vitro: A new class of potential therapeutic agents for β-thalassemia. Eur J Pharmacol 2019; 855:285-293. [PMID: 31100414 DOI: 10.1016/j.ejphar.2019.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Fetal hemoglobin (HbF) induction is a cost-effective therapeutic approach for the treatment of β-hemoglobinopathies like β-thalassemia and sickle cell anemia. The present study discusses the potential of thiourea derivatives as new class of compounds that induce the fetal hemoglobin production. HbF inducing effect of thiourea derivatives was studied using experimental cell system, the human erythroleukemic K562 cell line. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. The results indicated that newly synthesized thiourea derivative are potent inducers of erythroid differentiation of K562 cells with an increased γ-globin gene expression and fetal hemoglobin production. Moreover, these compounds showed no cytotoxic effect and inhibition on K562 cells at HbF inducing concentrations. It is important to note that hydroxyurea is a cytotoxic chemotherapeutic agent and have deleterious side effects, reflecting the need to identify new safe and effective HbF induces. These results signify thiourea derivatives as promising HbF inducers, with the potential to be studied against hematological disorders, including β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sarah Shafi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ishtiaq Ahmad Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol 2019; 854:398-405. [PMID: 31039344 DOI: 10.1016/j.ejphar.2019.04.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022]
Abstract
Hemoglobinopathies, such as β-thalassemia, and sickle cell disease (SCD) are caused by abnormal structure or reduced production of β-chains and affect millions of people worldwide. Hereditary persistence of fetal hemoglobin (HPFH) is a condition which is naturally occurring and characterized by a considerable elevation of fetal hemoglobin (HbF) in adult red blood cells. Individuals with compound heterozygous β-thalassemia or SCD and HPFH have milder clinical symptoms. So, HbF reactivation has long been sought as an approach to mitigate the clinical symptoms of β-thalassemia and SCD. Using CRISPR-Cas9 genome-editing strategy, we deleted a 200bp genomic region within the human erythroid-specific BCL11A (B-cell lymphoma/leukemia 11A) enhancer in KU-812, KG-1, and K562 cell lines. In our study, deletion of 200bp of BCL11A erythroid enhancer including GATAA motif leads to strong induction of γ-hemoglobin expression in K562 cells, but not in KU-812 and KG-1 cells. Altogether, our findings highlight the therapeutic potential of CRISPR-Cas9 as a precision genome editing tool for treating β-thalassemia. In addition, our data indicate that KU-812 and KG-1 cell lines are not good models for studying HbF reactivation through inactivation of BCL11A silencing pathway.
Collapse
|
6
|
Afantitis A, Leonis G, Gambari R, Melagraki G. Consensus Predictive Model for Human K562 Cell Growth Inhibition through Enalos Cloud Platform. ChemMedChem 2018; 13:555-563. [PMID: 29195008 DOI: 10.1002/cmdc.201700675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/27/2022]
Abstract
β-Thalassemia is an inherited hematologic disorder caused by various mutations of the β-globin gene, thus resulting in a significant decrease in adult hemoglobin (HbA) production. An increase in fetal hemoglobin (HbF) levels by drug molecules is considered of great potential in β-thalassemia treatment and is expected to counterbalance the impaired production of HbA. In this work, based on a set of 129 experimentally tested biological inhibitors, we developed and validated a computational model for the prediction of K562 functional inhibition, possibly associated with HbF induction. To facilitate future advancements in the field, we incorporated our model into Enalos Cloud Platform, which enabled online access to our computational scheme (http://enalos.insilicotox.com/K562) through a user-friendly interface. This web service is offered to the wider community to promote in silico drug discovery through fast and reliable predictions.
Collapse
Affiliation(s)
| | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Georgia Melagraki
- Department of Military Sciences, Division of Physical Sciences and Applications, Hellenic Army Academy Vari, Greece
| |
Collapse
|
7
|
Krishnamoorthy S, Pace B, Gupta D, Sturtevant S, Li B, Makala L, Brittain J, Moore N, Vieira BF, Thullen T, Stone I, Li H, Hobbs WE, Light DR. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight 2017; 2:96409. [PMID: 29046485 DOI: 10.1172/jci.insight.96409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) results from a point mutation in the β-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)-like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell-derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate γ-globin transcription and enhance HbF in tissue culture and in murine and primate models. DMF recruited Nrf2 to the γ-globin promoters and the locus control region of the β-globin locus in erythroleukemia cells, elevated HbF in SCD donor-derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased γ-globin mRNA in BM and HbF protein in rbc. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification.
Collapse
Affiliation(s)
| | | | - Dipti Gupta
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | | | | | | | - Julia Brittain
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | - Nancy Moore
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | | | | | | | - Huo Li
- Computational Biology, Biogen, Cambridge, Massachusetts, USA
| | - William E Hobbs
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | - David R Light
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| |
Collapse
|
8
|
Zhu X, Li B, Pace BS. NRF2 mediates γ-globin gene regulation and fetal hemoglobin induction in human erythroid progenitors. Haematologica 2017; 102:e285-e288. [PMID: 28473619 DOI: 10.3324/haematol.2016.160788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xingguo Zhu
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| | - Biaoru Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Aimola IA, Inuwa HM, Nok AJ, Mamman AI, Bieker JJ. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells. Eur J Pharmacol 2016; 776:9-18. [PMID: 26879870 DOI: 10.1016/j.ejphar.2016.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/27/2022]
Abstract
Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ(9) desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ(9)-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer.
Collapse
Affiliation(s)
- Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Nigeria; Africa Center for Excellence on Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 800001, Nigeria; Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | - Hajiya M Inuwa
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Nigeria; Africa Center for Excellence on Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 800001, Nigeria
| | - Andrew J Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria 800001, Nigeria; Africa Center for Excellence on Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 800001, Nigeria
| | - Aisha I Mamman
- Department of Hematology, Ahmadu Bello University Teaching Hospital, Zaria 800001, Nigeria
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
10
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Natural Remedies for the Treatment of Beta-Thalassemia and Sickle Cell Anemia-Current Status and Perspectives in Fetal Hemoglobin Reactivation. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:123257. [PMID: 27350962 PMCID: PMC4897541 DOI: 10.1155/2014/123257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
For the treatment of β-thalassemia and sickle cell disease (SCD), pharmacological induction of fetal hemoglobin (HbF) production may be a promising approach. To date, numerous studies have been done on identifying the novel HbF-inducing agents and understanding the underlying mechanism for stimulating the HbF production. In this review, we have summarized the identified HbF-inducing agents by far. By examining the action mechanisms of the HbF-inducing agents, various studies have suggested that despite the ability of stimulating HbF production, the chemotherapeutic agents could not be practically applied for treating β-hemoglobinopathies, especially β-thalassemia, due to the their cytotoxicity and growth-inhibitory effect. Owing to this therapeutic obstacle, much effort has been put on identifying new HbF-inducing agents from the natural world with the combination of efficacy, safety, and ease of use. Therefore, this review aims to (i) reveal the novel screening platforms for identifying potential inducers with high efficiency and accuracy and to (ii) summarize the new identified natural remedies for stimulating HbF production. Hopefully, this review can provide a new insight into the current status and future perspectives in fetal hemoglobin reactivation for treating β-thalassaemia and SCD.
Collapse
|
12
|
Li B, Ding L, Yang C, Kang B, Liu L, Story MD, Pace BS. Characterization of transcription factor networks involved in umbilical cord blood CD34+ stem cells-derived erythropoiesis. PLoS One 2014; 9:e107133. [PMID: 25211130 PMCID: PMC4161396 DOI: 10.1371/journal.pone.0107133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
Fetal stem cells isolated from umbilical cord blood (UCB) possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for β-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs) associated with the γ/β-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The γ/β-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip. After data normalization, Gene Set Enrichment Analysis identified transcription factors (TFs) with significant changes in expression during the γ/β-globin switch. Forty-five TFs were silenced by day 56 (Profile-1) and 30 TFs were activated by day 56 (Profile-2). Both GSEA datasets were analyzed using the MIMI Cytoscape platform, which discovered TFNs centered on KLF4 and GATA2 (Profile-1) and KLF1 and GATA1 for Profile-2 genes. Subsequent shRNA studies in KU812 leukemia cells and human erythroid progenitors generated from UCB-CD34+ cells supported a negative role of MAFB in γ-globin regulation. The characteristics of erythroblasts derived from UCB-CD34+ stem cells including prolonged γ-globin expression combined with unique TFNs support novel mechanisms controlling the γ/β-globin switch during UCB-derived erythropoiesis.
Collapse
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lianghao Ding
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chinrang Yang
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Baolin Kang
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
| | - Li Liu
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Michael D. Story
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Betty S. Pace
- Department of Pediatrics, Hematology/Oncology Division, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Promsote W, Makala L, Li B, Smith SB, Singh N, Ganapathy V, Pace BS, Martin PM. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina. Invest Ophthalmol Vis Sci 2014; 55:5382-93. [PMID: 24825111 DOI: 10.1167/iovs.14-14179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. METHODS Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. RESULTS Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. CONCLUSIONS The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia, United States
| | - Levi Makala
- Department of Pediatrics, Georgia Regents University, Augusta, Georgia, United States
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, Georgia, United States
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia, United States The Cancer Center, Georgia Regents University, Augusta, Georgia, United States
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia, United States James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States The Cancer Center, Georgia Regents University, Augusta, Georgia, United States
| | - Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, Georgia, United States The Cancer Center, Georgia Regents University, Augusta, Georgia, United States
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia, United States Department of Ophthalmology, Georgia Regents University, Augusta, Georgia, United States
| |
Collapse
|
14
|
Aimola IA, Inuwa HM, Nok AJ, Mamman AI. Induction of foetal haemoglobin synthesis in erythroid progenitor stem cells: mediated by water-soluble components of Terminalia catappa. Cell Biochem Funct 2014; 32:361-7. [PMID: 24470326 DOI: 10.1002/cbf.3024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/03/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
Current novel therapeutic agents for the treatment of sickle cell anaemia (SCA) focus on increasing foetal haemoglobin (HbF) levels in SCA patients. Unfortunately, the only approved HbF-inducing agent, hydroxyurea, has long-term unpredictable side effects. Studies have shown the potential of plant compounds to modulate HbF synthesis in primary erythroid progenitor stem cells. We isolated a novel HbF-inducing Terminalia catappa distilled water active fraction (TCDWF) from Terminalia catappa leaves that induced the commitment of erythroid progenitor stem cells to the erythroid lineage and relatively higher HbF synthesis of 9.2- and 6.8-fold increases in both erythropoietin (EPO)-independent and EPO-dependent progenitor stem cells respectively. TCDWF was differentially cytotoxic to EPO-dependent and EPO-independent erythroid progenitor stem cell cultures as revealed by lactate dehydrogenase release from the cells. TCDWF demonstrated a protective effect on EPO-dependent and not EPO-independent progenitor cells. TCDWF induced a modest increase in caspase 3 activity in EPO-independent erythroid progenitor stem cell cultures compared with a significantly higher (P˂0.05) caspase 3 activity in EPO-dependent ones. The results demonstrate that TCDWF may hold promising HbF-inducing compounds, which work synergistically, and suggest a dual modulatory effect on erythropoiesis inherent in this active fraction.
Collapse
Affiliation(s)
- I A Aimola
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
15
|
Li H, Xie W, Gore ER, Montoute MN, Bee WT, Zappacosta F, Zeng X, Wu Z, Kallal L, Ames RS, Pope AJ, Benowitz A, Erickson-Miller CL. Development of phenotypic screening assays for γ-globin induction using primary human bone marrow day 7 erythroid progenitor cells. ACTA ACUST UNITED AC 2013; 18:1212-22. [PMID: 24163393 DOI: 10.1177/1087057113499776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sickle cell anemia (SCA) is a genetic disorder of the β-globin gene. SCA results in chronic ischemia with pain and tissue injury. The extent of SCA symptoms can be ameliorated by treatment with drugs, which result in increasing the levels of γ-globin in patient red blood cells. Hydroxyurea (HU) is a Food and Drug Administration-approved drug for SCA, but it has dose-limiting toxicity, and patients exhibit highly variable treatment responses. To identify compounds that may lead to the development of better and safer medicines, we have established a method using primary human bone marrow day 7 erythroid progenitor cells (EPCs) to screen for compounds that induce γ-globin production. First, human marrow CD34(+) cells were cultured and expanded for 7 days and characterized for the expression of erythroid differentiation markers (CD71, CD36, and CD235a). Second, fresh or cryopreserved EPCs were treated with compounds for 3 days in 384-well plates followed by γ-globin quantification by an enzyme-linked immunosorbent assay (ELISA), which was validated using HU and decitabine. From the 7408 compounds screened, we identified at least one new compound with confirmed γ-globin-inducing activity. Hits are undergoing analysis in secondary assays. In this article, we describe the method of generating fit-for-purpose EPCs; the development, optimization, and validation of the ELISA and secondary assays for γ-globin detection; and screening results.
Collapse
Affiliation(s)
- Hu Li
- 1Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 2013; 42:1365-78. [PMID: 24157834 PMCID: PMC3902937 DOI: 10.1093/nar/gkt947] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and β-thalassemia are common genetic disorders caused by mutations in β-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human β-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous β-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human γ-globin, a pharmacologic target in sickle cell disease therapy. Using the β-globin and γ-globin TALENs, we generated cell lines that express GFP under the control of the endogenous β-globin promoter and tdTomato under the control of the endogenous γ-globin promoter. With these fluorescent reporter cell lines, we screened a library of small molecule compounds for their differential effect on the transcriptional activity of the endogenous β- and γ-globin genes and identified several that preferentially upregulate γ-globin expression.
Collapse
Affiliation(s)
- Richard A Voit
- Department of Pediatrics, Stanford University, 1291 Welch Rd. Stanford, CA 94305, USA and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
17
|
Information exploration system for sickle cell disease and repurposing of hydroxyfasudil. PLoS One 2013; 8:e65190. [PMID: 23762313 PMCID: PMC3677893 DOI: 10.1371/journal.pone.0065190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Background Sickle cell disease (SCD) is a fatal monogenic disorder with no effective cure and thus high rates of morbidity and sequelae. Efforts toward discovery of disease modifying drugs and curative strategies can be augmented by leveraging the plethora of information contained in available biomedical literature. To facilitate research in this direction we have developed a resource, Dragon Exploration System for Sickle Cell Disease (DESSCD) (http://cbrc.kaust.edu.sa/desscd/) that aims to promote the easy exploration of SCD-related data. Description The Dragon Exploration System (DES), developed based on text mining and complemented by data mining, processed 419,612 MEDLINE abstracts retrieved from a PubMed query using SCD-related keywords. The processed SCD-related data has been made available via the DESSCD web query interface that enables: a/information retrieval using specified concepts, keywords and phrases, and b/the generation of inferred association networks and hypotheses. The usefulness of the system is demonstrated by: a/reproducing a known scientific fact, the “Sickle_Cell_Anemia–Hydroxyurea” association, and b/generating novel and plausible “Sickle_Cell_Anemia–Hydroxyfasudil” hypothesis. A PCT patent (PCT/US12/55042) has been filed for the latter drug repurposing for SCD treatment. Conclusion We developed the DESSCD resource dedicated to exploration of text-mined and data-mined information about SCD. No similar SCD-related resource exists. Thus, we anticipate that DESSCD will serve as a valuable tool for physicians and researchers interested in SCD.
Collapse
|
18
|
Abstract
The level of fetal hemoglobin (HbF) modifies the severity of the common β-globin disorders. Knowledge of the normal mechanisms that repress HbF in the adult stage has remained limited until recently despite nearly 3 decades of molecular investigation, in part because of imperfect model systems. Recent studies have provided new insights into the developmental regulation of globin genes and identified specific transcription factors and epigenetic regulators responsible for physiologic silencing of HbF. Most prominent among these regulators is BCL11A, a transcriptional repressor that inhibits adult-stage HbF expression. KLF1 and c-Myb are additional critical HbF-regulating erythroid transcription factors more broadly involved in erythroid gene expression programs. Chromatin modifiers, including histone deacetylases and DNA methyltransferases, also play key roles in orchestrating appropriate globin gene expression. Taken together, these discoveries present novel therapeutic targets for further consideration. Although substantial hurdles remain, opportunities are now rich for the rational design of HbF inducers.
Collapse
|
19
|
FK228 Analogues Induce Fetal Hemoglobin in Human Erythroid Progenitors. Anemia 2012; 2012:428137. [PMID: 22655179 PMCID: PMC3359661 DOI: 10.1155/2012/428137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Fetal hemoglobin (HbF) improves the clinical severity of sickle cell disease (SCD), therefore, research to identify HbF-inducing agents for treatment purposes is desirable. The focus of our study is to investigate the ability of FK228 analogues to induce HbF using a novel KU812 dual-luciferase reporter system. Molecular modeling studies showed that the structure of twenty FK228 analogues with isosteric substitutions did not disturb the global structure of the molecule. Using the dual-luciferase system, a subgroup of FK228 analogues was shown to be inducers of HbF at nanomolar concentrations. To determine the physiological relevance of these compounds, studies in primary erythroid progenitors confirmed that JMA26 and JMA33 activated HbF synthesis at levels comparable to FK228 with low cellular toxicity. These data support our lead compounds as potential therapeutic agents for further development in the treatment of SCD.
Collapse
|
20
|
Brown G, Hughes PJ, Ceredig R, Michell RH. Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leuk Res 2012; 36:14-22. [DOI: 10.1016/j.leukres.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 12/11/2022]
|
21
|
Kalra IS, Alam MM, Choudhary PK, Pace BS. Krüppel-like Factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol 2011; 154:248-59. [PMID: 21539536 DOI: 10.1111/j.1365-2141.2011.08710.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SP1/Krüppel-like Factor (SP1/KLF) family of transcription factors plays a role in diverse cellular processes, including proliferation, differentiation and control of gene transcription. The discovery of KLF1 (EKLF), a key regulator of HBB (β-globin) gene expression, expanded our understanding of the role of KLFs in erythropoiesis. In this study, we investigated a mechanism of HBG (γ-globin) regulation by KLF4. siRNA-mediated gene silencing and enforced expression of KLF4 in K562 cells substantiated the ability of KLF4 to positively regulate endogenous HBG gene transcription. The physiological significance of this finding was confirmed in primary erythroid cells, where KLF4 knockdown at day 11 significantly attenuated HBG mRNA levels and enforced expression at day 28 stimulated the silenced HBG genes. In vitro binding characterization using the γ-CACCC and β-CACCC probes demonstrated KLF4 preferentially binds the endogenous γ-CACCC, while CREB binding protein (CREBBP) binding was not selective. Co-immunoprecipitation studies confirmed protein-protein interaction between KLF4 and CREBBP. Furthermore, sequential chromatin immunoprecipitation assays showed co-localization of both factors in the γ-CACCC region. Subsequent luciferase reporter studies demonstrated that KLF4 trans-activated HBG promoter activity and that CREBBP enforced expression resulted in gene repression. Our data supports a model of antagonistic interaction of KLF4/CREBBP trans-factors in HBG regulation.
Collapse
Affiliation(s)
- Inderdeep S Kalra
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, USA
| | | | | | | |
Collapse
|