1
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Xu L, Jiang H, Xie J, Xu Q, Zhou J, Lu X, Wang M, Dong L, Zuo D. Mannan-binding lectin ameliorates renal fibrosis by suppressing macrophage-to-myofibroblast transition. Heliyon 2023; 9:e21882. [PMID: 38034794 PMCID: PMC10685189 DOI: 10.1016/j.heliyon.2023.e21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Mannan-binding lectin (MBL) is a pattern-recognition molecule that plays a crucial role in innate immunity. MBL deficiency correlates with an increased risk of chronic kidney disease (CKD). However, the molecular mechanisms are not fully defined. Here, we established a CKD model in wild-type (WT) and MBL-deficient (MBL-/-) mice via unilateral ureteral obstruction (UUO). The result showed that MBL deficiency aggravated the pathogenesis of renal fibrosis in CKD mice. Strikingly, the in vivo macrophage depletion investigation revealed that macrophages play an essential role in the MBL-mediated suppression of renal fibrosis. We found that MBL limited the progression of macrophage-to-myofibroblast transition (MMT) in kidney tissues of UUO mice. Further in vitro study showed that MBL-/- macrophages exhibited significantly increased levels of fibrotic-related molecules compared with WT cells upon transforming growth factor beta (TGF-β) stimulation. We demonstrated that MBL inhibited the MMT process by suppressing the production of matrix metalloproteinase 9 (MMP-9) and activation of Akt signaling. In summary, our study revealed an expected role of MBL on macrophage transition during renal fibrosis, thus offering new insight into the potential of MBL as a therapeutic target for CKD.
Collapse
Affiliation(s)
- Li Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
| | - Honglian Jiang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong, 510030, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jingwen Xie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qishan Xu
- Clinical Research Institute of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong Province, 524045, China
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100, China
| | - Lijun Dong
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
4
|
Gao W, Zhang S, Guorong L, Liu Q, Zhu A, Gui F, Zou Y, Wu Y, Luo Y, Hong Z. Nc886 promotes renal cancer cell drug-resistance by enhancing EMT through Rock2 phosphorylation-mediated β-catenin nuclear translocation. Cell Cycle 2022; 21:340-351. [PMID: 34974812 PMCID: PMC8855853 DOI: 10.1080/15384101.2021.2020431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drug resistance is a significant challenge in the present treatment regimens of renal cell carcinoma (RCC). Our previous study confirmed that nc886 functions as an oncogene in RCC. Nevertheless, the role and underlying mechanism of nc886 in RCC drug resistance are unclear. In the present study, Sunitinib and Everolimus treatment, respectively, downregulated nc886 expression in a dose-dependent manner in all four renal cancer cell lines. Nc886 overexpression in 786-O cells and ACHN cells significantly reduced the sensitivity of cancer cells to both Sunitinib and Everolimus treatment, respectively, by promoting cell viability and inhibiting cell apoptosis, whereas nc886 silencing increased cancer cell sensitivity. In renal cancer cell line with the highest drug-resistance, 786-O cells, Sunitinib, or Everolimus treatment enhanced the cellular EMT and was further enhanced by nc886 overexpression while attenuated by nc886 silencing. In 786-O cells, nc886 overexpression significantly promoted EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation under Sunitinib or Everolimus treatment. Moreover, ROCK2 silencing significantly reversed the effects of nc886 overexpression on EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation, as well as drug-resistant renal cancer cell viability and apoptosis. In conclusion, it was demonstrated that nc886 promotes renal cancer cell proliferation, migration, and invasion, as demonstrated previously. nc886 also promotes renal cancer cell drug-resistance to Sunitinib or Everolimus by promoting EMT through Rock2 phosphorylation-mediated nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Weiyin Gao
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Children’s Hospital, Nanchang, Jiangxi Province, China
| | - Li Guorong
- Department of Urology, North Hospital, Chu Saint-Etienne, University of Jean-Monnet, Saint-Etienne, France
| | - Queling Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fu Gui
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yiguo Wu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yang Luo
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Zhengdong Hong The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Esparza-López J, Longoria O, De La Cruz-Escobar EN, Garibay-Díaz JC, León-Rodríguez E, De Jesús Ibarra-Sánchez M. Paclitaxel resistance is mediated by NF-κB on mesenchymal primary breast cancer cells. Oncol Lett 2022; 23:50. [PMID: 34992683 PMCID: PMC8721864 DOI: 10.3892/ol.2021.13168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel has been used widely to treat breast cancer and other types of cancer. However, resistance is a major cause of failure for treatment and results in cancer progression. The present study investigated the association between paclitaxel resistance and the mesenchymal phenotype, using a model of primary breast cancer cells and employing four different cultures, two with an epithelial phenotype (MBCDF and MBCD17) and two with a mesenchymal phenotype (MBCDF-D5 and MBCD3). Epithelial-mesenchymal markers were evaluated by western blotting; MBCDF and MBCD17 cells expressed E-cadherin, SNAIL, Slug, and Twist, low levels of N-cadherin, but not vimentin. MBCDF-D5 and MBCD3 cells expressed N-cadherin, vimentin, and higher levels of SNAIL, and low levels of E-cadherin, Slug, and Twist. Cell viability was evaluated using a crystal violet assay after paclitaxel treatment; primary breast cancer cells with mesenchymal phenotype were resistant to paclitaxel compared with the epithelial primary breast cancer cells. Furthermore, using western blotting, it was revealed that mesenchymal cells had elevated levels of nuclear factor-κΒ (NF-κB) p65 and IκB kinase (IKK). Additionally, it was demonstrated that paclitaxel-induced degradation of the inhibitor of NF-κB, activation of NF-κB in a dose-dependent manner, and Bcl-2 and Bcl-xL upregulation. Finally, employing western blotting and crystal violet assays, the effects of the proteasome inhibitor ALLN were assessed. ALLN inhibited paclitaxel-induced NF-κB activation and restored the sensitivity to paclitaxel. Together, these data suggest that targeting the NF-κB/IKK axis might be a promising strategy to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- José Esparza-López
- Biochemistry Unit, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico.,Research Support Network, National Autonomous University of Mexico-Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Ossian Longoria
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | | | - Julio Cesar Garibay-Díaz
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | - Eucario León-Rodríguez
- Hematology and Oncology Department, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City 14080, Mexico
| | | |
Collapse
|
6
|
Jin XW, Wang QZ, Zhao Y, Liu BK, Zhang X, Wang XJ, Lu GL, Pan JW, Shao Y. An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Transl Androl Urol 2022; 10:4120-4131. [PMID: 34984178 PMCID: PMC8661263 DOI: 10.21037/tau-21-392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Suitable in vitro models are needed to investigate urothelial epithelial to mesenchymal transition (EMT) and pro-fibrogenesis phenotype in bladder pain syndrome/interstitial cystitis (BPS/IC). This study is to establish a novel experimental BPS/IC cell model and explore how different concentrations of tumor necrosis factor (TNF)-α influence the EMT and pro-fibrogenesis phenotype of urothelial cells. Methods SV-HUC-1 urothelial cells were cultured with 2, 10, or 50 ng/mL TNF-α to mimic chronic inflammatory stimulation. The EMT and pro-fibrogenesis phenotype, including production of collagen I and pro-fibrosis cytokines, were estimated after 72 h of culture. Results The bladder urothelial cells of BPS/IC exhibited upregulated vimentin, TNF-α and TNF receptor, downregulated E-cadherin, and increased collagen I. Higher concentrations of TNF-α (10 and 50 ng/mL) produced an obvious mesenchymal morphology, enhanced invasion and migratory capacity, increased expression of vimentin, and decreased expression of E-cadherin. Collagen I was increased in cells treated with 2 and 10 ng/mL TNF-α after 72 h. Secretion of interleukin (IL)-6 and IL-8 was promoted with 10 and 50 ng/mL TNF-α, while that of IL-1β or transforming growth factor-β was unaffected. Slug and Smad2 were upregulated by TNF-α after 72 h. The Smad pathway was activated most strongly with 10 ng/mL TNF-α and Slug pathway activation was positively correlated with the concentration of TNF-α. Conclusions Sustained 10 ng/mL TNF-α stimulation induced the EMT and pro-fibrogenesis phenotype resembling BPS/IC in SV-HUC-1 cells. Minor inflammatory stimulation induced the pro-fibrogenesis phenotype while severe inflammatory stimulation was more likely to produce significant EMT changes. Different degrees of activation of the Slug and Smad pathways may underlie this phenomenon.
Collapse
Affiliation(s)
- Xing-Wei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Zhang Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Ke Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Jin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Wei Pan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhong T, Jiang Z, Wang X, Wang H, Song M, Chen W, Yang S. Key genes associated with prognosis and metastasis of clear cell renal cell carcinoma. PeerJ 2022; 10:e12493. [PMID: 35036081 PMCID: PMC8740509 DOI: 10.7717/peerj.12493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a tumor that frequently shows the hematogenous pathway and tends to be resistant to radiotherapy and chemotherapy. However, the exact mechanism of ccRCC metastasis remains unknown. METHODS Differentially expressed genes (DEGs) of three gene expression profiles (GSE85258, GSE105288 and GSE22541) downloaded from the Gene Expression Omnibus (GEO) database were analyzed by GEO2R analysis, and co-expressed DEGs among the datasets were identified using a Venn drawing tool. The co-expressed DEGs were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and hub genes were determined based on the protein-protein interaction network established by STRING. After survival analysis performed on UALCAN website, possible key genes were selected and verified in ccRCC cell lines and ccRCC tissues (n = 44). Statistical analysis was conducted using GraphPad Prism (Version 8.1.1). RESULTS A total of 104 co-expressed DEGs were identified in the three datasets. Pathway analysis revealed that these genes were enriched in the extracellular matrix (ECM)-receptor interaction, protein digestion and absorption and focal adhesion. Survival analysis on 17 hub genes revealed that four key genes with a significant impact on survival: procollagen C-endopeptidase enhancer (PCOLCE), prolyl 4-hydroxylase subunit beta (P4HB), collagen type VI alpha 2 (COL6A2) and collagen type VI alpha 3 (COL6A3). Patients with higher expression of these key genes had worse survival than those with lower expression. In vitro experiments revealed that the mRNA expression levels of PCOLCE, P4HB and COL6A2 were three times higher and that of COL6A3 mRNA was 16 times higher in the metastatic ccRCC cell line Caki-1 than the corresponding primary cell line Caki-2. Immunohistochemistry revealed higher expression of the proteins encoded by these four genes in metastatic ccRCC compared with tumors from the corresponding primary sites, with statistical significance. CONCLUSION PCOLCE, P4HB, COL6A2 and COL6A3 are upregulated in metastatic ccRCC and might be related to poor prognosis and distant metastases.
Collapse
Affiliation(s)
- Tingting Zhong
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zeying Jiang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangdong Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Honglei Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meiyi Song
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenfang Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Li R, Lu C, Li X, Chen X, Huang G, Wen Z, Li H, Tao L, Hu Y, Zhao Z, Chen Z, Lai Y. A Four-MicroRNA Panel in Serum as a Potential Biomarker for Screening Renal Cell Carcinoma. Front Genet 2022; 13:897827. [PMID: 35938021 PMCID: PMC9355293 DOI: 10.3389/fgene.2022.897827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Renal cell carcinoma (RCC) has been a major health problem and is one of the most malignant tumors around the world. Serum microRNA (miRNA) profiles previously have been reported as non-invasive biomarkers in cancer screening. The aim of this study was to explore serum miRNAs as potential biomarkers for screening RCC. Methods: A three-phase study was conducted to explore serum miRNAs as potential biomarkers for screening RCC. In the screening phase, 12 candidate miRNAs related to RCC were selected for further study by the ENCORI database with 517 RCC patients and 71 NCs. A total of 220 participants [108 RCC patients and 112 normal controls (NCs)] were enrolled for training and validation. The dysregulated candidate miRNAs were further confirmed with 30 RCC patients and 30 NCs in the training phase and with 78 RCC patients and 82 NCs in the validation phase. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used for assessing the diagnostic value of miRNAs. Bioinformatic analysis and survival analysis were also included in our study. Results: Compared to NCs, six miRNAs (miR-18a-5p, miR-138-5p, miR-141-3p, miR-181b-5p, miR-200a-3p, and miR-363-3p) in serum were significantly dysregulated in RCC patients. A four-miRNA panel was built by combining these candidate miRNAs to improve the diagnostic value with AUC = 0.908. ABCG1 and RNASET2, considered potential target genes of the four-miRNA panel, may play a significant role in the development of RCC. Conclusion: A four-miRNA panel in serum was identified for RCC screening in our study. The four--miRNA panel has a great potential to be a non-invasive biomarker for RCC screening.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Hang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Yimin Hu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zhengping Zhao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- *Correspondence: Zebo Chen, ; Yongqing Lai,
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- *Correspondence: Zebo Chen, ; Yongqing Lai,
| |
Collapse
|
9
|
Thanee M, Dokduang H, Kittirat Y, Phetcharaburanin J, Klanrit P, Titapun A, Namwat N, Khuntikeo N, Wangwiwatsin A, Saya H, Loilome W. CD44 modulates metabolic pathways and altered ROS-mediated Akt signal promoting cholangiocarcinoma progression. PLoS One 2021; 16:e0245871. [PMID: 33780455 PMCID: PMC8007026 DOI: 10.1371/journal.pone.0245871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
CD44 is a transmembrane glycoprotein, the phosphorylation of which can directly trigger intracellular signaling, particularly Akt protein, for supporting cell growth, motility and invasion. This study examined the role of CD44 on the progression of Cholangiocarcinoma (CCA) using metabolic profiling to investigate the molecular mechanisms involved in the Akt signaling pathway. Our results show that the silencing of CD44 decreases Akt and mTOR phosphorylation resulting in p21 and Bax accumulation and Bcl-2 suppression that reduces cell proliferation. Moreover, an inhibition of cell migration and invasion regulated by CD44. Similarly, the silencing of CD44 showed an alteration in the epithelial-mesenchymal transition (EMT), e.g. an upregulation of E-cadherin and a downregulation of vimentin, and the reduction of the matrix metalloproteinase (MMP)-9 signal. Interestingly, a depletion of CD44 leads to metabolic pathway changes resulting in redox status modification and Trolox (anti-oxidant) led to the recovery of the cancer cell functions. Based on our findings, the regulation of CCA progression and metastasis via the redox status-related Akt signaling pathway depends on the alteration of metabolic profiling synchronized by CD44.
Collapse
Affiliation(s)
- Malinee Thanee
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Yingpinyapat Kittirat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
10
|
Bai J, Xu J, Zhao J, Zhang R. lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation. J Cell Physiol 2019; 235:1453-1468. [PMID: 31276207 DOI: 10.1002/jcp.29065] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Our study was intended to provide evidence for whether long noncoding RNA (lncRNA) SNHG1 would accelerate the epithelial-mesenchymal transition (EMT) course intrinsic in colorectal cancer (CRC) by sponging downstream miR-497-5p and miR-195-5p. We altogether collected 338 pairs of CRC and noncancerous tissues, and meanwhile purchased five CRC cell lines (i.e., SW480, HCT116, Lovo, CaCO-2, and HT29) and human embryo intestinal mucosal tissue-sourced cell line (i.e., CCC-HIE-2). The CRC cells as mentioned above were appraised regarding their potencies in proliferation, migration, and invasion, after being transfected with pcDNA3.1-SNHG1, si-SNHG1, miR-195-5p mimic/inhibitor, and miR-497-5p mimic/inhibitor. Eventually, we depended on reverse transcription-polymerase chain reaction to assess SNHG1, miR-497-5p, and miR-195-5p expressions, and the protein levels of EMT-specific molecules were determined on the strength of western blotting. It seemed that there was a high potential for highly expressed SNHG1 and lowly expressed miR-497/miR-195 to symbolize CRC patients' unfavorable prognosis (p < .05). Concurrently, CRC cells were detected with higher SNHG1 expression and lower miR-497/miR-195 expression than CCC-HIE-2 cells (p < .05). In addition, the EMT process of CRC cells was facilitated markedly against the contexts of overexpressed SNHG1 and underexpressed miR-497-5p/miR-195-5p. Intriguingly, the strength of miR-195-5p collaborating with miR-497-5p in affecting the activity of CRC cells seemed to overweigh that of miR-497/miR-195-5p alone. Besides, both miR-195-5p and miR-497-5p were subjected to in vivo and in vitro modification of SNHG1 (p < .05). Conclusively, application of lncRNA SNHG1 for treating CRC might be promising, given its dual modulation of miR-497 and miR-195 underlying CRC pathogenesis.
Collapse
Affiliation(s)
- Jinghui Bai
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang, Liaoning, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang, Liaoning, China
| | - Jian Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang, Liaoning, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Insititute, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Liang TS, Zheng YJ, Wang J, Zhao JY, Yang DK, Liu ZS. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:97. [PMID: 30791932 PMCID: PMC6385449 DOI: 10.1186/s13046-019-1023-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis with the involvement of microRNAs (miRNAs). This study aims to assess the role of miR-506 working in tandem with LIM Homeobox 2 (LHX2) in EMT and metastasis through the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC). Methods Differentially expressed genes associated with NPC were screened using microarray analyses, from which LHX2 was identified. Next, the potential relationship between miR-506 and LHX2 was analyzed. In order to explore the effect of miR-506 or LHX2 on NPC cell proliferation, migration, invasion and apoptosis, serials of mimics, inhibitors or siRNA against LHX2 were transfected into NPC cells. Then, the expression patterns of LHX2, Wnt1, β-catenin, E-cadherin, Vimentin, TCF4 and Twist were determined to assess the influence of miR-506 or LHX2 on EMT as well as the relationship between the Wnt/β-catenin signaling pathway and TCF4. The tumorigenicity and lymph node metastasis (LNM) in xenograft tumors of nude mice were observed. Results The has-miR-506-3p was identified as the down-regulated gene in NPC based on the microarray data while LHX2 was negatively regulated by miR-506. Over-expression of miR-506 or silencing of LHK2 inhibited NPC cell proliferation, migration, invasion, tumorigenicity and LNM but promoted apoptosis indicated by decreased Wnt1, β-catenin, Vimentin, TCF4 and Twist expressions along with increased E-cadherin expressions. Conclusions miR-506 inhibits tumor growth and metastasis in NPC via inhibition of Wnt/β-catenin signaling by down-regulating LHX2, accompanied by decreased TCF4. Taken together, miR-506 targeted-inhibition LHX2 presents a promising therapeutic strategy for the treatment of NPC. Trial registration ChiCTR1800018889. Registered 15 October 2018. Electronic supplementary material The online version of this article (10.1186/s13046-019-1023-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian-Song Liang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Ying-Juan Zheng
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Juan Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Jing-Yi Zhao
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China
| | - Dao-Ke Yang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| | - Zhang-Suo Liu
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengdong Branch, Zhengzhou, 475000, Henan Province, People's Republic of China.
| |
Collapse
|
12
|
Lee CH. Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochem Pharmacol 2018; 158:261-273. [DOI: 10.1016/j.bcp.2018.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
|
13
|
Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W, Yao M, Nie S. Protective effect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol 2018; 136:168-174. [PMID: 30471963 DOI: 10.1016/j.molimm.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity in the critical care units. Though, it was commonly accepted that inflammation and apoptosis of lung epithelial cells played an essential role in the pathogenesis of ALI, the underlying mechanism remain unknown. In our study, we found that LPS-induced cell apoptosis could be counteracted by elevated cell autophagy. In LPS-treated MLE-12 cells, suppression of autophagy via 3-MA could aggravate LPS-induced apoptosis, while activation of autophagy via Rapamycin could effectively impair the apoptosis of MLE-12 cells induced by LPS. In order to further discover the molecular regulation mechanism between apoptosis and autophagy in LPS-treated MLE-12 cells, we demonstrated that autophagy could induced the expression of Nrf2, followed with the decrease of p-p65. Targeted inhibition of Nrf2 could induce enlarged cell apoptosis via increasing the level of p-p65. In addition, we demonstrated that ginsenoside Rg1 protected MLE-12 cells from LPS-induced apoptosis via augmenting autophagy and inducing the expression of Nrf2. Our data implicates that activation of autophagy and Nrf2 by ginsenoside Rg1 may provide a preventive and therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; Department of Critical Care Medicine, Xuyi People's hospital, xuyi, 211700, Jiangsu, PR China.
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Weijun Chen
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Mengya Yao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, 210002, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| |
Collapse
|
14
|
Guo S, Deng CX. Effect of Stromal Cells in Tumor Microenvironment on Metastasis Initiation. Int J Biol Sci 2018; 14:2083-2093. [PMID: 30585271 PMCID: PMC6299363 DOI: 10.7150/ijbs.25720] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular environment where tumor cells reside is called the tumor microenvironment (TME), which consists of borders, blood vessels, lymph vessels, extracellular matrix (ECM), stromal cells, immune/inflammatory cells, secreted proteins, RNAs and small organelles. By dynamically interacting with tumor cells, stromal cells participate in all stages of tumor initiation, progression, metastasis, recurrence and drug response, and consequently, affect the fate of patients. During the processes of tumor evolution and metastasis initiation, stromal cells in TME also experience some changes and play roles in both the suppression and promotion of metastasis, while the overall function of stromal cells is beneficial for cancer cell survival and movement. In this review, we examine the effects of stromal cells in TME on metastasis initiation, including angiogenesis, epithelial-mesenchymal transition (EMT) and invasion. We also highlight functions of proteins, RNAs and small organelles secreted by stromal cells in their influences on multiple stages of tumor metastasis.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
15
|
Ogasawara N, Kudo T, Sato M, Kawasaki Y, Yonezawa S, Takahashi S, Miyagi Y, Natori Y, Sugiyama A. Reduction of Membrane Protein CRIM1 Decreases E-Cadherin and Increases Claudin-1 and MMPs, Enhancing the Migration and Invasion of Renal Carcinoma Cells. Biol Pharm Bull 2018; 41:604-611. [PMID: 29607933 DOI: 10.1248/bpb.b17-00990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CRIM1 is a membrane protein that has been reported to be related to cell proliferation. CRIM1 is expressed in renal carcinoma cells, but its involvement in proliferation and malignant transformation remains unclear. We analyzed whether alterations in the characteristics of cancer cells are observed following knockdown of CRIM1. Decreased expression of CRIM1 did not affect proliferation or anchorage-independent growth. The results of wound healing and invasion assays showed that reduced expression of CRIM1 increased cells' migratory and invasive abilities. Expression analysis of factors involved in migration and invasion in CRIM1-knockdown cells revealed that expression of the cell adhesion factor E-cadherin declined and expression of claudin-1, which is upregulated in metastatic cancer cells, increased. In addition, increased expression of matrix metalloproteinase (MMP) 2 and MMP9, protease essential for cancer cell invasiveness, was observed. Furthermore, an increase in phosphorylated focal adhesion kinase (FAK), which increases cell migration, was observed. Increased expression of the E-cadherin transcription repressors Snail, Slug, and ZEB-1 were observed, and mRNA levels of E-cadherin were decreased. Therefore, expression of E-cadherin is thought to be decreased by both suppression of E-cadherin mRNA expression and promotion of degradation of the E-cadherin protein. In addition, expression of CRIM1 was decreased in renal cancer cells undergoing epithelial-mesenchymal transition (EMT) stimulated by tumor necrosis factor alpha (TNF-α). Thus, CRIM1 regulates the expression of several EMT-related factors and appears to play a role in suppressing migration and invasion through control of EMT.
Collapse
Affiliation(s)
- Nobutaka Ogasawara
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Tamami Kudo
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Masaki Sato
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Yasushi Kawasaki
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Sei Yonezawa
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Satoru Takahashi
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Science, Mukogawa Women's University
| | - Yohei Miyagi
- Division of Molecular Pathology and Genetics, Kanagawa Cancer Center Research Institute
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| | - Akinori Sugiyama
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
16
|
Schiffmacher AT, Adomako-Ankomah A, Xie V, Taneyhill LA. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation. Dev Biol 2018; 444 Suppl 1:S237-S251. [PMID: 29958899 DOI: 10.1016/j.ydbio.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
During epithelial-to-mesenchymal transitions (EMTs), chick cranial neural crest cells simultaneously delaminate from the basement membrane and segregate from the epithelia, in part, via multiple protease-mediated mechanisms. Proteolytic processing of Cadherin-6B (Cad6B) in premigratory cranial neural crest cells by metalloproteinases not only disassembles cadherin-based junctions but also generates shed Cad6B ectodomains or N-terminal fragments (NTFs) that may possess additional roles. Here we report that Cad6B NTFs promote delamination by enhancing local extracellular proteolytic activity around neural crest cells undergoing EMT en masse. During EMT, Cad6B NTFs of varying molecular weights are observed, indicating that Cad6B may be cleaved at different sites by A Disintegrin and Metalloproteinases (ADAMs) 10 and 19 as well as by other matrix metalloproteinases (MMPs). To investigate Cad6B NTF function, we first generated NTF constructs that express recombinant NTFs with similar relative mobilities to those NTFs shed in vivo. Overexpression of either long or short Cad6B NTFs in premigratory neural crest cells reduces laminin and fibronectin levels within the basement membrane, which then facilitates precocious neural crest cell delamination. Zymography assays performed with supernatants of neural crest cell explants overexpressing Cad6B long NTFs demonstrate increased MMP2 activity versus controls, suggesting that Cad6B NTFs promote delamination through a mechanism involving MMP2. Interestingly, this increase in MMP2 does not involve up-regulation of MMP2 or its regulators at the transcriptional level but instead may be attributed to a physical interaction between shed Cad6B NTFs and MMP2. Taken together, these results highlight a new function for Cad6B NTFs and provide insight into how cadherins regulate cellular delamination during normal developmental EMTs as well as aberrant EMTs that underlie human disease.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Vivien Xie
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 2018; 284:32-40. [DOI: 10.1016/j.cbi.2018.02.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
|
18
|
Urra S, Fischer MC, Martínez JR, Véliz L, Orellana P, Solar A, Bohmwald K, Kalergis A, Riedel C, Corvalán AH, Roa JC, Fuentealba R, Cáceres CJ, López-Lastra M, León A, Droppelmann N, González HE. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis? Oncotarget 2017; 9:2445-2467. [PMID: 29416784 PMCID: PMC5788652 DOI: 10.18632/oncotarget.23502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies.
Collapse
Affiliation(s)
- Soledad Urra
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin C Fischer
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Martínez
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Orellana
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonieta Solar
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Riedel
- Millennium Institute of Immunology and Immunotherapy, Department of Cell Biology, Faculty of Biological Science and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fuentealba
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - C Joaquin Cáceres
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Augusto León
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Droppelmann
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hernán E González
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Zhao C, Xu Z, Wang Z, Suo C, Tao J, Han Z, Gu M, Tan R. Role of tumor necrosis factor-α in epithelial-to-mesenchymal transition in transplanted kidney cells in recipients with chronic allograft dysfunction. Gene 2017; 642:483-490. [PMID: 29174387 DOI: 10.1016/j.gene.2017.11.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic allograft dysfunction (CAD) is characterized by allograft kidney interstitial fibrosis, the underlying mechanism of which is unclear. Our aim was to elucidate the role and mechanism of TNF-α-induced epithelial-to-mesenchymal transition (EMT) in transplant kidney tubular interstitial fibrosis. METHODS Human kidney tissues from normal volunteers and CAD patients were assessed using periodic acid-Schiff, Masson trichrome and immunohistochemical staining. mRNA and protein expression of E-cadherin, α-smooth muscle actin (SMA) and fibronectin(FN) in renal proximal tubule epithelial (HK-2) cells after treatment with TNF-α under different conditions were assessed using western blot and qRT-PCR analysis. Cell motility and migration were assessed using wound healing and transwell assays. Expression of Smurf2 and TNF-α-signaling pathway-related proteins in HK-2 cells treated with TNF-α was detected by western blotting. E-cadherin and α-SMA expression was also assessed in Smurf2 plasmid-transfected or Smurf2 siRNA-treated HK-2 cells. RESULTS The expression of TNF-α, Smurf2, α-SMA, and fibronectin was significantly upregulated, while the expression of E-cad was downregulated in the CAD group compared with the normal group. The in vitro results showed that TNF-α remarkably upregulated the expression of Smurf2, α-SMA and fibronectin and downregulated the expression of E-cadherin in HK-2 cells and enhanced motility and migration in HK-2 cells. Overexpression of Smurf2 could promote the expression of α-SMA and inhibit the expression of E-cad, whereas knockdown of Smurf2 expression reversed TNF-α-induced upregulation of α-SMA and prohibited the reduction of E-cad expression. Furthermore, TNF-α-induced Smurf2 expression promoted EMT through the Akt signaling pathway. CONCLUSIONS TNF-α induced EMT via the TNF-α/Akt/Smurf2 signaling pathways, and it may play a role in aggravating allograft kidney interstitial fibrosis in CAD patients.
Collapse
Affiliation(s)
- Chunchun Zhao
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Zhen Xu
- Department of Urology, Taizhou First People's Hospital, Taizhou 225300, China
| | - Zijie Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Chuanjian Suo
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Jun Tao
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Zhijian Han
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Min Gu
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China.
| | - Ruoyun Tan
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China.
| |
Collapse
|
20
|
Hikami S, Shiozaki A, Kitagawa-Juge M, Ichikawa D, Kosuga T, Konishi H, Komatsu S, Fujiwara H, Okamoto K, Otsuji E. The Role of cIAP1 and XIAP in Apoptosis Induced by Tumor Necrosis Factor Alpha in Esophageal Squamous Cell Carcinoma Cells. Dig Dis Sci 2017; 62:652-659. [PMID: 28050781 DOI: 10.1007/s10620-016-4430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND The inhibitor of apoptosis protein (IAP) family are reported to play important roles in cancer cells evading apoptosis. However, the significance of their expression in human esophageal squamous cell carcinoma (ESCC) cells remains uncertain. AIMS The present study aimed to investigate the role of the IAP family members in tumor necrosis factor-α (TNF-α)-induced apoptosis of human ESCC cells. METHODS Five human ESCC cell lines were pretreated with TNF-α, cycloheximide (CHX, protein synthesis inhibitor), epoxomicin (proteasome inhibitor). Apoptosis assay and protein study with Western blot testing were conducted. Knockdown experiments with IAP siRNA were conducted, and the effect on cell apoptosis was analyzed. RESULTS Significant apoptosis was induced in five ESCC cell lines by TNF-α plus CHX stimulation, but not when treated with TNF-α or CHX alone. The protein expression levels of cIAP1 and XIAP were decreased by treatment with TNF-α in the presence of CHX, and the degree of cIAP1 and XIAP expression decrease was correlated with sensitivity to TNF-α plus CHX-induced apoptosis. Epoxomicin suppressed TNF-α plus CHX-induced degradation of survivin, cIAP1, and XIAP, in addition to apoptosis. A caspase inhibitor (z-VAD-fmk) suppressed TNF-α plus CHX-induced apoptosis, but did not suppress degradation of survivin, cIAP1, and XIAP. Furthermore, cIAP1 or XIAP siRNA transfected cells underwent apoptosis in response to treatment with TNF-α alone. Double knockdown of both genes resulted in further increased apoptosis. CONCLUSION cIAP1 and XIAP play an essential role in the resistance of ESCC cells against apoptosis.
Collapse
Affiliation(s)
- Shoichiro Hikami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Maki Kitagawa-Juge
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
21
|
Pang X, Zhang Y, Zhang S. High-mobility group box 1 is overexpressed in cervical carcinoma and promotes cell invasion and migration in vitro. Oncol Rep 2016; 37:831-840. [PMID: 28000879 DOI: 10.3892/or.2016.5317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression of high-mobility group box 1 protein (HMGB1) in cervical carcinoma and explore whether or not HMGB1 promotes cervical carcinoma cell invasion and migration in vitro and the related mechanism. HMGB1, nuclear factor-κB (NF-κB), E-cadherin and N-cadherin protein expression was analyzed in tissues from 48 cervical carcinomas, 51 cervical intraepithelial neoplasia (CIN) and tissues from 24 healthy controls using immunohistochemistry. HeLa cells were treated with different concentrations of HMGB1 (0, 10, 100, and 1,000 ng/ml) at different time-points (0, 24, 48 and 72 h), and changes in cell morphology and biological behaviors were observed. Changes in the expression levels of E-cadherin, N-cadherin, NF-κB and the inhibitor κB (IκB) in the treated cells were detected by western blot analysis and real-time PCR. HMGB1 expression exhibited a gradually increasing trend in the normal cervical tissues, CIN and cervical cancer, and there was statistical significance between the three groups (P<0.05). HMGB1 expression level was associated with FIGO stage, lymph node metastasis and differentiation (P<0.05). HMGB1 expression was positively related to N-cadherin and NF-κB; and HMGB1 had a negative relationship with E-cadherin. HMGB1 stimulation caused HeLa cells to lose cell polarity and transition from epithelial cells into spindle-shaped cells with sparse cell-cell junctions. The expression levels of E-cadherin and IκB in the cytoplasm were reduced, while N-cadherin expression was increased. The level of NF-κB expression in the nucleus was also increased. Treatment with NF-κB inhibitor (BAY11-7082) and receptor for advanced glycation end products (RAGE) antagonist (anti-RAGE) significantly suppressed HMGB1‑mediated epithelial-to-mesenchymal transition in the HeLa cervical cancer cells. The results suggest that HMGB1 is associated with outcomes of cervical cancer and promotes subsequent invasion and metastasis of cervical cancer cells by activating the NF-κB signaling pathway. This potential mechanism could be an important determinant of cervical cancer metastasis.
Collapse
Affiliation(s)
- Xiaoao Pang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Yao Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Shulan Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
22
|
Khan MI, Czarnecka AM, Lewicki S, Helbrecht I, Brodaczewska K, Koch I, Zdanowski R, Król M, Szczylik C. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS One 2016; 11:e0165718. [PMID: 27812180 PMCID: PMC5094751 DOI: 10.1371/journal.pone.0165718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design.
Collapse
Affiliation(s)
- Mohammed I. Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Anna M. Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Igor Helbrecht
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Klaudia Brodaczewska
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Irena Koch
- Department of Pathomorphology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—WULS, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
23
|
The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial-mesenchymal transition. Oncogenesis 2016; 5:e258. [PMID: 27617642 PMCID: PMC5047960 DOI: 10.1038/oncsis.2016.59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Epithelial tumor cells often acquire malignant properties, such as invasion/metastasis and uncontrolled cell growth, by undergoing epithelial–mesenchymal transition (EMT). However, the mechanisms by which EMT contributes to malignant progression remain elusive. Here we show that the Rho guanine nucleotide exchange factor (GEF) ARHGEF5 promotes tumor malignancy in a manner dependent on EMT status. We previously identified ARHGEF5, a member of the Dbl family of GEFs, as a multifunctional mediator of Src-induced cell invasion and tumor growth. In the present study, ARHGEF5 was upregulated during tumor growth factor-β-induced EMT in human epithelial MCF10A cells, and promoted cell migration by activating the Rho-ROCK pathway. ARHGEF5 was necessary for the invasive and in vivo metastatic activity of human colorectal cancer HCT116 cells. These findings underscore the crucial role of ARHGEF5 in cell migration and invasion/metastasis. An in vivo tumorigenesis assay revealed that ARHGEF5 had the potential to promote tumor growth via the phosphatidylinositol 3-kinase (PI3K) pathway. However, ARHGEF5 was not required for tumor growth in epithelial-like human colorectal cancer HCT116 and HT29 cells, whereas the growth of mesenchymal-like SW480 and SW620 cells depended on ARHGEF5. Induction of EMT by tumor necrosis factor-α or Slug in HCT116 cells resulted in the dependence of tumor growth on ARHGEF5. In these mesenchymal-like cells, Akt was activated via ARHGEF5 and its activity was required for tumor growth. Analysis of a transcriptome data set revealed that the combination of ARHGEF5 upregulation and E-cadherin downregulation or Snail upregulation was significantly correlated with poor prognosis in patients with colorectal cancers. Taken together, our findings suggest that EMT-induced ARHGEF5 activation contributes to the progression of tumor malignancy. ARHGEF5 may serve as a potential therapeutic target in a subset of malignant tumors that have undergone EMT.
Collapse
|
24
|
Sun KH, Sun GH, Wu YC, Ko BJ, Hsu HT, Wu ST. TNF-α augments CXCR2 and CXCR3 to promote progression of renal cell carcinoma. J Cell Mol Med 2016; 20:2020-2028. [PMID: 27297979 PMCID: PMC5082409 DOI: 10.1111/jcmm.12890] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Within the tumour microenvironment, a complex network of chemokines and their receptors affects the initiation and progression of tumours. The higher levels of tumour necrosis factor‐alpha (TNF‐α) are associated with tumour progression and an anti‐TNF‐α monoclonal antibody has been used successfully to treat patients with renal cell carcinoma (RCC). However, the role of chemokines and their receptors in the TNF‐α‐promoted progression of RCC remains unclear. In this study, TNF‐α was found to enhance the migration, invasion and epithelial‐mesenchymal transition (EMT) of RCC cells. To further investigate the molecular mechanism of TNF‐α on the progression of RCC, reverse transcription and quantitative PCR was used to screen chemokines and chemokine receptors that were associated with tumorigenesis. The results showed that TNF‐α significantly increased the expressions of CXCR2 and CXCR3 and their related ligands in RCC cells. Subsequently, we used a lentiviral shRNA system to knockdown the expression of CXCR2 and/or CXCR3 in RCC cells. CXCR2 and CXCR3 silencing inhibited the induction of Slug and ZEB‐1 with TNF‐α treatment of RCC cells. In addition, the knockdown of both CXCR2 and CXCR3 resulted in a greater decrease in cell migration, invasion and clonogenic ability compared with either CXCR2 or CXCR3 knockdown alone. Moreover, CXCR2 and CXCR3 silencing significantly reduced the sphere‐forming ability of RCC cells. High expression levels of CXCR2 and CXCR3 in cancer tissues correlated with tumour progression of renal cell carcinoma. These findings suggest that TNF‐α augments CXCR2 and CXCR3 to promote the progression of renal cell carcinoma leading to a poor prognosis.
Collapse
Affiliation(s)
- Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ching Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Bai-Jiun Ko
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Tzu Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
25
|
Khan MI, Dębski KJ, Dabrowski M, Czarnecka AM, Szczylik C. Gene set enrichment analysis and ingenuity pathway analysis of metastatic clear cell renal cell carcinoma cell line. Am J Physiol Renal Physiol 2016; 311:F424-36. [PMID: 27279483 DOI: 10.1152/ajprenal.00138.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
In recent years, genome-wide RNA expression analysis has become a routine tool that offers a great opportunity to study and understand the key role of genes that contribute to carcinogenesis. Various microarray platforms and statistical approaches can be used to identify genes that might serve as prognostic biomarkers and be developed as antitumor therapies in the future. Metastatic renal cell carcinoma (mRCC) is a serious, life-threatening disease, and there are few treatment options for patients. In this study, we performed one-color microarray gene expression (4×44K) analysis of the mRCC cell line Caki-1 and the healthy kidney cell line ASE-5063. A total of 1,921 genes were differentially expressed in the Caki-1 cell line (1,023 upregulated and 898 downregulated). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) approaches were used to analyze the differential-expression data. The objective of this research was to identify complex biological changes that occur during metastatic development using Caki-1 as a model mRCC cell line. Our data suggest that there are multiple deregulated pathways associated with metastatic clear cell renal cell carcinoma (mccRCC), including integrin-linked kinase (ILK) signaling, leukocyte extravasation signaling, IGF-I signaling, CXCR4 signaling, and phosphoinositol 3-kinase/AKT/mammalian target of rapamycin signaling. The IPA upstream analysis predicted top transcriptional regulators that are either activated or inhibited, such as estrogen receptors, TP53, KDM5B, SPDEF, and CDKN1A. The GSEA approach was used to further confirm enriched pathway data following IPA.
Collapse
Affiliation(s)
- Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| | - Konrad J Dębski
- Bioinformatics Laboratory, Center of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Michał Dabrowski
- Bioinformatics Laboratory, Center of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Anna M Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland; and
| |
Collapse
|
26
|
Chen QY, Zhang LJ, Fan H, Yang J, Xu M, Peng Y. Epithelial-mesenchymal transition, inflammatory bowel disease and colitis associated colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2498-2505. [DOI: 10.11569/wcjd.v24.i16.2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation can induce the formation of a wide variety of tumors. Inflammatory bowel disease is one of the major risk factors for colorectal cancer. Epithelial-mesenchymal transition (EMT) can promote the invasion and metastasis of a variety of cancer cells, including colorectal cancer cells. Different kinds of inflammatory cytokines produced in inflammatory bowel disease could mediate the activation of EMT through a series of pathways, and thus promote the occurrence and development of colitis associated colorectal cancer. This article explores the relationship among EMT, inflammatory bowel disease and colitis associated colorectal cancer, with an aim to provide new ideas and methods for the clinical treatment of colitis associated colorectal cancer.
Collapse
|
27
|
Lv N, Shan Z, Gao Y, Guan H, Fan C, Wang H, Teng W. Twist1 regulates the epithelial-mesenchymal transition via the NF-κB pathway in papillary thyroid carcinoma. Endocrine 2016; 51:469-77. [PMID: 26289126 DOI: 10.1007/s12020-015-0714-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/01/2015] [Indexed: 12/16/2022]
Abstract
Expression of the oncogene Twist1 is correlated with tumor development and metastasis. Recent studies have suggested that the epithelial-to-mesenchymal transition (EMT) is necessary for tumor progression and metastases. Little is known concerning the role of Twist1 and EMT in thyroid cancer. In the present work, the expression levels of Twist1 and one marker of EMT, vimentin, were measured in papillary thyroid carcinoma (PTC). The results showed Twist1 expression to be correlated only with cancer lymph node metastases (P = 0.004) and not with other clinicopathological indicators. Moreover, Twist1 expression was positively correlated with the expression of vimentin (r = 0.408, P = 0.003). In vitro studies further indicated that reducing Twist1 expression using short hairpin RNA against Twist1 can decrease the invasive and metastatic properties of PTC cells and that the down-regulation of Twist1 can reverse EMT by increasing the expression of E-cadherin and down-regulating the expression of vimentin in the PTC cell line IHH-4. To investigate the effects on Twist1, the PTC cell lines TPC-1 and BCPAP were treated with TNF-α, resulting in Twist1 up-regulation that was dependent on NF-κB activation. After the inhibition of NF-κB activity with Bay11-7082, the Twist1 mRNA and protein levels could not be increased. The decline in the Twist1 mRNA and protein levels rendered the cancer cells less invasive. Thus, we conclude that Twist1 plays an important role in the EMT of PTC via the NF-κB pathway.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yun Gao
- Research Center of Stem Cell, He Eye Hospitals, He University, Shenyang, 110163, China.
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Wang
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
28
|
Song J, Feng L, Zhong R, Xia Z, Zhang L, Cui L, Yan H, Jia X, Zhang Z. Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol Carcinog 2016; 56:36-48. [DOI: 10.1002/mc.22471] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Rongling Zhong
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhi Xia
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Zhang
- Clinical Laboratory; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Li Cui
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Hongmei Yan
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine; Nanjing University of Chinese Medicine; Jiangsu Nanjing China
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| | - Zhenhai Zhang
- Key Laboratory of Delivery Systems of Chinese Meteria Medica; Jiangsu Provincial Academy of Chinese Medicine; Jiangsu Nanjing China
| |
Collapse
|
29
|
O’Brown ZK, Van Nostrand EL, Higgins JP, Kim SK. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet 2015; 11:e1005734. [PMID: 26678048 PMCID: PMC4682820 DOI: 10.1371/journal.pgen.1005734] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. The structure and function of human kidneys deteriorate steadily with age, yet little is known about the underlying causes of kidney aging. In this work, we first used a genomics approach to identify candidate regulators of gene expression changes in the aging human kidney and identified inflammation-related transcription factors NFκB, STAT1 and STAT3 as the top candidate regulators. We found that kidney aging is associated with activation of NFκB, STAT1 and STAT3 in the renal parenchyma, and that the gene expression signatures evoked by activation of these transcription factors in human renal epithelial cells mimics age-associated gene expression changes in the kidney. Furthermore, we identified specific genetic variants in the NFκB transcription factor genes RELA and NFKB1 that associate with renal function and chronic kidney disease in humans, implicating NFκB as a potential contributor to the pathogenesis of chronic kidney disease and renal dysfunction in old age. Our findings suggest that activation of the inflammatory transcription factors STAT1, STAT3 and NFκB underlie transcriptional changes and reduced renal function in the elderly.
Collapse
Affiliation(s)
- Zach K. O’Brown
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Cancer Biology Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - John P. Higgins
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
30
|
Thibodeau BJ, Fulton M, Fortier LE, Geddes TJ, Pruetz BL, Ahmed S, Banes-Berceli A, Zhang PL, Wilson GD, Hafron J. Characterization of clear cell renal cell carcinoma by gene expression profiling. Urol Oncol 2015; 34:168.e1-9. [PMID: 26670202 DOI: 10.1016/j.urolonc.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Use global gene expression to characterize differences between high-grade and low-grade clear cell renal cell carcinoma (ccRCC) compared with normal and benign renal tissue. METHODS Tissue samples were collected from patients undergoing surgical resection for ccRCC. Affymetrix gene expression arrays were used to examine global gene expression patterns in high- (n = 16) and low-grade ccRCC (n = 13) as well as in samples from normal kidney (n =14) and benign kidney disease (n = 6). Differential gene expression was determined by analysis of variance with a false discovery rate of 1% and a 2-fold cutoff. RESULTS Comparing high-grade ccRCC with each of normal and benign kidney resulted in 1,833 and 2,208 differentially expressed genes, respectively. Of these, 930 were differentially expressed in both comparisons. In order to identify genes most related to progression of ccRCC, these differentially expressed genes were filtered to identify genes that showed a pattern of expression with a magnitude of change greater in high-grade ccRCC in the comparison to low-grade ccRCC. This resulted in the identification of genes such as TMEM45A, ceruloplasmin, and E-cadherin that were involved in cell processes of cell differentiation and response to hypoxia. Additionally changes in HIF1α and TNF signaling are highly represented by changes between high- and low-grade ccRCC. CONCLUSIONS Gene expression differences between high-grade and low-grade ccRCC may prove to be valuable biomarkers for advanced ccRCC. In addition, altered signaling between grades of ccRCC may provide important insight into the biology driving the progression of ccRCC and potential targets for therapy.
Collapse
Affiliation(s)
| | - Matthew Fulton
- Department of Urology, Beaumont Health System, Royal Oak, MI
| | | | | | | | - Samreen Ahmed
- Beaumont BioBank, Beaumont Health System, Royal Oak, MI
| | | | - Ping L Zhang
- Department of Anatomic Pathology; Beaumont Health System, Royal Oak, MI
| | | | - Jason Hafron
- Department of Urology, Beaumont Health System, Royal Oak, MI
| |
Collapse
|
31
|
Schally AV, Perez R, Block NL, Rick FG. Potentiating effects of GHRH analogs on the response to chemotherapy. Cell Cycle 2015; 14:699-704. [PMID: 25648497 DOI: 10.1080/15384101.2015.1010893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers. Pituitary type GHRH receptors and their splice variants are also expressed in these malignancies. Synthetic antagonists of the GHRH receptor inhibit proliferation of cancers. Besides direct inhibitory effects on tumors, GHRH antagonists also enhance cytotoxic chemotherapy. GHRH antagonists potentiate docetaxel effects on growth of H460 non-small cell lung cancer (NSCLC) and MX-1 breast cancer plus suppressive action of doxorubicin on MX-1 and HCC1806 breast cancer. We investigated mechanisms of antagonists on tumor growth, inflammatory signaling, doxorubicin response, expression of drug resistance genes, and efflux pump function. Triple negative breast cancer cell xenografted into nude mice were treated with GHRH antagonist, doxorubicin, or their combination. The combination reduced tumor growth, inflammatory gene expression, drug-resistance gene expression, cancer stem-cell marker expression, and efflux-pump function. Thus, antagonists increased the efficacy of doxorubicin in HCC1806 and MX-1 tumors. Growth inhibition of H460 NSCLC by GHRH antagonists induced marked downregulation in expression of prosurvival proteins K-Ras, COX-2, and pAKT. In HT-29, HCT-116 and HCT-15 colorectal cancer lines, GHRH antagonist treatment caused cellular arrest in S-phase of cell cycle, potentiated inhibition of in vitro proliferation and in vivo growth produced by S-phase specific cytotoxic agents, 5-FU, irinotecan and cisplatin. This enhancement of cytotoxic therapy by GHRH antagonists should have clinical applications.
Collapse
Affiliation(s)
- Andrew V Schally
- a Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education ; Miami , FL USA
| | | | | | | |
Collapse
|
32
|
Hascoet P, Chesnel F, Le Goff C, Le Goff X, Arlot-Bonnemains Y. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis. Front Oncol 2015; 5:241. [PMID: 26579493 PMCID: PMC4621426 DOI: 10.3389/fonc.2015.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023] Open
Abstract
Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis.
Collapse
Affiliation(s)
- Pauline Hascoet
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Franck Chesnel
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Cathy Le Goff
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Xavier Le Goff
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | | |
Collapse
|
33
|
Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X, Yu J. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 2015; 48:5-12. [PMID: 26548401 DOI: 10.3892/ijo.2015.3234] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a process through which epithelial cells trans-differentiate and acquire an aggressive mesenchymal phenotype. In tumor cells, EMT is a vital step of tumor progression and metastasis. Amid the increasing interest in tumor EMT, only a few studies focused on the soluble mediators secreted by tumor cells passing through this phenotypic switch. In this review, we focus on the essential role of interleukin-8 (IL-8) signaling for the acquisition and maintenance of tumor EMT via direct and indirect mechanisms. Besides the autocrine loop between IL-8 and tumor cells that have gone through EMT, IL-8 could potentiate adjacent epithelial tumor cells into a mesenchymal phenotype via a paracrine mode. Moreover, understanding the role of IL-8 in EMT will provide insight into the pathogenesis of tumor progression and may facilitate the development of an effective strategy for the prevention and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Xinxin Long
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yingnan Ye
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lijie Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Pengpeng Liu
- Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenwen Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Feng Wei
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiubao Ren
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
34
|
Adachi T, Arito M, Suematsu N, Kamijo-Ikemori A, Omoteyama K, Sato T, Kurokawa MS, Okamoto K, Kimura K, Shibagaki Y, Kato T. Roles of layilin in TNF-α-induced epithelial-mesenchymal transformation of renal tubular epithelial cells. Biochem Biophys Res Commun 2015; 467:63-9. [PMID: 26410531 DOI: 10.1016/j.bbrc.2015.09.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α is suggested to induce epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells that possibly exacerbates renal interstitial fibrosis in glomerulonephritis (GN). We here investigated whether layilin (LAYN), a c-type lectin-homologous protein, was involved in the EMT process. METHODS Expression of LAYN was investigated in kidneys of mice administered with TNF-α and in a clear cell renal carcinoma cell line of KMRC-1 stimulated with TNF-α by quantitative polymerase chain reaction (qPCR) and/or western blotting. Expression of LAYN was assessed immunohistochemically in renal biopsy samples of patients with various types of GN. Changes of EMT markers and cell morphology by TNF-α and transforming growth factor (TGF)-β in LAYN-knocked down KMRC-1 cells were investigated by qPCR and immunocytochemistry. RESULTS Administration of TNF-α increased expression of LAYN in renal tubular epithelia in mice. TNF-α but not TGF-β increased expression of LAYN in KMRC-1 cells. Renal biopsy samples from the patients with GN showed high expression of LAYN in tubular epithelial cells. TNF-α induced up-regulation of vimentin, down-regulation of E-cadherin, and fibroblast-like morphological change in KMRC-1 cells, indicating occurrence of EMT. These changes were not observed in the LAYN-knocked down cells. In contrast, similarly occurred TGF-β-induced EMT was not affected by the LAYN knockdown. CONCLUSION Our data indicate that LAYN is involved in the TNF-α-induced EMT of renal tubular epithelial cells. LAYN may play roles in the generation of renal interstitial fibrosis in GN via TNF-α-induced EMT.
Collapse
Affiliation(s)
- Takayuki Adachi
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Mitsumi Arito
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Naoya Suematsu
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | - Kazuki Omoteyama
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Toshiyuki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Manae S Kurokawa
- Disease Biomarker Analysis and Molecular Regulation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Kazuki Okamoto
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | - Kenjiro Kimura
- Japan Community Health Care Organization Tokyo Takanawa Hospital, Tokyo, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Tomohiro Kato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
35
|
Xiao Z, Chen C, Meng T, Zhang W, Zhou Q. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-β pathway on matrix metalloproteinase 7. Exp Biol Med (Maywood) 2015; 241:140-6. [PMID: 26316584 DOI: 10.1177/1535370215598401] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022] Open
Abstract
Renal injury has a strong relationship to the subsequent development of renal fibrosis. In developing renal fibrosis, tubular epithelial cells in the kidney underwent epithelial-mesenchymal transition (EMT). Matrix metalloproteinase 7 (MMP7) was reported to reduce E-cadherin and induce EMT by up-regulation of β-catenin/lymphoid enhancer-binding factor 1 (LEF1) signaling. In this research, we tried to evaluate the role of resveratrol (RSV) on EMT process in renal injury and fibrosis. Human tubular epithelial cell HK-2 cells were treated with aristolochic acid (AAs) and transforming growth factor-β(TGF-β) to induce EMT with or without the administration of RSV. The inhibitory role of RSV on EMT in renal injury and fibrosis was determined by Western blotting, real-time PCR, and immunofluorescence staining. The EMT repressing role of RSV was also evaluated in vivo by renal ischemia-reperfusion (I/R) injury and unilateral ureteral obstruction (UUO) models. The underlying mechanism was investigated by shRNA interfering MMP7 and sirtuin 1 (SIRT1) expression. The results indicated that RSV reversed human kidney 2 (HK-2) cell EMT, renal I/R injury, and renal fibrosis. MMP7 inhibition was responsible for RSV-induced EMT repression. SIRT1 was up-regulated by RSV inhibited TGF-β pathway on MMP7 via deacetylating Smad4. In conclusion, RSV attenuated renal injury and fibrosis by inhibiting EMT process which was attributed to the fact that the up-regulated SIRT1 by RSV deacetylated Smad4 and inhibited MMP7 expression.
Collapse
Affiliation(s)
- Zhou Xiao
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Chen
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Meng
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenzheng Zhang
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha 410008, China Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School at Houston, Houston 77030, TX, USA
| | - Qiaoling Zhou
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
36
|
Bilen MA, Zurita AJ, Ilias-Khan NA, Chen HC, Wang X, Kearney AY, Hodges S, Jonasch E, Huang S, Khakoo AY, Tannir NM. Hypertension and Circulating Cytokines and Angiogenic Factors in Patients With Advanced Non-Clear Cell Renal Cell Carcinoma Treated With Sunitinib: Results From a Phase II Trial. Oncologist 2015; 20:1140-8. [PMID: 26306901 DOI: 10.1634/theoncologist.2015-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND We evaluated the significance of hypertension developing during vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor (VEGFR-TKI) treatment and a group of cytokines and angiogenic factors (CAFs) in advanced non-clear cell renal cell carcinoma (nccRCC) patients treated with sunitinib in a phase II study. MATERIALS AND METHODS Using multiplex assays, we analyzed the levels of 38 CAFs in plasma at baseline and after 4 weeks of sunitinib therapy. Sunitinib benefit was defined as a partial response or stable disease using the Response Evaluation Criteria in Solid Tumors lasting ≥4 months. Cox proportional hazards regression models were used to assess the associations among hypertension, CAFs, and progression-free (PFS) and overall survival (OS). RESULTS Fifty-seven patients were evaluable; 53 had baseline CAF levels available. The median PFS and OS were 2.9 months (95% confidence interval [CI], 1.4-5.5) and 16.8 months (95% CI, 10.7-27.4), respectively. Sunitinib benefit was observed in 21 patients (37%). However, 33 patients (60%) developed hypertension during treatment, although no association was found with survival or response. Elevated baseline soluble tumor necrosis factor (TNF) receptor I, interleukin-8, growth-regulated oncogene, transforming growth factor-α, and VEGFR-2 levels were associated with an increased risk of death on multivariate analysis. CONCLUSION We found no association between the development of hypertension and survival or sunitinib benefit in advanced nccRCC. TNF and angiogenic/immunomodulatory mediators were identified for evaluation as markers of prognosis and VEGFR-TKI benefit in future studies.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Amado J Zurita
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Nasreen A Ilias-Khan
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Hsiang-Chun Chen
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Xuemei Wang
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Alper Y Kearney
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Sherie Hodges
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Eric Jonasch
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Shixia Huang
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Aarif Yusuf Khakoo
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| | - Nizar M Tannir
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, Department of Cardiology, and Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Amgen, Inc., San Francisco, California, USA
| |
Collapse
|
37
|
Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 2015; 9:317-24. [PMID: 26241004 DOI: 10.1080/19336918.2015.1016686] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tumor metastasis is not only a sign of disease severity but also a major factor causing treatment failure and cancer-related death. Therefore, studies on the molecular mechanisms of tumor metastasis are critical for the development of treatments and for the improvement of survival. The epithelial-mesenchymal transition (EMT) is an orderly, polygenic biological process that plays an important role in tumor cell invasion, metastasis and chemoresistance. The complex, multi-step process of EMT involves multiple regulatory mechanisms. Specifically, the PI3K/Akt signaling pathway can affect the EMT in a variety of ways to influence tumor aggressiveness. A better understanding of the regulatory mechanisms related to the EMT can provide a theoretical basis for the early prediction of tumor progression as well as targeted therapy.
Collapse
Key Words
- CK, cytokeratin
- ECM, extracellular matrix
- EMT
- EMT, epithelial-mesenchymal transition
- FGF, fibroblast growth factor
- GSK-3β, glycogen synthase kinase 3 β
- ILK, integrin-linked kinase
- MDR, multidrug resistance
- MET, mesenchymal-epithelial transition
- PDGF, platelet-derived growth factor
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PI3K, phosphatidylinositol-3-kinase
- PI3K/Akt signaling pathway
- PKA, protein kinase A
- PKB, protein kinase B
- PKC, protein kinase C
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- YB-1, Y-box binding protein-1
- anti-cancer therapy
- bHLH, basic helix-loop-helix protein
- extracellular matrix
- transcription factors
- tumor aggressiveness
Collapse
Affiliation(s)
- Wenting Xu
- a Department of Gastroenterology ; The First Affiliated Hospital of Nanchang University ; Nanchang , Jiangxi , China
| | | | | |
Collapse
|
38
|
Lv N, Gao Y, Guan H, Wu D, Ding S, Teng W, Shan Z. Inflammatory mediators, tumor necrosis factor-α and interferon-γ, induce EMT in human PTC cell lines. Oncol Lett 2015; 10:2591-2597. [PMID: 26622895 DOI: 10.3892/ol.2015.3518] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/11/2015] [Indexed: 11/05/2022] Open
Abstract
Inflammatory mediators, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, promote adverse outcomes in numerous types of cancer; however, their role in papillary thyroid cancer (PTC) remains unclear. The aim of the present study was to investigate the influence of TNF-α and IFN-γ on the migration, invasion and epithelial-mesenchymal transition (EMT) of the three PTC cell lines, TPC-1, BCPAP and K1. The effect of TNF-α and IFN-γ on cell migration and invasion was assessed by wound-healing and Transwell assays. In addition, the mRNA and protein expression levels of the EMT makers, E-cadherin, N-cadherin and vimentin, were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunoblot analysis. The wound-healing and Transwell experiments revealed that TNF-α and IFN-γ increased the migratory and invasive behavior of PTC cells (P<0.05). RT-qPCR revealed that TNF-α and IFN-γ downregulated E-cadherin mRNA, while they upregulated N-cadherin and vimentin mRNA expression levels. These results were further confirmed by the immunoblot analysis. The results of the present study suggest that TNF-α and IFN-γ induce EMT and malignant progression in human PTC cells.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun Gao
- Research Center of Stem Cell, He Eye Hospital, He University, Shenyang, Liaoning 110163, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dan Wu
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuangning Ding
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
39
|
Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicol Lett 2015; 232:149-58. [DOI: 10.1016/j.toxlet.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022]
|
40
|
Shiozaki A, Shimizu H, Ichikawa D, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Nako Y, Liu M, Otsuji E. Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells. World J Gastroenterol 2014; 20:17863-17876. [PMID: 25548484 PMCID: PMC4273136 DOI: 10.3748/wjg.v20.i47.17863] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-α)-induced gene expression in human gastric adenocarcinoma cells.
METHODS: Knockdown experiments were conducted with claudin 1 small interfering RNA (siRNA), and the effects on the cell cycle, apoptosis, migration and invasion were analyzed in human gastric adenocarcinoma MKN28 cells. The gene expression profiles of cells were analyzed by microarray and bioinformatics.
RESULTS: The knockdown of claudin 1 significantly inhibited cell proliferation, migration and invasion, and increased apoptosis. Microarray analysis identified 245 genes whose expression levels were altered by the knockdown of claudin 1. Pathway analysis showed that the top-ranked molecular and cellular function was the cellular movement related pathway, which involved MMP7, TNF-SF10, TGFBR1, and CCL2. Furthermore, TNF- and nuclear frctor-κB were the top-ranked upstream regulators related to claudin 1. TNF-α treatment increased claudin 1 expression and cell migration in MKN28 cells. Microarray analysis indicated that the depletion of claudin 1 inhibited 80% of the TNF-α-induced mRNA expression changes. Further, TNF-α did not enhance cell migration in the claudin 1 siRNA transfected cells.
CONCLUSION: These results suggest that claudin 1 is an important messenger that regulates TNF-α-induced gene expression and migration in gastric cancer cells. A deeper understanding of these cellular processes may be helpful in establishing new therapeutic strategies for gastric cancer.
Collapse
|
41
|
Zhu L, Li X, Chen Y, Fang J, Ge Z. High-mobility group box 1: a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett 2014; 357:527-34. [PMID: 25511739 DOI: 10.1016/j.canlet.2014.12.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/21/2023]
Abstract
Proinflammatory cytokine high-mobility group box 1 (HMGB1) mediates critical processes of tumour metastasis. Because the epithelial-to-mesenchymal transition (EMT) is a key player in metastasis, the aim of this study was to determine whether and through which mechanism HMGB1 induces EMT in colorectal carcinoma. The direct treatment of cells with recombinant human HMGB1 induced alterations in the epithelial morphology consistent with the EMT and enhanced cell migration through a process mediated by the receptor for advanced glycation end-products (RAGE). The levels of Snail and phospho-NF-κB were upregulated during the HMGB1-induced EMT, and these effects were reversed by inhibiting Snail and NF-κB. In addition, HMGB1 increased the expression of MMP-7 but not that of MMP-9, and this effect was also regulated by Snail/NF-κB signalling. Collectively, these findings indicate that HMGB1 acts as a potent driver of cancer EMT through the RAGE/Snail/NF-κB signalling pathways accompanied by the activation of MMP-7, thereby suggest the feasibility of targeting HMGB1 for the treatment of tumour metastasis.
Collapse
Affiliation(s)
- Lingyin Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhizheng Ge
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
42
|
TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 2014; 87:281-96. [PMID: 25140911 DOI: 10.1038/ki.2014.285] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor (TNF), initially reported to induce tumor cell apoptosis and cachexia, is now considered a central mediator of a broad range of biological activities from cell proliferation, cell death and differentiation to induction of inflammation and immune modulation. TNF exerts its biological responses via interaction with two cell surface receptors: TNFR1 and TNFR2. (TNFRs). These receptors trigger shared and distinct signaling pathways upon TNF binding, which in turn result in cellular outputs that may promote tissue injury on one hand but may also induce protective, beneficial responses. Yet the role of TNF and its receptors specifically in renal disease is still not well understood. This review describes the expression of the TNFRs, the signaling pathways induced by them and the biological responses of TNF and its receptors in various animal models of renal diseases, and discusses the current outcomes from use of TNF biologics and TNF biomarkers in renal disorders.
Collapse
|
43
|
Liu BY, Huang JA, Liu SQ, Li SY, Xu CY, Liang MZ, Tan L, Qin MB. Role of NF-κB in induction of epithelial-mesenchymal transition, migration and invasion of human colon cancer cells. Shijie Huaren Xiaohua Zazhi 2014; 22:3403-3409. [DOI: 10.11569/wcjd.v22.i23.3403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of nuclear factor-kappa B (NF-κB) in the induction of epithelial-mesenchymal transition (EMT), migration and invasion of human colon cancer cell line HCT116.
METHODS: HCT116 cells were divided into three groups and treated with 20 ng/mL of tumor necrosis factor-α (TNF-α) (NF-κB activation group), 20 μmol/L of ammonium pyrrolidinedithiocarbamate (PDTC) (NF-κB suppression group), and equal volume of culture medium (control group), respectively. Four days later, cell morphological changes associated with EMT were observed under a phase contrast microscope, and the migration ability and invasiveness were assessed by Transwell chamber assays. The protein expression of p65, P-p65, E-cadherin and N-cadherin was analyzed by Western blot, and the mRNA expression of E-cadherin and N-cadherin was detected by quantitative real-time PCR.
RESULTS: TNF-α up-regulated the expression of P-p65 and N-cadherin, suppressed the expression of E-cadherin, and caused a complete EMT-phenotype, which manifested as the formation of large filopodia-like processes and spindle-cell shape. Also, TNF-α promoted cell invasion and migration. In contrast, PDTC down-regulated the expression of P-p65 and N-cadherin, up-regulated the expression of E-cadherin, inhibited the occurrence of typical EMT phenomenon, and suppressed cell invasion and migration. Compared with the control group, TNF-α group and PDTC group showed significantly different cell invasion (97.75 ± 3.77 vs 118.50 ± 1.95, 51.00 ± 1.83, P < 0.05 for both), cell migration (140.00 ± 4.32 vs 167.00 ± 6.36, 80.00 ± 2.53, P < 0.05 for both), and mRNA expression of N-cadherin (1.00 ± 0.00 vs 3.90 ± 0.47, 0.08 ± 0.02, P < 0.05 for both) and E-cadherin (1.00 ± 0.00 vs 0.26 ± 0.08, 6.03 ± 0.59, P < 0.05 for both).
CONCLUSION: NF-κB induces the occurrence of typical EMT phenomenon and promotes cell invasion and migration in human colon cancer cell line HCT116.
Collapse
|
44
|
Xia F, Wang C, Jin Y, Liu Q, Meng Q, Liu K, Sun H. Luteolin protects HUVECs from TNF-α-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-κB and MAPK pathways. J Atheroscler Thromb 2014; 21:768-83. [PMID: 24621786 DOI: 10.5551/jat.23697] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Inflammation and oxidative stress are now recognized to be two important contributing factors to the development of atherosclerosis(AS). NADPH oxidase-4 (Nox4)-derived reactive oxygen species(ROS), NF-κB and MAPK play crucial roles in these processes. Luteolin, a flavone rich in many plants, can interrupt the molecular expression and inhibit the progression of inflammation and oxidative stress. The present study was designed to test whether luteolin inhibits TNF-α-induced inflammation and oxidative stress in human umbilical vein endothelial cells(HUVECs) and identify some of the mechanisms underlying these effects. METHODS HUVECs were treated with luteolin in the presence/absence of TNF-α. The mechanism of luteolin against TNF-α-induced cell injury was evaluated using Western blotting, real-time RT-PCR and flow cytometry analyses. RESULTS Luteolin suppressed the TNF-α-activated ROS generation, as well as the Nox4, p22phox, and ICAM-1 and VCAM-1 expression. Luteolin also enhanced the Bcl-2 and reduced caspase-3, -9 expression in the TNF-α-treated HUVECs. Finally, luteolin inhibited the TNF-α-induced transcriptional activity of NF-κB and p38 in addition to ERK1/2 phosphorylation. The inhibitors and siRNA of Nox4 and NF-κB not only reduced ROS generation, p38, ERK1/2 phosphorylation and the ICAM-1 and VCAM-1 expression, but also enhanced Bcl-2 expression. The inhibitor of p38 had the same effect on the expression of ICAM-1, VCAM-1 and Bcl-2, while the inhibitor of ERK1/2 increased the Bcl-2 expression rather than reducing the ICAM-1 and VCAM-1 expression. CONCLUSIONS Luteolin attenuates TNF-α-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-κB and MAPK pathways. These results suggest that luteolin may provide a beneficial effect in treating vascular diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fan Xia
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University
| | | | | | | | | | | | | |
Collapse
|
45
|
Bielecka AM, Obuchowicz E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp Biol Med (Maywood) 2014; 238:849-58. [PMID: 23970405 DOI: 10.1177/1535370213493721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the last decade, it has been increasingly recognized that antidepressant drugs may exert a range of effects, in addition to their well-documented ability to modulate neurotransmission. Although as a group they act on monoaminergic systems and receptors in different ways, a number of studies have demonstrated that at least some antidepressants might have other properties in common, including immunomodulatory, cyto/neuroprotective, analgesic and anti-inflammatory activities. These properties are partly related to the influence of antidepressants on glial cell function. Recently, emerging information about the possible anticancer properties of antidepressants has sparked increased interest within scientific community, and there is now evidence that these drugs affect the key cellular mechanisms of carcinogenesis. This review examines the putative cellular targets for the anticancer action of antidepressant drugs, and presents examples of the interaction between antidepressants and anticancer drugs. By reviewing the current state of research in this area, we hope to focus the attention of oncologists and researchers engaged in the study of cancer on the role that antidepressant drugs could play in the complementary therapy of cancer.
Collapse
Affiliation(s)
- Anna M Bielecka
- Medical University of Silesia, Department of Pharmacology, Medyków 18, 40-752 Katowice, Poland.
| | | |
Collapse
|
46
|
Guan Z, Ding C, Du Y, Zhang K, Zhu JN, Zhang T, He D, Xu S, Wang X, Fan J. HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol 2013; 44:393-402. [PMID: 24316875 PMCID: PMC3898811 DOI: 10.3892/ijo.2013.2210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a characteristic feature of solid tumors, leading to malignant behavior. During this process, HIF family members (HIFs) and the NF-κB pathway are activated. In addition, the hypoxia-associated factor (HAF) is reported to participate in the regulation of HIFs. However, the precise relationship among HIFs, HAF and the NF-κB pathway in bladder cancer (BC) remains unknown. In the current investigation, T24 BC cells were exposed to hypoxia, or by plasmid transfection to overexpress HAF or RelA (P65) to demonstrate their roles. The results indicate that hypoxia leads to the elevation of HAF plus activation of the NF-κB pathway, accompanied by the switch of HIF-1α to HIF-2α, resulting in the enhanced ability of malignancy in T24 cells. In order to further demonstrate the significance of this switch, HIF-1α and HIF-2α were co-transfected into T24 cells with HIF-β, respectively. The following results indicate that the T24hif-2α/β cells show enhanced ability of malignancy, accompanied by the maintenance of stem-cell markers, but the T24hif-1α/β cells show higher expression of metabolism-related genes. Boyden assays and wound-healing assays indicate the enhanced ability of malignancy for T24hif-2α/β. Thus, we conclude that on the hypoxic microenvironment, the switching of HIF-1α to HIF-2α, which is driven by HAF through activating the NF-κB pathway, contributes to the malignancy of T24 cells, accompanied by the maintenance of stem-cell markers. This provides us an avenue for understanding the progression of bladder cancer.
Collapse
Affiliation(s)
- Zhenfeng Guan
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Chen Ding
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Yiqing Du
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Kai Zhang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Jian Ning Zhu
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Tingting Zhang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shan Xu
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Xinyang Wang
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, P.R. China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
47
|
Tumor necrosis factor α up-regulates endometrial milk fat globule-epidermal growth factor 8 protein production via nuclear factor κB activation, resulting in cell migration of epithelial cells. Fertil Steril 2013; 101:552-9. [PMID: 24262600 DOI: 10.1016/j.fertnstert.2013.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the role of tumor necrosis factor (TNF) α, an early embryonic product, on endometrial epithelial cell migration and endometrial milk fat globule-epidermal growth factor 8 protein (MFG-E8) production. DESIGN In vitro study. SETTING Academic center. INTERVENTION(S) Ishikawa cells, used as surrogates for human epithelial cells, were treated with and without TNF-α. MAIN OUTCOME MEASURE(S) Effect of TNF-α on intracellular MFG-E8 protein was evaluated with the use of ELISA, Western blot, and subcellular fractionation. Specific inhibitors were used to study TNF-α mechanism of action. Effect of TNF-α on cell migration was studied with the use of a wound healing assay and reorganization of E-cadherin. RESULT(S) TNF-α induced: 1) significant up-regulation of MFG-E8 intracellular protein, which was attenuated by pretreatment with a specific inhibitor of nuclear factor κB; 2) increased transcription of MFG-E8 and other proinflammatory factors, such as interleukins 6 and 8, which were suppressed by cotreatment with hCG; and 3) significant cell migration with E-cadherin remodeling, changes associated with subcellular MFG-E8 relocalization. CONCLUSION(S) TNF-α up-regulates endometrial epithelial cell migration and MFG-E8 production, which are critical steps required for the endometrial changes during menstrual cycle as well as during embryonic attachment and invasion.
Collapse
|
48
|
Yu L, Mu Y, Sa N, Wang H, Xu W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol Rep 2013; 31:321-7. [PMID: 24220622 DOI: 10.3892/or.2013.2841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/14/2013] [Indexed: 11/05/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer metastasis. Tumor necrosis factor α (TNFα) can induce cancer invasion and metastasis associated with EMT. However, the underlying mechanisms are not entirely clear. Therefore, we investigated whether TNFα has an effect on EMT and invasion and metastasis in human hypopharyngeal cancer FaDu cells, and further explored the potential mechanisms. In the present study, we demonstrated that TNFα induced EMT in FaDu cells and promoted FaDu cell migration and invasion. TNFα-induced EMT was characterized by a change from well organized cell-cell adhesion and cell polarity to loss of cell-cell contacts, cell scattering and increased expression of vimentin and N-cadherin accompanied by a decrease in E-cadherin. Furthermore, we found that p65 translocated to the nucleus after TNFα stimulation and increased the nuclear expression of TWIST. We demonstrated that TNFα treatment also increased the expression of TWIST by activating the NF-κB signaling pathway. While p65 was inhibited by siRNA-65 or BAY11-7082 (inhibitor of NF-κB), TWIST expression was also decreased. Therefore, we conclude that TNFα induces EMT and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer.
Collapse
Affiliation(s)
- Liang Yu
- Department of Otolaryngology - Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | | | | | |
Collapse
|
49
|
Wan J, Zhou X, Cui J, Zou Z, Xu Y, You D. Role of complement 3 in TNF-α-induced mesenchymal transition of renal tubular epithelial cells in vitro. Mol Biotechnol 2013; 54:92-100. [PMID: 22565852 DOI: 10.1007/s12033-012-9547-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Injured renal tubular epithelial cells (RTECs) have been recently thought to directly contribute to the accumulation of myofibroblasts in renal tubulointerstitial fibrosis through a process of epithelial to mesenchymal transition (EMT). However, the factors inducing RTECs to undergo EMT and the underlying mechanisms need to be further elucidated. This study aimed to determine the EMT-inducing activity of proinflammatory cytokine TNF-α and the role for complement 3 (C3) in this activity in an in vitro model of human RTECs (HK-2 cells). Wild type HK-2 cells were treated with TNF-α, IFN-γ or C3a; C3 siRNA- or control siRNA-carrying HK-2 cells were treated with TNF-α. Changes in the cell morphology and phenotype were assessed by microscopy, RT-PCR, western blotting, and immunostaining. TNF-α effectively induced HK-2 cells to express C3 and to transform into morphologically myofibroblast-like cells that lost E-cadherin (a classical epithelial cell marker) expression but acquired alpha-smooth muscle actin (α-SMA, a classical myofibroblast differentiation marker) expression. C3 siRNA robustly attenuated all the morphologic and phenotypic changes induced by TNF-α but the control siRNA showed no effect. Our preliminary observations suggest that TNF-α may induce EMT in RTECs through inducing C3 expression.
Collapse
Affiliation(s)
- Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | | | | | | | | | | |
Collapse
|
50
|
Wang X, Zhou Y, Zhu N, Yuan WJ. Effects of hepatitis B virus X gene on apoptosis and expression of immune molecules of human proximal tubular epithelial cells. Arch Virol 2013; 158:2479-85. [DOI: 10.1007/s00705-013-1759-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
|