1
|
Gautreaux MA, Tucker LJ, Person XJ, Zetterholm HK, Priddy LB. Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. J Orthop Res 2022; 40:1251-1262. [PMID: 35315119 PMCID: PMC9106877 DOI: 10.1002/jor.25330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Disease or trauma of orthopedic tissues, including osteomyelitis, osteoporosis, arthritis, and fracture, results in a complex immune response, leading to a change in the concentration and milieu of immunological cells and proteins in the blood. While C-reactive protein levels and white blood cell counts are used to track inflammation and infection clinically, controlled longitudinal studies of disease/injury progression are limited. Thus, the use of clinically-relevant animal models can enable a more in-depth understanding of disease/injury progression and treatment efficacy. Though longitudinal tracking of immunological markers has been performed in rat models of various inflammatory and infectious diseases, currently there is no consensus on which markers are sensitive and reliable for tracking levels of inflammation and/or infection. Here, we discuss the blood markers that are most consistent with other outcome measures of the immune response in the rat, by reviewing their utility for longitudinal tracking of infection and/or inflammation in the following types of models: localized inflammation/arthritis, injury, infection, and injury + infection. While cytokines and acute phase proteins such as haptoglobin, fibrinogen, and α2 -macroglobulin demonstrate utility for tracking immunological response in many inflammation and infection models, there is likely not a singular superior marker for all rat models. Instead, longitudinal characterization of these models may benefit from evaluation of a collection of cytokines and/or acute phase proteins. Identification of immunological plasma markers indicative of the progression of a pathology will allow for the refinement of animal models for understanding, diagnosing, and treating inflammatory and infectious diseases of orthopedic tissues.
Collapse
Affiliation(s)
- Malley A. Gautreaux
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Luke J. Tucker
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Xavier J. Person
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Haley K. Zetterholm
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA.,corresponding author, Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
2
|
Vlasakova K, Bourque J, Bailey WJ, Patel S, Besteman EG, Gonzalez RJ, Sistare FD, Glaab WE. Universal Accessible Biomarkers of Drug-Induced Tissue Injury and Systemic Inflammation in Rat: Performance Assessment of TIMP-1, A2M, AGP, NGAL and Albumin. Toxicol Sci 2022; 187:219-233. [PMID: 35285504 DOI: 10.1093/toxsci/kfac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to monitor for general drug-induced tissue injury (DITI) or systemic inflammation in any tissue using blood-based accessible biomarkers would provide a valuable tool in early exploratory animal studies to understand potential drug liabilities. Here we describe the evaluation of four biomarkers of tissue remodeling and inflammation [α2-macroglobin (A2M), α1-acid glycoprotein (AGP), neutrophil gelatinase-associated lipocalin (NGAL) and tissue inhibitor of metalloproteinases (TIMP-1)] as well as the traditional serum parameter albumin as potential blood-based biomarkers of DITI and systemic inflammatory response (SIR). Biomarker performance was assessed in 51 short-term rat in vivo studies with various end-organ toxicities or SIR and receiver operator characteristic (ROC) curves were generated to compare relative performances. All four biomarkers performed well in their ability to detect DITI and SIR with an area under the curve (AUC) of 0.82 - 0.78, however TIMP-1 achieved the best sensitivity (at 95% specificity) of 61%; AGP, NGAL, and A2M sensitivity was 51-52%. AUC for albumin was 0.72 with sensitivity of 39%. A2M was the best performer in studies with only SIR (AUC 0.91). In the subset of studies with drug-induced vascular injury, TIMP-1 performed best with an AUC of 0.96. Poor performance of all tested biomarkers was observed in samples with CNS toxicity. In summary, TIMP-1, A2M, AGP and NGAL demonstrated performance as sensitive accessible biomarkers of DITI and SIR, supporting their potential application as universal accessible tissue toxicity biomarkers to quickly identify dose levels associated with drug-induced injury in early exploratory rat safety and other studies.
Collapse
|
3
|
Boyle CA, Coatney RW, Wickham A, Mukherjee SK, Meunier LD. Alpha-1 Acid Glycoprotein as a Biomarker for Subclinical Illness and Altered Drug Binding in Rats. Comp Med 2021; 71:123-132. [PMID: 33789781 DOI: 10.30802/aalas-cm-20-000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification, and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague-Dawley rats with or without implants of catheter material. A model validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days). A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108 CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 10³ CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16. h × ng/mL, respectively. The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.
Collapse
Affiliation(s)
- Catherine A Boyle
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania;,
| | - Robert W Coatney
- Translational Sciences, Galvani Bioelectronics, Collegeville, Pennsylvania
| | - Alexandra Wickham
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - Suman K Mukherjee
- Safety Assessment Lab Animal Resources, Merck Research Laboratories, West Point, Pennsylvania
| | - LaVonne D Meunier
- Global Laboratory Animal Medicine, GlaxoSmithKline, Collegeville, Pennsylvania
| |
Collapse
|
4
|
Reagan WJ, Shoieb AM, Schomaker SJ, Markiewicz VR, Clarke DW, Sellers RS. Evaluation of Rat Acute Phase Proteins as Inflammatory Biomarkers for Vaccine Nonclinical Safety Studies. Toxicol Pathol 2020; 48:845-856. [PMID: 33043819 DOI: 10.1177/0192623320957281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objectives were to characterize the kinetics of acute phase proteins (APPs) α-2 macroglobulin (A2M), α-1 acid glycoprotein (A1AGP), and fibrinogen (FIB), and injection site macroscopic and microscopic findings following intramuscular administration of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (TDaP; Adacel); adjuvants (aluminum phosphate [AlPO4]; aluminum hydroxide, Al[OH]3; CpG/Al[OH]3; or Quillaja saponaria 21 [QS-21]); or saline to female Wistar Han rats. Intravascular lipopolysaccharide (LPS) was a positive control. Injection sites and lymph nodes were evaluated microscopically, using hematoxylin and eosin (H&E) stained sections, 48 hours postdose (HPD) and compared with APP concentrations; A2M and A1AGP were measured using Meso Scale Discovery analyzer. Fibrinogen was measured on STA Compact analyzer. In a time-course study, APP peaked at 24 or 48 HPD. In a subsequent study at 48 HPD, injection site microscopic changes included inflammation and muscle degeneration/necrosis, which was different in severity/nature between groups. The APPs were not increased in rats administered saline, Al(OH)3, or AlPO4. Fibrinogen and A1AGP increased in rats administered CpG/Al(OH)3, QS-21, or TDaP; and A2M increased in rats administered QS-21. Fibrinogen, A2M, and A1AGP increased after LPS administration. Acute phase proteins can be used to monitor inflammatory responses to adjuvants; however, some adjuvants may induce inflammation without higher APPs.
Collapse
Affiliation(s)
- William J Reagan
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | - Ahmed M Shoieb
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | - Shelli J Schomaker
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | - Victoria R Markiewicz
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Groton, CT, USA
| | - David W Clarke
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Pearl River, NY, USA
| | - Rani S Sellers
- 105623Pfizer Inc, Worldwide Research Development and Medical, Drug Safety Research and Development, Pearl River, NY, USA
| |
Collapse
|
5
|
Ito R, Kuribayashi T. Correlation between synthesis of α 2-macroglobulin as acute phase protein and degree of hepatopathy in rats. Lab Anim Res 2020; 35:14. [PMID: 32257902 PMCID: PMC7081713 DOI: 10.1186/s42826-019-0014-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 11/10/2022] Open
Abstract
The degree of hepatopathy affecting the synthesis of α2-macroglobulin (α2M) as an acute phase protein in rats was investigated. Hepatopathy was induced in Sprague-Dawley rats by intravenous administration of galactosamine at a dose of 30 mg/kg for 7 days. Inflammation was induced by intramuscular injection of turpentine oil at a dose of 2 mL/kg. Blood was collected before turpentine oil injection and at 24, 48, 72 and 96 h after injection. Serum concentrations of α2M were measured by enzyme-linked immunosorbent assay. Mean values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in rats administered galactosamine were significantly higher than in controls. Mean values of body weight and total protein were significantly lower than in controls. Serum concentrations of α2M in the galactosamine group were significantly lower than in controls. Kinetic parameters, area under the concentration-time curve (AUC0-96) and maximum serum concentration (Cmax), were significantly lower than in controls. The cut-off value for detecting the effects on synthesis of α2M in liver was 46.9 mgˑh/mL. Seven rats (77.8%) were assessed for decreases in the synthesis of α2M due to hepatopathy. Two rats showed no influence on the synthesis of α2M, despite administration of galactosamine. AST and ALT in these two rats were ≤ 285 and ≤ 174 U/L, respectively. In conclusion, synthesis of α2M in rats is evidently suppressed in the severe stages of hepatopathy.
Collapse
Affiliation(s)
- Reina Ito
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-5201 Japan
| | - Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-5201 Japan
| |
Collapse
|
6
|
Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158574. [PMID: 31747539 DOI: 10.1016/j.bbalip.2019.158574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) has a negative impact on muscle mass, and reduces patient's mobility and autonomy. Furthermore, RA is associated with metabolic comorbidities, notably in lipid homeostasis by unknown mechanisms. To understand the links between the loss in muscle mass and the metabolic abnormalities, arthritis was induced in male Sprague Dawley rats (n = 11) using the collagen-induced arthritis model. Rats immunized with bovine type II collagen were compared to a control group of animals (n = 11) injected with acetic acid and complete Freund's adjuvant. The clinical severity of the ensuing arthritis was evaluated weekly by a semi-quantitative score. Skeletal muscles from the hind limb were used for the histological analysis and exploration of mitochondrial activity, lipid accumulation, metabolism and regenerative capacities. A significant atrophy in tibialis anterior muscle fibers was observed in the arthritic rats despite a non-significant decrease in the weight of the muscles. Despite moderate inflammation, accumulation of triglycerides (P < 0.05), reduced mitochondrial DNA copy number (P < 0.05) and non-significant dysfunction in mitochondrial cytochrome c oxidase activity were found in the gastrocnemius muscle. Concomitantly, our results suggested an activation of the muscle specific E3 ubiquitin ligases MuRF-1 and MAFbx. Finally, the adipose tissue from the arthritic rats exhibited decreased PPARγ mRNA suggesting reduced adipogenic capacities. In conclusion, the reduced adipose tissue adipogenic capacity and skeletal muscle mitochondrial capacity are probably involved in the activation of protein catabolism, inhibition of myogenesis, accumulation of lipids and fiber atrophy in the skeletal muscle during RA.
Collapse
|
7
|
Kuribayashi T. Elimination half-lives of interleukin-6 and cytokine-induced neutrophil chemoattractant-1 synthesized in response to inflammatory stimulation in rats. Lab Anim Res 2018; 34:80-83. [PMID: 29937915 PMCID: PMC6010403 DOI: 10.5625/lar.2018.34.2.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
The elimination half-lives of in Interleukin-6 (IL-6) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) in rats after inflammatory stimulation were investigated. Five male Sprague-Dawley rats were used (age, 9 weeks; body weight, 235-375 g). Turpentine oil was intramuscularly injected at a dose of 2 mL/kg body weight to induce acute inflammation. Blood was collected pre-injection and 6, 12, 24, 36, 48, 60, 72, 84, and 96 h after the turpentine oil injection. Serum concentrations of IL-6, CINC-1, and α2-macroglobulin (α2M) were measured by enzyme-linked immunosorbent assay. Half-lives were calculated as 0.693/elimination rate constant. The serum concentration of α2M peaked at 48 h after turpentine oil injection. Serum concentrations of IL-6 and CINC-1 increased and peaked at 12 and 24 h, respectively. The terminal elimination half-lives of IL-6 and CINC-1 were 15.5 and 29.9 h, respectively. The half-life of CINC-1 was significantly longer than that of IL-6 (P=0.006). These results suggested that these cytokines synthesized in response to inflammatory stimulation were rapidly eliminated in rats. The serum concentrations of these cytokines should be measured at an early stage if these cytokines will be used as surrogate inflammatory markers instead of acute-phase proteins.
Collapse
Affiliation(s)
- Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
8
|
Poore EA, Slifka DK, Raué HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2016; 35:283-292. [PMID: 27919629 DOI: 10.1016/j.vaccine.2016.11.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | - Justin M Richner
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark K Slifka
- Najít Technologies, Inc, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
9
|
Comparison of α2-macroglobulin synthesis by juvenile vs. mature rats after identical inflammatory stimulation. Inflammation 2014; 36:1448-52. [PMID: 23856939 DOI: 10.1007/s10753-013-9685-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Synthesis of α2-macoglobulin (α2M) by 3-week-old juvenile rats was compared to that of mature 7- and 11-week-old rats. Serum concentrations of α2M, interleukin (IL)-6- and cytokine-induced neutrophil chemoattractant (CINC)-1 were measured by enzyme-linked immunosorbent assay. The area under the concentration vs. time curve (AUC) for α2M was significantly different among the three groups. The synthesis of α2M increased in an age-dependent manner. No significant difference was observed for the AUC of IL-6, but that of CINC-1 in 3-week-old rats was significantly lower than that in 7- or 11-week-old rats. These results suggest that synthesis of α2M was increased in mature compared to juvenile rats, possibly due to differences in liver function. The maximum concentration of CINC-1 in 3-week-old rats was observed 6 h after turpentine oil injection. The serum concentrations of IL-6 and CINC-1 increased more quickly in juvenile rats than in mature rats after inflammatory stimulation.
Collapse
|
10
|
Kuribayashi T, Seita T, Honjo T, Yamazaki S, Momotani E, Yamamoto S. Impairment of α(2)-macroglobulin synthesis in experimental hepatopathic rats treated with turpentine oil. Exp Anim 2012; 61:125-30. [PMID: 22531727 DOI: 10.1538/expanim.61.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The aim of this study was to investigate the synthesis of α(2)-macroglobulin (α2M) in hepatopathic rats injected with turpentine oil to induce acute inflammation. Hepatopathy was induced by oral administration of acetaminophen at a dose of 1 g/kg daily for 2 weeks or a 25% solution of carbon tetrachloride (CCl(4)) at 2 ml/kg body weight three times per week for 7 weeks. Acute inflammation was induced by intramuscular injection of turpentine oil at a dose of 1.0 ml/kg body weight. Serum concentrations of α2M were measured by enzyme-linked immunosorbent assay. Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and total protein differed significantly between acetaminophen or CCl(4)-induced hepatopathic rats and acetaminophen control (AA-control) or CCl(4) control (CC-control) rats. Furthermore, pathological examination confirmed hepatopathy in rat livers. Peak serum concentrations and area under the time-concentration curve for α2M showed significant differences between hepatopathic rats and AA-control or CC-control rats. Thus, serum concentrations of α2M did not increase when compared with nontreated rats.
Collapse
Affiliation(s)
- Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Kanagawa 252-5201, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Acute phase proteins (APP) were first identified in the early 1900s as early reactants to infectious disease. They are now understood to be an integral part of the acute phase response (APR) which is the cornerstone of innate immunity. APP have been shown to be valuable biomarkers as increases can occur with inflammation, infection, neoplasia, stress, and trauma. All animals--from fish to mammals--have demonstrable APP, but the type of major APP differs by species. While the primary application of these proteins in a clinical setting is prognostication, studies in animals have demonstrated relevance to diagnosis and detection and monitoring for subclinical disease. APP have been well documented in laboratory, companion, and large animals. With the advent of standardized and automated assays, these biomarkers are available for use in all fields of veterinary medicine as well as basic and clinical research.
Collapse
|
12
|
Kuribayashi T, Tomizawa M, Seita T, Tagata K, Yamamoto S. Relationship between production of acute-phase proteins and strength of inflammatory stimulation in rats. Lab Anim 2011; 45:215-8. [PMID: 21669904 PMCID: PMC3125702 DOI: 10.1258/la.2011.010112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between intensity of inflammatory stimulation and production of α2-macroglobulin (α2M) and α1-acid glycoprotein (AAG) in rats was investigated. Sprague-Dawley rats were injected with turpentine oil at doses of 0.05, 0.2 or 0.4 mL/rat. Serum levels of α2M, interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured by enzyme-linked immunosorbent assay, and AAG was measured by single radial immunodiffusion. Peak serum levels of α2M and AAG in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. However, no significant differences were observed for peak serum levels of these acute-phase proteins between 0.2 and 0.4 mL/rat. Furthermore, peak serum levels of IL-6 and CINC-1 in rats injected at 0.05 mL/rat were significantly lower than those at 0.2 or 0.4 mL/rat. Thus, the production of these acute-phase proteins has upper limits, even under increased strength of inflammatory stimulation in rats injected with turpentine oil.
Collapse
Affiliation(s)
- Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | |
Collapse
|
13
|
Bachir-Cherif D, Blum D, Braendli-Baiocco A, Chaput E, Duran Pacheco GC, Flint N, Haiker M, Hoflack JC, Justies N, Neff R, Starke V, Steiner G, Tournillac CA, Singer T, Ubeaud-Séquier G, Schuler F. Characterization of post-surgical alterations in the bile duct-cannulated rat. Xenobiotica 2011; 41:701-11. [DOI: 10.3109/00498254.2011.565819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|