1
|
Asami Y, Tokutake K, Kurimoto S, Saeki S, Yamamoto M, Hirata H. Transplantation of embryonic spinal motor neurons into peripheral nerves enables functional reconstruction of a denervated diaphragm. Neuroscience 2024; 559:113-122. [PMID: 39216747 DOI: 10.1016/j.neuroscience.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Respiratory muscle paralysis due to trauma or neurodegenerative diseases can have devastating consequences. Only a few studies have investigated the reconstruction of motor function in denervated diaphragms caused by such conditions. Here, we studied the efficacy of transplanting E14 embryonic spinal motor neurons (SMNs) into peripheral nerve grafts for functionally reconstructing a denervated diaphragm in a rat model. The diaphragms of 8-week-old male Fischer 344 rats were first denervated by transecting the phrenic nerves. Subsequently, peripheral nerve grafts taken from the lower limb were used for neurotization of the denervated diaphragms. One week later, fetal E14 SMNs were transplanted into the peripheral nerve grafts. After 3 months, we observed functional contraction of the diaphragm following neuromuscular electrical stimulation (NMES) of the peripheral nerve graft. Additionally, we confirmed that SMN transplantation into the peripheral nerve graft had an inhibitory effect on diaphragm muscle atrophy. The SMNs transplanted into the peripheral nerve grafts formed a structure similar to the spinal cord, and the neuromuscular junction of the denervated diaphragm was reinnervated. These findings suggest the establishment of an ectopic motor neuron pool in the peripheral nerve graft. Free peripheral intra-nerve SMN transplantation in combination with NMES, which can be applied for diaphragmatic pacing, offers novel insights into the development of neuroregenerative therapies for treating life-threatening and intractable respiratory muscle paralysis caused by severe nerve damage and degenerative diseases.
Collapse
Affiliation(s)
- Yuta Asami
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Katsuhiro Tokutake
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigeru Kurimoto
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sota Saeki
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Michiro Yamamoto
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Hirata
- Department of Human Enhancement and Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Liu L, Petersen A. Incorporating sources of correlation between outcomes: An introduction to mixed models. Lab Anim 2024; 58:463-469. [PMID: 39301804 DOI: 10.1177/00236772241259518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animal research often involves measuring the outcomes of interest multiple times on the same animal, whether over time or for different exposures. These repeated outcomes measured on the same animal are correlated due to animal-specific characteristics. While this repeated measures data can address more complex research questions than single-outcome data, the statistical analysis must take into account the study design resulting in correlated outcomes, which violate the independence assumption of standard statistical methods (e.g. a two-sample t-test, linear regression). When standard statistical methods are incorrectly used to analyze correlated outcome data, the statistical inference (i.e. confidence intervals and p-values) will be incorrect, with some settings leading to null findings too often and others producing statistically significant findings despite no support for this in the data. Instead, researchers can leverage approaches designed specifically for correlated outcomes. In this article, we discuss common study designs that lead to correlated outcome data, motivate the intuition about the impact of improperly analyzing correlated outcomes using methods for independent data, and introduce approaches that properly leverage correlated outcome data.
Collapse
Affiliation(s)
- Limeng Liu
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, USA
| | - Ashley Petersen
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, USA
| |
Collapse
|
3
|
Lu J, Xiong G, Li H, Zhang D, Zhang X. Nuclear Factor Erythroid 2-Related Factor 2 Intervenes the Release of Neutrophil Extracellular Traps during Lipopolysaccharide-Induced Acute Lung Injury in Mice. Mediators Inflamm 2024; 2024:8847492. [PMID: 39238946 PMCID: PMC11377114 DOI: 10.1155/2024/8847492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
The pathogenesis of acute lung injury is complex. Studies have demonstrated the role of neutrophil extracellular traps (NETs) in the process of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the underlying mechanism remains unclear. In this study, the regulation of Nrf2 in the formation of NETs, which was pathogenic in LPS-induced ALI, was identified by analyzing the levels of Cit-H3, lung function, lung tissue pathology, lung wet/dry ratio, the inflammatory cells, cytokines and proteins in the bronchoalveolar lavage fluid (BALF) and in addition, the activity of lung myeloperoxidase (MPO) was also measured. Results showed that the levels of Cit-H3 measured by western blot in Nrf2-knockout (KO) mice were higher compared with the WT mice after LPS stimulation. To further investigate the NETs formation was pathogenic during LPS-induced ALI, the Nrf2-KO mice were treated with DNase I. Results showed that DNase I improved lung function and lung tissue pathology and significantly reduced lung wet/dry ratio and proteins in the BALF. Besides, DNase I also attenuated the infiltration of inflammatory cells and the cytokines (TNF-α, IL-1β) production in the BALF and the activity of lung MPO. Therefore, these results together indicate that Nrf2 may intervene in the release of NETs during LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Junying Lu
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guilan Xiong
- Department of Critical Care MedicineHuazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Hongxiang Li
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dong Zhang
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaohao Zhang
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Röpke T, Aschenbrenner F, Knudsen L, Welte T, Kolb M, Maus UA. Repetitive invasive lung function maneuvers do not accentuate experimental fibrosis in mice. Sci Rep 2024; 14:13774. [PMID: 38877042 PMCID: PMC11178923 DOI: 10.1038/s41598-024-64548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Assessment of lung function is an important clinical tool for the diagnosis and monitoring of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In mice, lung function maneuvers use algorithm-based ventilation strategies including forced oscillation technique (FOT), negative pressure-driven forced expiratory (NPFE) and pressure-volume (PV) maneuvers via the FlexiVent system. This lung function test (LFT) is usually performed as end-point measurement only, requiring several mice for each time point to be analyzed. Repetitive lung function maneuvers would allow monitoring of a disease process within the same individual while reducing the numbers of laboratory animals. However, its feasibility in mice and impact on developing lung fibrosis has not been studied so far. Using orotracheal cannulation without surgical exposure of the trachea, we examined the tolerability to repetitive lung function maneuvers (up to four times) in one and the same mouse, both under healthy conditions and in a model of AdTGF-β1 induced lung fibrosis. In essence, we found that repetitive invasive lung function maneuvers were well tolerated and did not accentuate experimental lung fibrosis in mice. This study contributes to the 3R principle aiming to reduce the numbers of experimental animals used in biomedical research.
Collapse
Affiliation(s)
- Tina Röpke
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Franziska Aschenbrenner
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Lower Saxony, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany.
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany.
| |
Collapse
|
5
|
Lizonova D, Nagarkar A, Demokritou P, Kelesidis GA. Effective density of inhaled environmental and engineered nanoparticles and its impact on the lung deposition and dosimetry. Part Fibre Toxicol 2024; 21:7. [PMID: 38368385 PMCID: PMC10874077 DOI: 10.1186/s12989-024-00567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.
Collapse
Affiliation(s)
- Denisa Lizonova
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Amogh Nagarkar
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Georgios A Kelesidis
- Nanoscience and Advanced Materials Center (NAMC), Environmental and Occupational Health Science Institute, School of Public Health, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
| |
Collapse
|
6
|
Chang A, Van Ry PM, Raghu G. Idiopathic pulmonary fibrosis: aligning murine models to clinical trials in humans. THE LANCET. RESPIRATORY MEDICINE 2023; 11:953-955. [PMID: 37914467 DOI: 10.1016/s2213-2600(23)00325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ganesh Raghu
- University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
8
|
Ahookhosh K, Vanoirbeek J, Vande Velde G. Lung function measurements in preclinical research: What has been done and where is it headed? Front Physiol 2023; 14:1130096. [PMID: 37035677 PMCID: PMC10073442 DOI: 10.3389/fphys.2023.1130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Due to the close interaction of lung morphology and functions, repeatable measurements of pulmonary function during longitudinal studies on lung pathophysiology and treatment efficacy have been a great area of interest for lung researchers. Spirometry, as a simple and quick procedure that depends on the maximal inspiration of the patient, is the most common lung function test in clinics that measures lung volumes against time. Similarly, in the preclinical area, plethysmography techniques offer lung functional parameters related to lung volumes. In the past few decades, many innovative techniques have been introduced for in vivo lung function measurements, while each one of these techniques has their own advantages and disadvantages. Before each experiment, depending on the sensitivity of the required pulmonary functional parameters, it should be decided whether an invasive or non-invasive approach is desired. On one hand, invasive techniques offer sensitive and specific readouts related to lung mechanics in anesthetized and tracheotomized animals at endpoints. On the other hand, non-invasive techniques allow repeatable lung function measurements in conscious, free-breathing animals with readouts related to the lung volumes. The biggest disadvantage of these standard techniques for lung function measurements is considering the lung as a single unit and providing only global readouts. However, recent advances in lung imaging modalities such as x-ray computed tomography and magnetic resonance imaging opened new doors toward obtaining both anatomical and functional information from the same scan session, without the requirement for any extra pulmonary functional measurements, in more regional and non-invasive manners. Consequently, a new field of study called pulmonary functional imaging was born which focuses on introducing new techniques for regional quantification of lung function non-invasively using imaging-based techniques. This narrative review provides first an overview of both invasive and non-invasive conventional methods for lung function measurements, mostly focused on small animals for preclinical research, including discussions about their advantages and disadvantages. Then, we focus on those newly developed, non-invasive, imaging-based techniques that can provide either global or regional lung functional readouts at multiple time-points.
Collapse
Affiliation(s)
- Kaveh Ahookhosh
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Greetje Vande Velde,
| |
Collapse
|
9
|
De Guia RM, Zatecka V, Rozman J, Prochazka J, Sedlacek R. Full Assessment of Lung Mechanics Using Computer-Controlled, Forced Oscillation Technique. Curr Protoc 2022; 2:e488. [PMID: 35834677 DOI: 10.1002/cpz1.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The forced oscillation technique (FOT) is a powerful and accurate method to quantify the mechanical properties of the airways and tissues of the respiratory system. Here we provide a detailed protocol for the measurement of mouse respiratory mechanical parameters. We present a procedure for mouse endotracheal intubation using a handcrafted intubation platform and confirmation module. The FlexiVentFX™ system (Scireq Inc.) is utilized for the thorough assessment of lung function with the FlexiWare™ software serving as a unit for the planning, experimentation, and analysis. The protocol has been standardized and adapted for use by our center for lung-function phenotyping of mouse models generated for the International Mouse Phenotyping Consortium (IMPC). The simplified steps, technical considerations, and integrated hardware-software demonstration make this protocol adaptable and implementable for researchers interested in using FOT for lung-function evaluation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Support Protocol 1: Assembly of the FlexiVentFX™ system for measurements Support Protocol 2: FlexiWare database management Support Protocol 3: A guide for the construction of intubation platform and confirmation module Basic Protocol 1: Mouse endotracheal intubation Basic Protocol 2: Assessment of mouse basal lung function.
Collapse
Affiliation(s)
- Roldan Medina De Guia
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Vaclav Zatecka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| |
Collapse
|
10
|
Lin H, Wang C, Yu H, Liu Y, Tan L, He S, Li Z, Wang C, Wang F, Li P, Liu J. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed Pharmacother 2022; 149:112823. [PMID: 35334426 DOI: 10.1016/j.biopha.2022.112823] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.
Collapse
Affiliation(s)
- Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Research Center of Natural Drug, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Jheng YT, Putri DU, Chuang HC, Lee KY, Chou HC, Wang SY, Han CL. Prolonged exposure to traffic-related particulate matter and gaseous pollutants implicate distinct molecular mechanisms of lung injury in rats. Part Fibre Toxicol 2021; 18:24. [PMID: 34172050 PMCID: PMC8235648 DOI: 10.1186/s12989-021-00417-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 μm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.
Collapse
Affiliation(s)
- Yu-Teng Jheng
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Denise Utami Putri
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|
12
|
Xu C, Zhao J, Li Q, Hou L, Wang Y, Li S, Jiang F, Zhu Z, Tian L. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther 2020; 11:503. [PMID: 33239075 PMCID: PMC7687745 DOI: 10.1186/s13287-020-02023-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02023-9.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
13
|
Alessandrini F, Musiol S, Schneider E, Blanco-Pérez F, Albrecht M. Mimicking Antigen-Driven Asthma in Rodent Models-How Close Can We Get? Front Immunol 2020; 11:575936. [PMID: 33101301 PMCID: PMC7555606 DOI: 10.3389/fimmu.2020.575936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Asthma is a heterogeneous disease with increasing prevalence worldwide characterized by chronic airway inflammation, increased mucus secretion and bronchial hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the pathomechanism of this complex disease many animal models have been developed, each trying to mimic specific aspects of the human disease. Rodents have classically been employed in animal models of asthma. The present review provides an overview of currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It further assesses the methods used to simulate disease development and exacerbations as well as to quantify allergic airway inflammation, including lung physiologic, cellular and molecular immunologic responses. Furthermore, the employment of genetically modified animals, which provide an in-depth understanding of the role of a variety of molecules, signaling pathways and receptors implicated in the development of this disease as well as humanized models of allergic inflammation, which have been recently developed to overcome differences between the rodent and human immune systems, are discussed. Nevertheless, differences between mice and humans should be carefully considered and limits of extrapolation should be wisely taken into account when translating experimental results into clinical use.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Blanco-Pérez
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| | - Melanie Albrecht
- Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Schulte H, Mühlfeld C, Brandenberger C. Age-Related Structural and Functional Changes in the Mouse Lung. Front Physiol 2019; 10:1466. [PMID: 31866873 PMCID: PMC6904284 DOI: 10.3389/fphys.2019.01466] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
Lung function declines with advancing age. To improve our understanding of the structure-function relationships leading to this decline, we investigated structural alterations in the lung and their impact on micromechanics and lung function in the aging mouse. Lung function analysis was performed in 3, 6, 12, 18, and 24 months old C57BL/6 mice (n = 7-8/age), followed by lung fixation and stereological sample preparation. Lung parenchymal volume, total, ductal and alveolar airspace volume, alveolar volume and number, septal volume, septal surface area and thickness were quantified by stereology as well as surfactant producing alveolar epithelial type II (ATII) cell volume and number. Parenchymal volume, total and ductal airspace volume increased in old (18 and 24 months) compared with middle-aged (6 and 12 months) and young (3 months) mice. While the alveolar number decreased from young (7.5 × 106) to middle-aged (6 × 106) and increased again in old (9 × 106) mice, the mean alveolar volume and mean septal surface area per alveolus conversely first increased in middle-aged and then declined in old mice. The ATII cell number increased from middle-aged (8.8 × 106) to old (11.8 × 106) mice, along with the alveolar number, resulting in a constant ratio of ATII cells per alveolus in all age groups (1.4 ATII cells per alveolus). Lung compliance and inspiratory capacity increased, whereas tissue elastance and tissue resistance decreased with age, showing greatest changes between young and middle-aged mice. In conclusion, alveolar size declined significantly in old mice concomitant with a widening of alveolar ducts and late alveolarization. These changes may partly explain the functional alterations during aging. Interestingly, despite age-related lung remodeling, the number of ATII cells per alveolus showed a tightly controlled relation in all age groups.
Collapse
Affiliation(s)
- Henri Schulte
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
15
|
Bonnardel E, Prevel R, Campagnac M, Dubreuil M, Marthan R, Berger P, Dupin I. Determination of reliable lung function parameters in intubated mice. Respir Res 2019; 20:211. [PMID: 31521163 PMCID: PMC6744631 DOI: 10.1186/s12931-019-1177-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/02/2019] [Indexed: 10/31/2024] Open
Abstract
Background Animal models and, in particular, mice models, are important tools to investigate the pathogenesis of respiratory diseases and to test potential new therapeutic drugs. Lung function measurement is a key step in such investigation. In mice, it is usually performed using forced oscillation technique (FOT), negative pressure-driven forced expiratory (NPFE) and pressure-volume (PV) curve maneuvers. However, these techniques require a tracheostomy, which therefore only allows end-point measurements. Orotracheal intubation has been reported to be feasible and to give reproducible lung function measurements, but the agreement between intubation and tracheostomy generated-data remains to be tested. Methods Using the Flexivent system, we measured lung function parameters (in particular, forced vital capacity (FVC), forced expiratory volume in the first 0.1 s (FEV0.1), compliance (Crs) of the respiratory system, compliance (C) measured using PV loop and an estimate of inspiratory capacity (A)) in healthy intubated BALB/cJ mice and C57BL/6 J mice and compared the results with similar measurements performed in the same mice subsequently tracheostomized after intubation, by means of paired comparison method, correlation and Bland-Altman analysis. The feasibility of repetitive lung function measurements by intubation was also tested. Results We identified parameters that are accurately evaluated in intubated animals (i.e., FVC, FEV0.1, Crs, C and A in BALB/cJ and FVC, FEV0.1, and A in C57BL/6 J). Repetitive lung function measurements were obtained in C57BL/6 J mice. Conclusion This subset of lung function parameters in orotracheally intubated mice is reliable, thereby allowing relevant longitudinal studies. Supplementary information Supplementary information accompanies this paper at (10.1186/s12931-019-1177-9).
Collapse
Affiliation(s)
- Eline Bonnardel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France
| | - Renaud Prevel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France
| | - Marilyne Campagnac
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France
| | - Marielle Dubreuil
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, CIC 1401, F-33604, Pessac, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, CIC 1401, F-33604, Pessac, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, F-33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.
| |
Collapse
|
16
|
Adipose Tissue-Derived Stem Cells Have the Ability to Differentiate into Alveolar Epithelial Cells and Ameliorate Lung Injury Caused by Elastase-Induced Emphysema in Mice. Stem Cells Int 2019; 2019:5179172. [PMID: 31281377 PMCID: PMC6590553 DOI: 10.1155/2019/5179172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a leading cause of mortality globally, with no effective therapy yet established. Adipose tissue-derived stem cells (ADSCs) are useful for ameliorating lung injury in animal models. However, whether ADSCs differentiate into functional cells remains uncertain, and no study has reported on the mechanism by which ADSCs improve lung functionality. Thus, in this study, we examined whether ADSCs differentiate into lung alveolar cells and are able to ameliorate lung injury caused by elastase-induced emphysema in model mice. Here, we induced ADSCs to differentiate into type 2 alveolar epithelial cells in vitro. We demonstrated that ADSCs can differentiate into type 2 alveolar epithelial cells in an elastase-induced emphysematous lung and that ADSCs improve pulmonary function of emphysema model mice, as determined with spirometry and 129Xe MRI. These data revealed a novel function for ADSCs in promoting repair of the damaged lung by direct differentiation into alveolar epithelial cells.
Collapse
|
17
|
The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2018; 2018:8387150. [PMID: 29725272 PMCID: PMC5872612 DOI: 10.1155/2018/8387150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD.
Collapse
|
18
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
19
|
Hu JY, Liu BB, Du YP, Zhang Y, Zhang YW, Zhang YY, Xu M, He B. Increased circulating β 2-adrenergic receptor autoantibodies are associated with smoking-related emphysema. Sci Rep 2017; 7:43962. [PMID: 28262783 PMCID: PMC5338268 DOI: 10.1038/srep43962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/31/2017] [Indexed: 01/21/2023] Open
Abstract
Smoking is a dominant risk factor for chronic obstructive pulmonary disease (COPD) and emphysema, but not every smoker develops emphysema. Immune responses in smokers vary. Some autoantibodies have been shown to contribute to the development of emphysema in smokers. β2-adrenergic receptors (β2-ARs) are important targets in COPD therapy. β2-adrenergic receptor autoantibodies (β2-AAbs), which may directly affect β2-ARs, were shown to be increased in rats with passive-smoking-induced emphysema in our current preliminary studies. Using cigarette-smoke exposure (CS-exposure) and active-immune (via injections of β2-AR second extracellular loop peptides) rat models, we found that CS-exposed rats showed higher serum β2-AAb levels than control rats before alveolar airspaces became enlarged. Active-immune rats showed increased serum β2-AAb levels, and exhibited alveolar airspace destruction. CS-exposed-active-immune treated rats showed more extensive alveolar airspace destruction than rats undergoing CS-exposure alone. In our current clinical studies, we showed that plasma β2-AAb levels were positively correlated with the RV/TLC (residual volume/total lung capacity) ratio (r = 0.455, p < 0.001) and RV%pred (residual volume/residual volume predicted percentage, r = 0.454, p < 0.001) in 50 smokers; smokers with higher plasma β2-AAb levels exhibited worse alveolar airspace destruction. We suggest that increased circulating β2-AAbs are associated with smoking-related emphysema.
Collapse
Affiliation(s)
- Jia-Yi Hu
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Bei-Bei Liu
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Peng Du
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Wei Zhang
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - You-Yi Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Beijing Key Laboratory of cardiovascular Receptors Research, Beijing, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH. The use of mesenchymal stromal cells in treatment of lung disorders. Regen Med 2017; 12:203-216. [DOI: 10.2217/rme-2016-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
Collapse
Affiliation(s)
- Egi Kardia
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Shuhaidatul Sarmiza Abdul Halim
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Darius Widera
- Stem Cell Biology & Regenerative Medicine, School of Pharmacy, University of Reading, Whiteknights, RG6 6UB Reading, UK
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
21
|
Cielen N, Heulens N, Maes K, Carmeliet G, Mathieu C, Janssens W, Gayan-Ramirez G. Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model. J Endocrinol 2016; 229:97-108. [PMID: 26906744 PMCID: PMC5064769 DOI: 10.1530/joe-15-0491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with normal or deficient vitamin D serum levels exposed to air or cigarette smoke for 6, 12 or 18 weeks. The synergy of smoking and vitamin D deficiency increased lung inflammation and lung compliance from 6 weeks on with highest emphysema scores observed at 18 weeks. Smoking reduced body and muscle mass of the soleus and extensor digitorum longus (EDL), but did not affect contractility, despite type II atrophy. Vitamin D deficiency did not alter muscle mass but reduced muscle force over time, downregulated vitamin D receptor expression, and increased muscle lipid peroxidation but did not alter actin and myosin expression, fiber dimensions or twitch relaxation time. The combined effect of smoking and vitamin D deficiency did not further deteriorate muscle function but worsened soleus mass loss and EDL fiber atrophy at 18 weeks. We conclude that the synergy of smoking and vitamin D deficiency in contrast to its effect on lung disease, had different, independent but important noxious effects on skeletal muscles in a mouse model of mild COPD.
Collapse
Affiliation(s)
- Nele Cielen
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Nele Heulens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
22
|
Gong P, Li Y, Tan YP, Li H. Pretreatment With Inactivated Bacillus Calmette-Guerin Increases CD4+CD25+ Regulatory T Cell Function and Decreases Functional and Structural Effects of Asthma Induction in a Rat Asthma Model. Artif Organs 2015; 40:360-7. [PMID: 26495900 DOI: 10.1111/aor.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacillus Calmette-Guerin (BCG) has been shown to have therapeutic effects on asthma through CD4+CD25+ regulatory T cells (Tregs). We sought to assess pretreatment with inactivated BCG on CD4+CD25+ Tregs and its functional and structural effects in rat asthma model. The rat asthma model was established using ovalbumin (OVA) sensitization and challenge. Ten rats were pretreated with BCG prior to OVA and received continued BCG injections during OVA challenge (BCG+OVA group), 10 rats were treated with OVA alone (OVA group), and 10 rats were treated with saline (control group). After 9 weeks, histamine dihydrochloride effect on airway resistance was measured. Number of CD4+CD25+ Tregs was measured by flow cytometry, expression of Foxp3 and CTLA-4 mRNA was measured, and serum TGF-β levels were determined. Differential cell count in bronchoalveolar lavage fluid (BALF) was determined, and lung tissue was processed and stained with hematoxylin and eosin, Masson's trichrome, and alcine blue and periodic acid Schiff's reaction to evaluate inflammatory cell infiltration, collagen deposition, and presence of goblet cells, respectively. BCG treatment led to an increase in CD4+CD25+ Tregs, as well as an increase in Foxp3 and CTLA-4 expression and serum TGF-β levels. In addition, we observed a decrease in histamine dihydrochloride-induced airway resistance, a decrease in inflammatory leukocytes in BALF, and a decrease in airway remodeling indicators in BCG+OVA-treated rats compared with OVA-treated rats. Intradermally injected inactivated BCG has the potential to improve airway inflammation, airway resistance, and airway remodeling through a mechanism that may involve CD4+CD25+ Tregs.
Collapse
Affiliation(s)
- Ping Gong
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yun Li
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yu-Pin Tan
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Hong Li
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
23
|
Holm AT, Wulf-Johansson H, Hvidsten S, Jorgensen PT, Schlosser A, Pilecki B, Ormhøj M, Moeller JB, Johannsen C, Baun C, Andersen T, Schneider JP, Hegermann J, Ochs M, Götz AA, Schulz H, de Angelis MH, Vestbo J, Holmskov U, Sorensen GL. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1114-24. [PMID: 26033354 DOI: 10.1152/ajplung.00351.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is localized to elastic fibers in blood vessels and the interalveolar septa of the lungs and is further present in bronchoalveolar lavage. Mfap4 has been previously suggested to be involved in elastogenesis in the lung. We tested this prediction and aimed to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated microcomputed tomography (micro-CT) in 8-mo-old Mfap4(-/-) mice, we found that the mean density of the lung parenchyma was decreased, and the low-attenuation area (LAA) was significantly increased by 14% compared with Mfap4(+/+) mice. Transmission electron microscopy (TEM) did not reveal differences in the organization of elastic fibers, and there was no difference in elastin content, but a borderline significant increase in elastin mRNA expression in 3-mo-old mice. Stereological analysis showed that alveolar surface density in relation to the lung parenchyma and total alveolar surface area inside of the lung were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes.
Collapse
Affiliation(s)
- Anne Trommelholt Holm
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Patricia Troest Jorgensen
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bartosz Pilecki
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Ormhøj
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jesper Bonnet Moeller
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus Johannsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Thomas Andersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and REBIRTH Cluster of Excellence, Hannover, Germany
| | - Alexander A Götz
- Institute of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Holger Schulz
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; and Member of the German Center for Lung Research (DZL), Hannover, Germany; Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
24
|
Nemmar A, Al Hemeiri A, Al Hammadi N, Yuvaraju P, Beegam S, Yasin J, Elwasila M, Ali BH, Adeghate E. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice. Physiol Rep 2015; 3:e12258. [PMID: 25780090 PMCID: PMC4393146 DOI: 10.14814/phy2.12258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/24/2022] Open
Abstract
Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early markers of WPS exposure that precede airway dysfunction. Our data provide information on the initial steps involved in the respiratory effects of WPS, which constitute the underlying causal chain of reactions leading to the long-term effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed Al Hemeiri
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naser Al Hammadi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Elwasila
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
25
|
Laucho-Contreras ME, Taylor KL, Mahadeva R, Boukedes SS, Owen CA. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice. J Vis Exp 2015:52236. [PMID: 25651034 DOI: 10.3791/52236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
COPD is projected to be the third most common cause of mortality world-wide by 2020((1)). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs((2)). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD((3-5)). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients((6)), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill's stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson's trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital - Harvard Medical School
| | - Katherine L Taylor
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital - Harvard Medical School
| | - Ravi Mahadeva
- Department of Respiratory Medicine, University of Cambridge - Addenbrooke's Hospital
| | - Steve S Boukedes
- Lung Transplant Program, Brigham and Women's Hospital - Harvard Medical School
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital - Harvard Medical School; COPD and IPF Programs, Lovelace Respiratory Research Institute;
| |
Collapse
|
26
|
De Vleeschauwer S, Vanaudenaerde B, Vos R, Meers C, Wauters S, Dupont L, Van Raemdonck D, Verleden G. The need for a new animal model for chronic rejection after lung transplantation. Transplant Proc 2014; 43:3476-85. [PMID: 22099823 DOI: 10.1016/j.transproceed.2011.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The single most important cause of late mortality after lung transplantation is obliterative bronchiolitis (OB), clinically characterized by a decrease in lung function and morphologically by characteristic changes. Recently, new insights into its pathogenesis have been acquired: risk factors have been identified and the use of azithromycin showed a dichotomy with at least 2 different phenotypes of bronchiolitis obliterans syndrome (BOS). It is clear that a good animal model is indispensable to further dissect and unravel the pathogenesis of BOS. Many animal models have been developed to study BOS but, so far, none of these models truly mimics the human situation. Looking at the definition of BOS, a good animal model implies histological OB lesions, possibility to measure lung function, and airway inflammation. This review sought to discuss, including pros and cons, all potential animal models that have been developed to study OB/BOS. It has become clear that a new animal model is needed; recent developments using an orthotopic mouse lung transplantation model may offer the answer because it mimics the human situation. The genetic variants among this species may open new perspectives for research into the pathogenesis of OB/BOS.
Collapse
Affiliation(s)
- S De Vleeschauwer
- Laboratory of Pneumology, Kathoholieke Universiteit Leuven and UZ Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Verheijden KAT, Henricks PAJ, Redegeld FA, Garssen J, Folkerts G. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice. Front Pharmacol 2014; 5:190. [PMID: 25161620 PMCID: PMC4129625 DOI: 10.3389/fphar.2014.00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023] Open
Abstract
In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranasal challenges with IgE-allergen complexes. A significant increase in airway responsiveness to methacholine was observed in the mild inflammation group when RL was measured. Significant changes in both RL and Penh were observed in the severe inflammation groups. There was a significant increase in the number of inflammatory cells in the Broncho-Alveolar Lavage Fluid (BALF) in both the mild and severe inflammation animals. The enforced ventilation of the animals during the RL measurement further increased the number of cells in the BALF. IL-2 and RANTES levels in the BALF were higher in the severe inflammation groups compared to the mild inflammation groups. Penh gave only reliable measurements during severe airway inflammation. Measuring RL gave consistent results in both mild and severe allergic airway inflammation models however, ventilation induced an additional cell influx into the airways.
Collapse
Affiliation(s)
- Kim A T Verheijden
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands ; Immunology, Nutricia Research Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| |
Collapse
|
28
|
Tibboel J, Keijzer R, Reiss I, de Jongste JC, Post M. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD 2014; 11:310-8. [PMID: 24295402 PMCID: PMC4046870 DOI: 10.3109/15412555.2013.854322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.
Collapse
Affiliation(s)
- Jeroen Tibboel
- Department of Physiology and Experimental Medicine, Hospital for Sick Children,Toronto,Canada
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Richard Keijzer
- Department of Pediatric General Surgery, Manitoba Institute of Child Health,Winnipeg,Canada
| | - Irwin Reiss
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Johan C. de Jongste
- Department of Pediatrics, Erasmus University Medical Center –Sophia Children’s Hospital,Rotterdam,the Netherlands
| | - Martin Post
- Department of Physiology and Experimental Medicine, Hospital for Sick Children,Toronto,Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto,Toronto,Canada
| |
Collapse
|
29
|
Thomas JL, Dumouchel J, Li J, Magat J, Balitzer D, Bigby TD. Endotracheal intubation in mice via direct laryngoscopy using an otoscope. J Vis Exp 2014. [PMID: 24747695 DOI: 10.3791/50269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mice, both wildtype and transgenic, are the principal mammalian model in biomedical research currently. Intubation and mechanical ventilation are necessary for whole animal experiments that require surgery under deep anesthesia or measurements of lung function. Tracheostomy has been the standard for intubating the airway in these mice to allow mechanical ventilation. Orotracheal intubation has been reported but has not been successfully used in many studies because of the substantial technical difficulty or a requirement for highly specialized and expensive equipment. Here we report a technique of direct laryngoscopy using an otoscope fitted with a 2.0 mm speculum and using a 20 G intravenous catheter as an endotracheal tube. We have used this technique extensively and reliably to intubate and conduct accurate assessments of lung function in mice. This technique has proven safe, with essentially no animal loss in experienced hands. Moreover, this technique can be used for repeated studies of mice in chronic models.
Collapse
Affiliation(s)
- Joanna L Thomas
- Medical and Research Services, VA San Diego Healthcare System; Department of Medicine, University of California, San Diego
| | | | - Jinghong Li
- Department of Medicine, University of California, San Diego
| | - Jenna Magat
- Department of Medicine, University of California, San Diego
| | - Dana Balitzer
- School of Medicine, University of California, San Diego
| | - Timothy D Bigby
- Medical and Research Services, VA San Diego Healthcare System; Department of Medicine, University of California, San Diego;
| |
Collapse
|
30
|
Chang RS, Wang SD, Wang YC, Lin LJ, Kao ST, Wang JY. Xiao-Qing-Long-Tang shows preventive effect of asthma in an allergic asthma mouse model through neurotrophin regulation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:220. [PMID: 24010817 PMCID: PMC3847146 DOI: 10.1186/1472-6882-13-220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND This study investigates the effect of Xiao-Qing-Long-Tang (XQLT) on neurotrophin in an established mouse model of Dermatophagoides pteronyssinus (Der p)-induced acute allergic asthma and in a LA4 cell line model of lung adenoma. The effects of XQLT on the regulation of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), airway hyper-responsiveness (AHR) and immunoglobulin E were measured. METHODS LA4 cells were stimulated with 100 μg/ml Der p 24 h and the supernatant was collected for ELISA analysis. Der p-stimulated LA4 cells with either XQLT pre-treatment or XQLT co-treatment were used to evaluate the XQLT effect on neurotrophin.Balb/c mice were sensitized on days 0 and 7 with a base-tail injection of 50 μg Dermatophagoides pteronyssinus (Der p) that was emulsified in 50 μl incomplete Freund's adjuvant (IFA). On day 14, mice received an intra-tracheal challenge of 50 μl Der p (2 mg/ml). XQLT (1g/Kg) was administered orally to mice either on days 2, 4, 6, 8, 10 and 12 as a preventive strategy or on day 15 as a therapeutic strategy. RESULTS XQLT inhibited expression of those NGF, BDNF and thymus-and activation-regulated cytokine (TARC) in LA4 cells that were subjected to a Der p allergen. Both preventive and therapeutic treatments with XQLT in mice reduced AHR. Preventive treatment with XQLT markedly decreased NGF in broncho-alveolar lavage fluids (BALF) and BDNF in serum, whereas therapeutic treatment reduced only serum BDNF level. The reduced NGF levels corresponded to a decrease in AHR by XQLT treatment. Reduced BALF NGF and TARC and serum BDNF levels may have been responsible for decreased eosinophil infiltration into lung tissue. Immunohistochemistry showed that p75NTR and TrkA levels were reduced in the lungs of mice under both XQLT treatment protocols, and this reduction may have been correlated with the prevention of the asthmatic reaction by XQLT. CONCLUSION XQLT alleviated allergic inflammation including AHR, IgE elevation and eosinophil infiltration in Der p stimulated mice by regulating neurotrophin and reducing TARC. These results revealed the potential pharmacological targets on which the XQLT decotion exerts preventive and therapeutic effects in an allergic asthma mouse model.
Collapse
Affiliation(s)
- Ren-Shiu Chang
- Graduate Institute of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, No. 57, Sec. 1, Dongmen Rd, Tainan 70142, Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Yu-Chin Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan 70428, Taiwan
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, No. 2 Yude Road, Taichung, 40447, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan 70428, Taiwan
| |
Collapse
|
31
|
Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin J, Hameed RS, Adeghate E, Ali BH. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice. J Appl Physiol (1985) 2013; 115:1316-23. [PMID: 23869065 DOI: 10.1152/japplphysiol.00194.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Crane-Godreau MA, Black CC, Giustini AJ, Dechen T, Ryu J, Jukosky JA, Lee HK, Bessette K, Ratcliffe NR, Hoopes PJ, Fiering S, Kelly JA, Leiter JC. Modeling the influence of vitamin D deficiency on cigarette smoke-induced emphysema. Front Physiol 2013; 4:132. [PMID: 23781205 PMCID: PMC3679474 DOI: 10.3389/fphys.2013.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/20/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. While the primary risk factor for COPD is cigarette smoke exposure, vitamin D deficiency has been epidemiologically implicated as a factor in the progressive development of COPD-associated emphysema. Because of difficulties inherent to studies involving multiple risk factors in the progression of COPD in humans, we developed a murine model in which to study the separate and combined effects of vitamin D deficiency and cigarette smoke exposure. During a 16-week period, mice were exposed to one of four conditions, control diet breathing room air (CD-NS), control diet with cigarette smoke exposure (CD-CSE), vitamin D deficient diet breathing room air (VDD-NS) or vitamin D deficient diet with cigarette smoke exposure (VDD-CSE). At the end of the exposure period, the lungs were examined by a pathologist and separately by morphometric analysis. In parallel experiments, mice were anesthetized for pulmonary function testing followed by sacrifice and analysis. Emphysema (determined by an increase in alveolar mean linear intercept length) was more severe in the VDD-CSE mice compared to control animals and animals exposed to VDD or CSE alone. The VDD-CSE and the CD-CSE mice had increased total lung capacity and increased static lung compliance. There was also a significant increase in the matrix metalloproteinase-9: tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio in VDD-CSE mice compared with all controls. Alpha-1 antitrypsin (A1AT) expression was reduced in VDD-CSE mice as well. In summary, vitamin D deficiency, when combined with cigarette smoke exposure, seemed to accelerate the appearance of emphysemas, perhaps by virtue of an increased protease-antiprotease ratio in the combined VDD-CSE animals. These results support the value of our mouse model in the study of COPD.
Collapse
Affiliation(s)
- Mardi A Crane-Godreau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Veteran's Administration Research Facility, White River Junction VT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McGovern TK, Robichaud A, Fereydoonzad L, Schuessler TF, Martin JG. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. J Vis Exp 2013:e50172. [PMID: 23711876 DOI: 10.3791/50172] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
Collapse
Affiliation(s)
- Toby K McGovern
- Meakins-Christie Laboratories, Department of Medicine, McGill University
| | | | | | | | | |
Collapse
|
34
|
Walker JKL, Kraft M, Fisher JT. Assessment of murine lung mechanics outcome measures: alignment with those made in asthmatics. Front Physiol 2013; 3:491. [PMID: 23408785 PMCID: PMC3569663 DOI: 10.3389/fphys.2012.00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023] Open
Abstract
Although asthma is characterized as an inflammatory disease, recent reports highlight the importance of pulmonary physiology outcome measures to the clinical assessment of asthma control and risk of asthma exacerbation. Murine models of allergic inflammatory airway disease have been widely used to gain mechanistic insight into the pathogenesis of asthma; however, several aspects of murine models could benefit from improvement. This review focuses on aligning lung mechanics measures made in mice with those made in humans, with an eye toward improving the translational utility of these measures. A brief description of techniques available to measure murine lung mechanics is provided along with a methodological consideration of their utilization. How murine lung mechanics outcome measures relate to pulmonary physiology measures conducted in humans is discussed and we recommend that, like human studies, outcome measures be standardized for murine models of asthma.
Collapse
Affiliation(s)
- Julia K L Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center Durham, NC, USA
| | | | | |
Collapse
|
35
|
Nemmar A, Al-salam S, Subramaniyan D, Yasin J, Yuvaraju P, Beegam S, Ali BH. Influence of experimental type 1 diabetes on the pulmonary effects of diesel exhaust particles in mice. Toxicol Lett 2013; 217:170-6. [DOI: 10.1016/j.toxlet.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022]
|
36
|
Nemmar A, Raza H, Subramaniyan D, John A, Elwasila M, Ali BH, Adeghate E. Evaluation of the pulmonary effects of short-term nose-only cigarette smoke exposure in mice. Exp Biol Med (Maywood) 2012; 237:1449-56. [DOI: 10.1258/ebm.2012.012103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much is known about the chronic effects of cigarette smoke (CS) on lung function and inflammation and development of chronic obstructive pulmonary disease. However, the underlying pathophysiological mechanisms related to the short-term exposure to CS are not fully understood. Here, we assessed the effect of CS generated by nine consecutive cigarettes per day for four days in a nose-only exposure system on airway resistance measured using forced oscillation technique, lung inflammation and oxidative stress in BALB/c mice. Control mice were exposed to air. Mice exposed to CS showed a significant increase of neutrophils and lymphocytes numbers in bronchoalveolar lavage (BAL). The total protein and endothelin levels in BAL fluid were significantly augmented suggesting an increase of alveolar-capillary barrier permeability. Similarly, airway resistance was significantly increased in the CS group compared with controls. Furthermore, reactive oxygen species and lipid peroxidation levels in lung tissue were significantly increased. The antioxidant activities of reduced glutathione, glutathione S transferase and superoxide dismutase were all significantly increased following CS exposure, indicating that CS could trigger adaptive responses that counterbalance the potentially damaging activity of oxygen radicals induced by CS exposure. In conclusion, our data indicate that short-term nose-only exposure to CS causes lung inflammation and increase of airway resistance mediated at least partly through the oxidative stress.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Haider Raza
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Deepa Subramaniyan
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Mohamed Elwasila
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Muscat 123, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| |
Collapse
|
37
|
Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, Janssens W, Gayan-Ramirez GN. Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis Model Mech 2012; 5:333-41. [PMID: 22279084 PMCID: PMC3339827 DOI: 10.1242/dmm.008508] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mouse models of chronic obstructive pulmonary disease (COPD) focus on airway inflammation and lung histology, but their use has been hampered by the lack of pulmonary function data in their assessment. Systemic effects such as muscle dysfunction are also poorly modeled in emphysematous mice. We aimed to develop a cigarette-smoke-induced emphysema mouse model in which serial lung function and muscular dysfunction could be assessed, allowing the disease to be monitored more appropriately. C57Bl6 mice were nose-only exposed to cigarette smoke or filtered air for 3–6 months. Lung function tests were repeated in the same mice after 3 and 6 months of cigarette smoke or air exposure and compared with lung histological changes. Contractile properties of skeletal muscles and muscle histology were also determined at similar time points in separate groups of mice. Serial lung function measurements documented hyperinflation after 3 and 6 months of cigarette smoke exposure, with a significant 31–37% increase in total lung capacity (TLC) and a significant 26–35% increase in compliance (Cchord) when compared with animals exposed to filtered air only (P<0.001 after 3 and after 6 months). These functional changes preceded the changes in mean linear intercept, which became only significant after 6 months of cigarette smoke exposure and which correlated very well with TLC (r=0.74, P=0.004) and Cchord (r=0.79, P=0.001). After 6 months of cigarette smoke exposure, a significant fiber-type shift from IIa to IIx/b was also observed in the soleus muscle (P<0.05), whereas a 20% reduction of force was present at high stimulation frequencies (80 Hz; P=0.09). The extensor digitorum longus (EDL) muscle was not affected by cigarette smoke exposure. These serial pulmonary function variables are sensitive outcomes to detect emphysema progression in a nose-only cigarette-smoke-exposed animal model of COPD. In this model, muscular changes became apparent only after 6 months, particularly in muscles with a mixed fiber-type composition.
Collapse
Affiliation(s)
- Manuela Rinaldi
- Respiratory Muscle Research Unit, Katholieke Universiteit Leuven, Herestraat 49, Onderwijs en Navorsing 1, bus 706, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
De Vleeschauwer S, Jungraithmayr W, Wauters S, Willems S, Rinaldi M, Vaneylen A, Verleden S, Willems-Widyastuti A, Bracke K, Brusselle G, Verbeken E, Van Raemdonck D, Verleden G, Vanaudenaerde B. Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks. PLoS One 2012; 7:e29802. [PMID: 22238655 PMCID: PMC3253086 DOI: 10.1371/journal.pone.0029802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Almost all animal models for chronic rejection (CR) after lung transplantation (LTx) fail to resemble the human situation. It was our attempt to develop a representative model of CR in mice. Orthotopic LTx was performed in allografts receiving daily immunosuppression with steroids and cyclosporine. Controls included isografts and mice only undergoing thoracotomy (SHAM). Allografts were sacrificed 2, 4, 6, 8, 10 or 12 weeks after LTx. Pulmonary function was measured repeatedly in the 12w allografts, isografts and SHAM mice. Histologically, all allografts demonstrated acute rejection (AR) around the blood vessels and airways two weeks after LTx. This decreased to 50-75% up to 10 weeks and was absent after 12 weeks. Obliterative bronchiolitis (OB) lesions were observed in 25-50% of the mice from 4-12 weeks. Isografts and lungs of SHAM mice were normal after 12 weeks. Pulmonary function measurements showed a decline in FEV(0.1), TLC and compliance in the allografts postoperatively (2 weeks) with a slow recovery over time. After this initial decline, lung function of allografts increased more than in isografts and SHAM mice indicating that pulmonary function measurement is not a good tool to diagnose CR in a mouse. We conclude that a true model for CR, with clear OB lesions in about one third of the animals, but without a decline in lung function, is possible. This model is an important step forward in the development of an ideal model for CR which will open new perspectives in unraveling CR pathogenesis and exploring new treatment options.
Collapse
Affiliation(s)
| | | | - Shana Wauters
- Laboratory of Experimental Thoracic Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn Willems
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manuela Rinaldi
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Annemie Vaneylen
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn Verleden
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Ken Bracke
- Department of Respiratory Medicine, University Hospital Gent, Gent, Belgium
| | - Guy Brusselle
- Department of Respiratory Medicine, University Hospital Gent, Gent, Belgium
| | - Erik Verbeken
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Experimental Thoracic Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Geert Verleden
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
39
|
Nemmar A, Subramaniyan D, Zia S, Yasin J, Ali BH. Airway resistance, inflammation and oxidative stress following exposure to diesel exhaust particle in angiotensin II-induced hypertension in mice. Toxicology 2011; 292:162-8. [PMID: 22214961 DOI: 10.1016/j.tox.2011.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 01/10/2023]
Abstract
Exposure to particulate matter is a risk factor for respiratory and cardiovascular diseases. However, the mechanisms underlying these effects are not well understood. Here, we compared the impact of diesel exhaust particles (DEP) on airway resistance, inflammation and oxidative stress in normal mice, or mice made hypertensive by implanting osmotic minipump infusing angiotensin II. On day 13 after the onset of infusion, angiotensin II induced significant increase in heart rate (P<0.05) and systolic blood pressure (P<0.0001). On the same day, mice were intratracheally instilled with either DEP (15 μg/mouse) or saline. Twenty-four hour later, the measurement of airway reactivity to methacholine (0-10mg/ml) in vivo by a forced oscillation technique showed a significant and dose dependent increase in airway resistance in normotensive mice exposed to DEP compared to those exposed to saline. In hypertensive mice, there was no difference in airway resistance in DEP versus saline exposed mice. However, following exposure to DEP, airway resistance significantly increased in normotensive versus hypertensive mice. Bronchoalveolar lavage (BAL) fluid analysis showed a significant increase in macrophage numbers in normotensive mice exposed to DEP compared to those exposed to saline, and to hypertensive mice exposed to DEP. Neutrophil numbers were significantly increased in both normotensive and hypertensive mice exposed to DEP compared with their respective control groups. Superoxide dismutase activity was significantly decreased following DEP exposure in both normotensive and hypertensive mice compared to their respective controls. However, total proteins, a marker for increase of epithelial permeability, and malondialdehyde, a reflection of lipid peroxidation, were only increased in normotensive mice exposed to DEP. Therefore, our data suggest that DEP do not aggravate airway resistance and inflammation in angiotensin II-induced hypertensive mice. On the contrary, at the dose of DEP and time point investigated, airway resistance, inflammation and oxidative stress are increased in normotensive compared to hypertensive mice.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|