1
|
Durante M, Bender T, Schickel E, Mayer M, Debus J, Grosshans D, Schroeder I. Aberrant choroid plexus formation in human cerebral organoids exposed to radiation. RESEARCH SQUARE 2023:rs.3.rs-3445801. [PMID: 37886443 PMCID: PMC10602134 DOI: 10.21203/rs.3.rs-3445801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Brain tumor patients are commonly treated with radiotherapy, but the efficacy of the treatment is limited by its toxicity, particularly the risk of radionecrosis. We used human cerebral organoids to investigate the mechanisms and nature of postirradiation brain image changes commonly linked to necrosis. Irradiation of cerebral organoids lead to increased formation of ZO1+/AQP1+/CLN3+-choroid plexus (CP) structures. Increased CP formation was triggered by radiation via the NOTCH/WNT signaling pathways and associated with delayed growth and neural stem cell differentiation, but not necrosis. The effect was more pronounced in immature than in mature organoids, reflecting the clinically-observed increased radiosensitivity of the pediatric brain. Protons were more effective than X-rays at the same dose, as also observed in clinical treatments. We conclude that radiation-induced brain image-changes can be attributed to aberrant CP formation, providing a new cellular mechanism and strategy for possible countermeasures.
Collapse
|
2
|
Shimizu S, Nakai K, Li Y, Mizumoto M, Kumada H, Ishikawa E, Yamamoto T, Matsumura A, Sakurai H. Boron Neutron Capture Therapy for Recurrent Glioblastoma Multiforme: Imaging Evaluation of a Case With Long-Term Local Control and Survival. Cureus 2023; 15:e33898. [PMID: 36819302 PMCID: PMC9937644 DOI: 10.7759/cureus.33898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is difficult to cure with conventional multimodal treatment and has an extremely poor prognosis. Boron neutron capture therapy (BNCT) is a new particle therapy for malignant tumors in the brain and head and neck region. This radiotherapy utilizes a nuclear reaction between neutrons and a nonradioactive isotope, boron-10. In this method, a boron compound is administered transvenously into the body. The boron compound has the property of being selectively taken up only by the cells of malignant tumors, and the subsequent irradiation with neutrons can destroy malignant tumor cells without damaging normal cells. Since the irradiation dose to normal tissues is reduced in BNCT, it may be possible to re-irradiate malignant tumors that recur after radiotherapy. Clinical trials have reported prolonged survival and safety of BNCT in a small number of patients with refractory malignancies, including GBM, but these reports do not address quality of life or activities of daily living (ADL) after treatment, and there is no information on the assessment of local control by imaging. Here, we report a case of GBM that recurred after surgery, 60 Gy of conventional radiotherapy and standard treatment with temozolomide. The patient achieved long-term local control and survival over five years after BNCT and was able to maintain ADL at home without any specialist care. We describe the case with evaluation using longitudinal magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Shosei Shimizu
- Proton Beam Therapy Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Kei Nakai
- Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Yinuo Li
- Proton Beam Therapy Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Masashi Mizumoto
- Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Hiroaki Kumada
- Proton Beam Therapy Center, University of Tsukuba Hospital, Tsukuba, JPN
| | | | - Tetsuya Yamamoto
- Radiation Oncology, Yokohama City University Hospital, Tsukuba, JPN
| | | | | |
Collapse
|
3
|
Allard B, Dissaux B, Bourhis D, Dissaux G, Schick U, Salaün PY, Abgral R, Querellou S. Hotspot on 18F-FET PET/CT to Predict Aggressive Tumor Areas for Radiotherapy Dose Escalation Guiding in High-Grade Glioma. Cancers (Basel) 2022; 15:cancers15010098. [PMID: 36612093 PMCID: PMC9817533 DOI: 10.3390/cancers15010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The standard therapy strategy for high-grade glioma (HGG) is based on the maximal surgery followed by radio-chemotherapy (RT-CT) with insufficient control of the disease. Recurrences are mainly localized in the radiation field, suggesting an interest in radiotherapy dose escalation to better control the disease locally. We aimed to identify a similarity between the areas of high uptake on O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography/computed tomography (PET) before RT-CT, the residual tumor on post-therapy NADIR magnetic resonance imaging (MRI) and the area of recurrence on MRI. This is an ancillary study from the IMAGG prospective trial assessing the interest of FET PET imaging in RT target volume definition of HGG. We included patients with diagnoses of HGG obtained by biopsy or tumor resection. These patients underwent FET PET and brain MRIs, both after diagnosis and before RT-CT. The follow-up consisted of sequential brain MRIs performed every 3 months until recurrence. Tumor delineation on the initial MRI 1 (GTV 1), post-RT-CT NADIR MRI 2 (GTV 2), and progression MRI 3 (GTV 3) were performed semi-automatically and manually adjusted by a neuroradiologist specialist in neuro-oncology. GTV 2 and GTV 3 were then co-registered on FET PET data. Tumor volumes on FET PET (MTV) were delineated using a tumor to background ratio (TBR) ≥ 1.6 and different % SUVmax PET thresholds. Spatial similarity between different volumes was performed using the dice (DICE), Jaccard (JSC), and overlap fraction (OV) indices and compared together in the biopsy or partial surgery group (G1) and the total or subtotal surgery group (G2). Another overlap index (OV') was calculated to determine the threshold with the highest probability of being included in the residual volume after RT-CT on MRI 2 and in MRI 3 (called "hotspot"). A total of 23 patients were included, of whom 22% (n = 5) did not have a NADIR MRI 2 due to a disease progression diagnosed on the first post-RT-CT MRI evaluation. Among the 18 patients who underwent a NADIR MRI 2, the average residual tumor was approximately 71.6% of the GTV 1. A total of 22% of patients (5/23) showed an increase in GTV 2 without diagnosis of true progression by the multidisciplinary team (MDT). Spatial similarity between MTV and GTV 2 and between MTV and GTV 3 were higher using a TBR ≥ 1.6 threshold. These indices were significantly better in the G1 group than the G2 group. In the FET hotspot analysis, the best similarity (good agreement) with GTV 2 was found in the G1 group using a 90% SUVmax delineation method and showed a trend of statistical difference with those (poor agreement) in the G2 group (OV' = 0.67 vs. 0.38, respectively, p = 0.068); whereas the best similarity (good agreement) with GTV 3 was found in the G1 group using a 80% SUVmax delineation method and was significantly higher than those (poor agreement) in the G2 group (OV'= 0.72 vs. 0.35, respectively, p = 0.014). These results showed modest spatial similarity indices between MTV, GTV 2, and GTV 3 of HGG. Nevertheless, the results were significantly improved in patients who underwent only biopsy or partial surgery. TBR ≥ 1.6 and 80-90% SUVmax FET delineation methods showing a good agreement in the hotspot concept for targeting standard dose and radiation boost. These findings need to be tested in a larger randomized prospective study.
Collapse
Affiliation(s)
- Bastien Allard
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
| | - Brieg Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Radiology Department, University Hospital, 29200 Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Gurvan Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Ulrike Schick
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Correspondence:
| |
Collapse
|
4
|
Mortensen D, Ulhøi BP, Lukacova S, Alsner J, Stougaard M, Nyengaard JR. Impact of new molecular criteria on diagnosis and survival of adult glioma patients. IBRO Neurosci Rep 2022; 13:299-305. [PMID: 36204252 PMCID: PMC9529576 DOI: 10.1016/j.ibneur.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The fifth edition WHO classification of Tumors of the Central nervous system (WHO-CNS5) integrated new molecular parameters to refine CNS tumor classification. This study aimed to reclassify a retrospective cohort of adult glioma patients according to WHO-CNS5, and assess if overall survival (OS) correlated with the revised diagnosis. Further, the diagnostic impact of methylation profiling (MP) was evaluated. Adult gliomas diagnosed according to 2016 WHO-CNS (n = 226) were evaluated according to WHO-CNS5 criteria. All patients had diagnostic NGS performed. 29 patients had 850k MP performed due to challenging tumor cases. OS was analyzed using Kaplan-Meier plots and log-rank test. 19 patients were reclassified. Specifically, diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma (DAG-G) were reclassified as glioblastoma (n = 15). Shifts to glioblastoma were because of TERT promoter (TERTp) mutation (n = 9), EGFR amplification (n = 2), EGFR amplification and TERTp mutation (n = 1), and TERTp mutation with gain of chromosome 7, but uncertain chromosome 10 status due to lack of NGS coverage (n = 3). Lower grade IDH-mutant astrocytomas were reclassified as astrocytoma IDH-mutant, WHO grade 4 due to CDKN2A/B homozygous deletion (n = 4). No significant difference in OS was found for reclassified DAG-G in whole group (p = 0.59) and for TERTp mutation only (p = 0.44), compared to glioblastoma. MP resulted in revised diagnosis (n = 2), confirmed diagnosis (n = 15) and no match (n = 12). Our study showed similar overall survival for glioblastoma and DAG patients, supporting that isolated TERTp mutation may have a prognostic role in IDH-wildtype gliomas. Further, our study suggests MP is useful for confirming the diagnoses in challenging tumors. Retrospective cohort of adult glioma reclassified using WHO-CNS5 molecular criteria. 8.4% of the cohort received a new diagnosis and often a higher WHO grade. TERT promoter mutation suggested as a prognostic factor in IDH wildtype gliomas. DNA methylation profiling useful for diagnostically difficult cases.
Collapse
Affiliation(s)
- Danny Mortensen
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Denmark
- Correspondence to: Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Palle Juul Jensens Boulevard 99, C112, Level 1, DK-8200 Aarhus N, Denmark.
| | | | | | - Jan Alsner
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark
- Department of Pathology, Aarhus University Hospital, Denmark
| |
Collapse
|
5
|
Wu YY, Fan KH. Proton therapy for prostate cancer: current state and future perspectives. Br J Radiol 2022; 95:20210670. [PMID: 34558308 PMCID: PMC8978248 DOI: 10.1259/bjr.20210670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Localized prostate cancer can be treated with several radiotherapeutic approaches. Proton therapy (PT) can precisely target tumors, thus sparing normal tissues and reducing side-effects without sacrificing cancer control. However, PT is a costly treatment compared with conventional photon radiotherapy, which may undermine its overall efficacy. In this review, we summarize current data on the dosimetric rationale, clinical benefits, and cost of PT for prostate cancer. METHODS An extensive literature review of PT for prostate cancer was performed with emphasis on studies investigating dosimetric advantage, clinical outcomes, cost-effective strategies, and novel technology trends. RESULTS PT is safe, and its efficacy is comparable to that of standard photon-based therapy or brachytherapy. Data on gastrointestinal, genitourinary, and sexual function toxicity profiles are conflicting; however, PT is associated with a low risk of second cancer and has no effects on testosterone levels. Regarding cost-effectiveness, PT is suboptimal, although evolving trends in radiation delivery and construction of PT centers may help reduce the cost. CONCLUSION PT has several advantages over conventional photon radiotherapy, and novel approaches may increase its efficacy and safety. Large prospective randomized trials comparing photon therapy with proton-based treatments are ongoing and may provide data on the differences in efficacy, toxicity profile, and quality of life between proton- and photon-based treatments for prostate cancer in the modern era. ADVANCES IN KNOWLEDGE PT provides excellent physical advantages and has a superior dose profile compared with X-ray radiotherapy. Further evidence from clinical trials and research studies will clarify the role of PT in the treatment of prostate cancer, and facilitate the implementation of PT in a more accessible, affordable, efficient, and safe way.
Collapse
Affiliation(s)
- Yao-Yu Wu
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Jin MC, Shi S, Wu A, Sandhu N, Xiang M, Soltys SG, Hiniker S, Li G, Pollom EL. Impact of proton radiotherapy on treatment timing in pediatric and adult patients with CNS tumors. Neurooncol Pract 2020; 7:626-635. [PMID: 33312677 PMCID: PMC7716142 DOI: 10.1093/nop/npaa034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Despite putative benefits associated with proton radiotherapy in the setting of CNS tumors, numerous barriers limit treatment accessibility. Given these challenges, we explored the association of proton use with variations in treatment timing. METHODS Pediatric and adult patients with histologically confirmed CNS tumors were identified from the National Cancer Database (2004-2015). Univariable and multivariable regression models were constructed to assess factors impacting radiation timing. Multivariable Cox regression was used to evaluate the effect of treatment delay on survival. RESULTS A total of 76 157 patients received photon or proton radiotherapy. Compared to photons, time to proton administration was longer in multiple pediatric (embryonal, ependymal, nonependymal glial, and other) and adult (ependymal, nonependymal glial, meningeal, other) tumor histologies. On adjusted analysis, proton radiotherapy was associated with longer delays in radiotherapy administration in pediatric embryonal tumors (+3.00 weeks, P = .024) and in all adult tumors (embryonal [+1.36 weeks, P = .018], ependymal [+3.15 weeks, P < .001], germ cell [+2.65 weeks, P = .024], glial [+2.15 weeks, P < .001], meningeal [+5.05 weeks, P < .001], and other [+3.06 weeks, P < .001]). In patients with high-risk tumors receiving protons, delays in adjuvant radiotherapy were independently associated with poorer survival (continuous [weeks], adjusted hazard ratio = 1.09, 95% CI = 1.02-1.16). CONCLUSIONS Proton radiotherapy is associated with later radiation initiation in pediatric and adult patients with CNS tumors. In patients with high-risk CNS malignancies receiving protons, delayed adjuvant radiotherapy is associated with poorer survival. Further studies are needed to understand this discrepancy to maximize the potential of proton radiotherapy for CNS malignancies.
Collapse
Affiliation(s)
- Michael C Jin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Siyu Shi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Adela Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Xiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Susan Hiniker
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Erqi L Pollom
- Palo Alto Veterans Affairs Health Care System, Palo Alto, California
| |
Collapse
|
7
|
Ziu M, Kim BYS, Jiang W, Ryken T, Olson JJ. The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and evidence-based clinical practice guideline update. J Neurooncol 2020; 150:215-267. [PMID: 33215344 DOI: 10.1007/s11060-020-03612-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. QUESTION 1 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is the addition of radiation therapy (RT) more beneficial than management without RT in improving survival? RECOMMENDATIONS Level I: Radiation therapy (RT) is recommended for the treatment of newly diagnosed malignant glioblastoma in adults. QUESTION 2 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is the RT regimen of 60 Gy given in 2 Gy daily fractions more beneficial than alternative regimens in providing survival benefit while minimizing toxicity? RECOMMENDATIONS Level I: Treatment schemes should include dosage of up to 60 Gy given in 2 Gy daily fractions that includes the enhancing area. QUESTION 3 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is a tailored target volume superior to regional RT for reduction of radiation-induced toxicity while maintaining efficacy? RECOMMENDATION Level II: It is recommended that radiation therapy planning include 1-2 cm margin around the radiographically T1 weighted contrast-enhancing tumor volume or the T2 weighted abnormality on MRI. Level III: Recalculation of the radiation volume during RT treatment may be necessary to reduce the radiated volume of normal brain since the volume of surgical defect will change during the long period of RT. QUESTION 4 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, does the addition of RT of the subventricular zone to standard tumor volume treatment improve tumor control and overall survival? RECOMMENDATION No recommendation can be formulated as there is contradictory evidence in favor of and against intentional radiation of the subventricular zone (SVZ) QUESTION 5 : In elderly (age > 65 years) and/or frail patients with newly diagnosed glioblastoma, does the addition of RT to surgical intervention improve disease control and overall survival? RECOMMENDATION Level I: Radiation therapy is recommended for treatment of elderly and frail patients with newly diagnosed glioblastoma to improve overall survival. QUESTION 6 : In elderly (age > 65 years) and/or frail patients with newly diagnosed glioblastoma, does modification of RT dose and fractionation scheme from standard regimens decrease toxicity and improve disease control and survival? RECOMMENDATION Level II: Short RT treatment schemes are recommended in frail and elderly patients as compared to conventional 60 Gy given in 2 daily fractions because overall survival is not different while RT risk profile is better for the short RT scheme. Level II: The 40.05 Gy dose given in 15 fractions or 25 Gy dose given in 5 fractions or 34 Gy dose given in 10 fractions should be considered as appropriate doses for Short RT treatments in elderly and/or frail patients. QUESTION 7 : In adult patients with newly diagnosed glioblastoma is there advantage to delaying the initiation of RT instead of starting it 2 weeks after surgical intervention in decreasing radiation-induced toxicity and improving disease control and survival? RECOMMENDATION Level III: It is suggested that RT for patients with newly diagnosed GBM starts within 6 weeks of surgical intervention as compared to later times. There is insufficient evidence to recommend the optimal specific post-operative day within the 6 weeks interval to start RT for adult patients with newly diagnosed glioblastoma that have undergone surgical resection. QUESTION 8 : In adult patients with newly diagnosed supratentorial glioblastoma is Image-Modulated RT (IMRT) or similar techniques as effective as standard regional RT in providing tumor control and improve survival? RECOMMENDATION Level III: There is no evidence that IMRT is a better RT delivering modality when compared to conventional RT in improving overall survival in adult patients with newly diagnosed glioblastoma. Hence, IMRT should not be preferred over the Conventional RT delivery modality. QUESTION 9 : In adult patients with newly diagnosed glioblastoma does the use of radiosensitizers with RT improve the efficacy of RT as determined by disease control and overall survival? RECOMMENDATION Level III: Iododeoxyuridine is not recommended to be used as radiosensitizer during RT treatment for patients with newly diagnosed GBM QUESTION 10 : In adult patients with newly diagnosed glioblastoma is the use of Ultrafractionated RT superior to standard fractionation regimens in improving disease control and survival? RECOMMENDATION There is insufficient evidence to formulate a recommendation regarding the use of ultrafractionated RT schemes and patient population that could benefit from it. QUESTION 11 : In patients with poor prognosis with newly diagnosed glioblastoma is hypofractionated RT indicated instead of a standard fractionation regimen as measured by extent of toxicity, disease control and survival? RECOMMENDATION Level I: Hypofractionated RT schemes may be used for patients with poor prognosis and limited survival without compromising response. There is insufficient evidence in the literature for us to be able to recommend the optimal hypofractionated RT scheme that will confer longest overall survival and/or confer the same overall survival with less toxicities and shorter treatment time. QUESTION 12 : In adult patients with newly diagnosed glioblastoma is the addition of brachytherapy to standard fractionated RT indicated to improve disease control and survival? RECOMMENDATION Level I: Brachytherapy as a boost to external beam RT has not been shown to be beneficial and is not recommended in the routine management of patients with newly diagnosed GBM. QUESTION 13 : In elderly patients (> 65 year old) with newly diagnosed glioblastoma under what circumstances is accelerated hyperfractionated RT indicated instead of a standard fractionation regimen as measured by extent of toxicity, disease control and survival? RECOMMENDATION Level III: Accelerated Hyperfractionated RT with a total RT dose of 45 Gy or 48 Gy has been shown to shorten the treatment time without detriment in survival when compared to conventional external beam RT and should be considered as an option for treatment of elderly patients with newly diagnosed GBM. QUESTION 14 : In adult patients with newly diagnosed glioblastoma is the addition of Stereotactic Radiosurgery (SRS) boost to conventional standard fractionated RT indicated to improve disease control and survival? RECOMMENDATION Level I: Stereotactic Radiosurgery boost to external beam RT has not been shown to be beneficial and is not recommended in patients undergoing routine management of newly diagnosed malignant glioma.
Collapse
Affiliation(s)
- Mateo Ziu
- Department of Neurosurgery, Inova Neuroscience and Spine Institute, 3300 Gallows Rd, NPT 2nd Floor, Suite 200, Falls Church, VA, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The UT at MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy Ryken
- Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Bin Abdulrahman AK, Bin Abdulrahman KA, Bukhari YR, Faqihi AM, Ruiz JG. Association between giant cell glioblastoma and glioblastoma multiforme in the United States: A retrospective cohort study. Brain Behav 2019; 9:e01402. [PMID: 31464386 PMCID: PMC6790325 DOI: 10.1002/brb3.1402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The current study aims to find the differences between glioblastoma multiforme (GBM) and giant cell glioblastoma (GCG) regarding mortality and prognosis among adults and elderly patients in the U.S. METHODS AND MATERIALS This study is a historical cohort type of study and is conducted on adults and elderly individuals with GBM or GCG from the years 1985-2014 in the U.S. Data were collected from the Surveillance, Epidemiology, and End Results Program (SEER) database. The study exposure was GBM or GCG and the outcome was mortality. The potential confounders were age, sex, race, ethnicity, year of diagnosis, primary site, brain overlap, and surgery. A chi-square test was used for categorical data. A univariate analysis was used for variables having a p-value <.05. Potential confounders were selected and evaluated using multivariate logistic regression models to calculate the odds ratio with stepwise selection. RESULTS The study sample was 25,117. The incidences of GBM and GCG were not similar in relation to age group. Also, Spanish-Hispanic ethnicity was independently protective of GBM and GCG as compared to Non-Spanish-Hispanic ethnicity patients with GBM have a higher mortality rate than do GCG patients. The mortality rate was higher among patients diagnosed before 2010. CONCLUSION GCG was not statistically significant in association to reduced mortality. Non-Spanish-Hispanics with GBM or GCG had a higher mortality rate than did Spanish-Hispanics. Factors such as being female, being age 59-65, and having a year of diagnosis before 2010 were independently associated with increased mortality.
Collapse
Affiliation(s)
| | | | - Yousef R. Bukhari
- College of MedicineImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Abdulaziz M. Faqihi
- College of MedicineImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Juan Gabriel Ruiz
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| |
Collapse
|
9
|
Oh D. Proton therapy: the current status of the clinical evidences. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2019.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Prelaj A, Rebuzzi SE, Grassi M, Giròn Berrìos JR, Pecorari S, Fusto C, Ferrara C, Salvati M, Stati V, Tomao S, Bianco V. Multimodal treatment for local recurrent malignant gliomas: Resurgery and/or reirradiation followed by chemotherapy. Mol Clin Oncol 2018; 10:49-57. [PMID: 30655977 PMCID: PMC6313879 DOI: 10.3892/mco.2018.1745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 01/26/2023] Open
Abstract
The therapeutic management of recurrent malignant gliomas (MGs) is not determined. Therefore, the efficacy of a multimodal approach and a combination systemic therapy was investigated. A retrospective analysis of 26 MGs patients at first relapse treated with multimodal therapy (chemotherapy plus surgery and/or reirradiation) or chemotherapy alone was performed. Second-line chemotherapy consisted of fotemustine (FTM) in combination with bevacizumab (BEV) (cFTM/BEV) or followed by third-line BEV (sFTM/BEV). Subgroup analyses were performed. Multimodal therapy provided a higher overall response rate (ORR) (73 vs. 47%), disease control rate (DCR) (82 vs. 67%), median progression-free survival (mPFS) (11 vs. 7 months; P=0.08) and median overall survival (mOS) (13 vs. 8 months; P=0.04) compared with chemotherapy. Concomitant FTM/BEV resulted in higher ORR (84 vs. 36%), DCR (92 vs. 57%), mPFS (10 vs. 5 months; P=0.22) and mOS (11 vs. 5.2 months; P=0.15) compared with sFTM/BEV. Methylated patients did not experience additional survival benefits with multimodality treatment but had higher mPFS (10 vs 7.1 months; P=0.33) and mOS (11 vs. 8 months; P=0.33) with cFTM/BEV. Unmethylated patients experienced the greatest survival benefit with the multimodal approach (mPFS: 10 vs. 5 months; mOS 11 vs 6 months; both P=0.02) and cFTM/BEV (mPFS: 5 vs. 2 months; mOS 6 vs. 3.2 months; both P=0.01). In conclusion, in recurrent MGs, multimodal therapy and cFTM/BEV provide survival and response benefits. Methylated patients benefit from a cFTM/BEV but not from a multimodal approach. Notably, unmethylated patients had the highest survival benefit with the two strategies.
Collapse
Affiliation(s)
- Arsela Prelaj
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Sara Elena Rebuzzi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, I-16132 Genoa, Italy
| | - Massimiliano Grassi
- Department of Medical Oncology, Ospedale Policlinico San Martino IST, I-16132 Genoa, Italy
| | - Julio Rodrigo Giròn Berrìos
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Silvia Pecorari
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| | - Carmela Fusto
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, 'Sapienza' University of Rome, Policlinico Umberto I, I-00161 Rome, Italy
| | - Carla Ferrara
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, I-00185 Rome, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, IRCCS Neuromed, I-86077 Pozzilli, Italy
| | - Valeria Stati
- Department of Medico-Surgical Sciences and Biotechnologies, 'Sapienza' University of Rome, I-00185 Rome, Italy
| | - Silverio Tomao
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy.,Department of Radiological Sciences, Oncology and Pathology, 'Sapienza' University of Rome, I-04100 Latina, Italy
| | - Vincenzo Bianco
- Department of Medical Oncology Unit A, Policlinico Umberto I, 'Sapienza' University of Rome, I-00161 Rome, Italy
| |
Collapse
|
11
|
Matsuda M, Kohzuki H, Ishikawa E, Yamamoto T, Akutsu H, Takano S, Mizumoto M, Tsuboi K, Matsumura A. Prognostic analysis of patients who underwent gross total resection of newly diagnosed glioblastoma. J Clin Neurosci 2018; 50:172-176. [PMID: 29396060 DOI: 10.1016/j.jocn.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/18/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023]
Abstract
Despite cumulative evidence supporting the idea that gross total resection (GTR) contributes to prolonged survival of patients with glioblastoma (GBM), the survival outcome of such patients remains unsatisfactory. To develop more effective postoperative therapeutic strategies for patients who underwent GTR, identification of prognostic factors influencing survival is urgently needed. Here we retrospectively analyzed prognostic factors for patients who underwent GTR of newly diagnosed GBM, with a particular focus on the influence of the subventricular zone (SVZ) as the tumor location. Forty-eight consecutive patients with newly diagnosed GBM who underwent GTR during the initial operation were investigated. Tumor involvement of the SVZ was significantly associated with overall survival (OS). The SVZ-positive group had a significantly shorter median OS of 12.2 months, compared to 34.9 months for the SVZ-negative group. The occurrence of leptomeningeal dissemination was significantly influenced by tumor involvement of the SVZ, but was not significantly influenced by ventricular opening during surgery. We observed a statistically significant difference in OS according to radiation modality. The median OS was 36.9 months for patients treated with high-dose proton beam therapy, compared with 26.2 months for patients treated with conventional radiotherapy. We demonstrated that tumor involvement of the SVZ was associated with poor survival of patients who underwent GTR of newly diagnosed GBM, suggesting the potential need for therapeutic strategies that specifically target tumors in the SVZ. Further prospective studies to evaluate whether radiotherapy targeting the SVZ improves survival of patients with tumor involvement of the SVZ who had undergone GTR are warranted.
Collapse
Affiliation(s)
- Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidehiro Kohzuki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koji Tsuboi
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
12
|
Matsuda M, Yamamoto T, Ishikawa E, Akutsu H, Takano S, Matsumura A. Combination of Palonosetron, Aprepitant, and Dexamethasone Effectively Controls Chemotherapy-induced Nausea and Vomiting in Patients Treated with Concomitant Temozolomide and Radiotherapy: Results of a Prospective Study. Neurol Med Chir (Tokyo) 2016; 56:698-703. [PMID: 27666343 PMCID: PMC5221780 DOI: 10.2176/nmc.oa.2016-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Concomitant use of temozolomide (TMZ) and radiotherapy, which is the standard therapy for patients with high-grade glioma, involves a unique regimen with multiple-day, long-term administration. In a previous study, we showed not only higher incidence rates of chemotherapy-induced nausea and vomiting (CINV) during the overall study period, but also substantially higher incidence rates of moderate/severe nausea and particularly severe appetite suppression during the late phase of the treatment. Here, we prospectively evaluated the efficacy of a combination of palonosetron, aprepitant, and dexamethasone for CINV in patients treated with concomitant TMZ and radiotherapy. Twenty-one consecutive patients with newly diagnosed high-grade glioma were enrolled. CINV was recorded using a daily diary and included nausea assessment, emetic episodes, degree of appetite suppression, and use of antiemetic medication. The percentage of patients with a complete response in the overall period was 76.2%. The percentages of patients with no moderate/severe nausea were 90.5, 100, and 90.5% in the early phase, late phase, and overall period, respectively. Severe appetite suppression throughout the overall period completely disappeared. The combination of palonosetron, aprepitant, and dexamethasone was highly effective and well tolerated in patients treated with concomitant TMZ and radiotherapy. This combination of antiemetic therapy focused on delayed as well as acute CINV and may have the potential to overcome CINV associated with a multiple-day, long-term chemotherapy regimen.
Collapse
Affiliation(s)
- Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba
| | | | | | | | | | | |
Collapse
|
13
|
Mizumoto M, Yamamoto T, Ishikawa E, Matsuda M, Takano S, Ishikawa H, Okumura T, Sakurai H, Matsumura A, Tsuboi K. Proton beam therapy with concurrent chemotherapy for glioblastoma multiforme: comparison of nimustine hydrochloride and temozolomide. J Neurooncol 2016; 130:165-170. [PMID: 27535747 DOI: 10.1007/s11060-016-2228-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
Abstract
To evaluate the safety and efficacy of postoperative proton beam therapy (PBT) combined with nimustine hydrochloride (ACNU) or temozolomide (TMZ) for glioblastoma multiforme (GBM). The subjects were 46 patients with GBM who were treated with high dose (96.6 GyE) PBT. There were 24 males and 22 females, and the median age was 58 years old (range 24-76). The Karnofsky performance status was 60, 70, 80, 90 and 100 in 5, 10, 12, 11 and 8 patients, respectively. Total resection, partial resection, and biopsy were performed for 31, 14 and 1 patients, respectively. Photon beams were delivered to high intensity areas on T2-weighted magnetic resonance imaging (MRI) in the morning (50.4 Gy in 28 fractions). More than 6 h later, PBT was delivered to the enhanced area plus a 10 mm margin in the first half of the protocol (23.1 GyE in 14 fractions) and to the enhanced volume in the second half (23.1 GyE in 14 fraction). Concurrent chemotherapy with ACNU during weeks 1 and 4 or daily TMZ was administered in 23 and 23 patients, respectively. The overall 1 and 2 year survival rates were 82.6 and 47.6 %, respectively. Median survival was 21.1 months (95 % CI 13.1-29.2), with no significant difference in survival between the ACNU and TMZ groups. The patient characteristics were similar in the two groups. Late radiation necrosis occurred in 11 patients (six ACNU, five TMZ), but was controlled by necrotomy and therapy including bevacizumab. PBT concurrent with ACNU or TMZ was tolerable and beneficial for carefully selected patients with GBM.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shingo Takano
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Matsumura
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koji Tsuboi
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Rong X, Yang W, Garzon-Muvdi T, Caplan JM, Hui X, Lim M, Huang J. Influence of insurance status on survival of adults with glioblastoma multiforme: A population-based study. Cancer 2016; 122:3157-3165. [PMID: 27500668 DOI: 10.1002/cncr.30160] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND To the authors' knowledge, the impact of insurance status on the survival time of patients with glioblastoma multiforme (GBM) has not been fully understood. The objective of the current study was to clarify the association between insurance status and survival of patients with GBM by analyzing population-based data. METHODS The authors performed a cohort study using data from the Surveillance, Epidemiology, and End Results program. They included adult patients (aged ≥18 years) with GBM as their primary diagnosis from the years 2007 to 2012. Patients without information regarding insurance status were excluded. A survival analysis between insurance status and GBM-related death was performed using an accelerated failure time model. Demographic and clinical variables were included to adjust for confounding effects. RESULTS Among the 13,665 adult patients in the study cohort, 558 (4.1%) were uninsured, 1516 (11.1%) had Medicaid coverage, and 11,591 (84.8%) had non-Medicaid insurance. Compared with patients who were uninsured, insured patients were more likely to be older, female, white, married, and with a smaller tumor size at diagnosis. Accelerated failure time analysis demonstrated that older age (hazard ratio [HR], 1.04; P<.001), male sex (HR, 1.08; P<.001), large tumor size at the time of diagnosis (HR, 1.26; P<.001), uninsured status (HR, 1.14; P =.018), and Medicaid insurance (HR, 1.10; P =.006) were independent risk factors for shorter survival among patients with GBM, whereas radiotherapy (HR, 0.40; P<.001) and married status (HR, 0.86; P<.001) indicated a better outcome. The authors discovered an overall yearly progressive improvement in survival in patients with non-Medicaid insurance who were diagnosed from 2007 through 2011 (P =.015), but not in uninsured or Medicaid-insured patients. CONCLUSIONS Variations existed in insurance status within the GBM population. Uninsured status and Medicaid insurance suggested shorter survival compared with non-Medicaid insurance among a population of patients with GBM. Cancer 2016;122:3157-65. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Xiaoming Rong
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin M Caplan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xuan Hui
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
MATSUDA M, YAMAMOTO T, ISHIKAWA E, NAKAI K, AKUTSU H, ONUMA K, MATSUMURA A. Profile Analysis of Chemotherapy-induced Nausea and Vomiting in Patients Treated with Concomitant Temozolomide and Radiotherapy: Results of a Prospective Study. Neurol Med Chir (Tokyo) 2015; 55:749-55. [PMID: 26345664 PMCID: PMC4605083 DOI: 10.2176/nmc.oa.2014-0413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/13/2015] [Indexed: 01/24/2023] Open
Abstract
Temozolomide (TMZ) as a concomitant and adjuvant chemotherapy to radiotherapy following maximal surgical resection is the established standard therapy for patients with newly diagnosed high-grade glioma. However, detailed analysis of chemotherapy-induced nausea and vomiting (CINV) associated with concomitant TMZ has not been sufficiently described. We prospectively analyzed the profile of CINV associated with concomitant TMZ. Eighteen consecutive patients with newly diagnosed high-grade glioma treated with concomitant chemoradiotherapy including TMZ were enrolled. CINV was recorded using a daily diary including nausea assessment, emetic episodes, degree of appetite suppression, and antiemetic medication use. The observed incidence rates of all grade nausea, moderate/severe (CTC grade 2, 3) nausea, emetic episodes, and appetite suppression for the overall period were 89%, 39%, 39%, and 83%, respectively. Moderate/severe nausea and severe (CTC grade 3) appetite suppression were frequently observed during the delayed phase of the treatment. Emetic episodes and moderate/severe nausea were significantly correlated with female gender. Moderate/severe nausea and severe appetite suppression were significantly correlated with low lymphocyte counts before chemoradiotherapy. For CINV associated with concomitant TMZ, enhanced antiemetic therapy focused on the delayed phase of the treatment will likely be beneficial, especially in female patients with a low lymphocyte count before chemoradiotherapy.
Collapse
Affiliation(s)
- Masahide MATSUDA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Tetsuya YAMAMOTO
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Eiichi ISHIKAWA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Kei NAKAI
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Hiroyoshi AKUTSU
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Kuniyuki ONUMA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| | - Akira MATSUMURA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki
| |
Collapse
|
16
|
Mizumoto M, Yamamoto T, Takano S, Ishikawa E, Matsumura A, Ishikawa H, Okumura T, Sakurai H, Miyatake SI, Tsuboi K. Long-term survival after treatment of glioblastoma multiforme with hyperfractionated concomitant boost proton beam therapy. Pract Radiat Oncol 2015; 5:e9-16. [DOI: 10.1016/j.prro.2014.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/21/2023]
|
17
|
Lin CM, Liu CK. Reversible cerebral periventricular white matter changes with corpus callosum involvement in acute toluene-poisoning. J Neuroimaging 2014; 25:497-500. [PMID: 25117062 DOI: 10.1111/jon.12155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 06/26/2014] [Accepted: 07/13/2014] [Indexed: 11/29/2022] Open
Abstract
Substance poisoning, such as toluene intoxication, has seldom been reported in the relevant literature. The documented cerebral neuroimaging has mostly described reversible symmetrical white matter changes in both the cerebral and cerebellar hemispheres. This paper presents 2 patients with toluene poisoning, whose brain magnetic resonance imaging studies showed a similar picture that included extra involvement over the corpus callosum; however, such corpus callosum involvement has never been mentioned and is quite rare in the literature. We discussed the underlying neuropathological pathways in this article. Hopefully, these cases will provide first-line clinicians with some valuable information with regard to toluene intoxication and clinical neuroimaging presentations.
Collapse
Affiliation(s)
- Chih-Ming Lin
- Department of Neurology, Stroke Center, Chunghua Christian Hospital, Chunghua City, Taiwan
| | | |
Collapse
|
18
|
Zaboronok A, Isobe T, Yamamoto T, Sato E, Takada K, Sakae T, Tsurushima H, Matsumura A. Proton beam irradiation stimulates migration and invasion of human U87 malignant glioma cells. JOURNAL OF RADIATION RESEARCH 2014; 55:283-287. [PMID: 24187331 PMCID: PMC3951081 DOI: 10.1093/jrr/rrt119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Migration and invasion of malignant glioma play a major role in tumor progression and can be increased by low doses of gamma or X-ray irradiation, especially when the migrated tumor cells are located at a distance from the main tumor mass or postoperative cavity and are irradiated in fractions. We studied the influence of proton beam irradiation on migration and invasion of human U87 malignant glioma (U87MG) cells. Irradiation at 4 and 8 Gy increased cell migration by 9.8% (±4, P = 0.032) and 11.6% (±6.6, P = 0.031) and invasion by 45.1% (±16.5, P = 0.04) and 40.5% (±12.7, P = 0.041), respectively. After irradiation at 2 and 16 Gy, cell motility did not differ from that at 0 Gy. We determined that an increase in proton beam irradiation dose to over 16 Gy might provide tumor growth control, although additional specific treatment might be necessary to prevent the potentially increased motility of glioma cells during proton beam therapy.
Collapse
Affiliation(s)
- Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomonori Isobe
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Eisuke Sato
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Kenta Takada
- Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideo Tsurushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
19
|
Abstract
Proton therapy is a novel technique for treating pediatric malignancies. As a tool to reduce normal-tissue dose, it has the potential to decrease late toxicity. Although proton therapy has been used for over five decades, most pediatric dosimetry studies and clinical series have been published over the last 10 years. The purpose of this article is to review the physical, radiobiological and economic rationales for proton therapy in pediatric CNS malignancies, and provide an overview of the current challenges and future direction of research and utilization of this approach.
Collapse
Affiliation(s)
- Radhika Sreeraman
- Department of Radiation Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel J Indelicato
- University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, FL 32206, USA
| |
Collapse
|