1
|
Soehnlein O, Lutgens E, Döring Y. Distinct inflammatory pathways shape atherosclerosis in different vascular beds. Eur Heart J 2025:ehaf054. [PMID: 40036569 DOI: 10.1093/eurheartj/ehaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Studies suggest varying atherosclerotic cardiovascular disease (ASCVD) prevalence across arterial beds. Factors such as smoking expedite ASCVD progression in the abdominal aorta, while diabetes accelerates plaque development in lower limb arteries, and hypertension plays a significant role in ASCVD development in the coronary and carotid arteries. Moreover, superficial femoral atherosclerosis advances slower compared with atherosclerosis in coronary and carotid arteries. Furthermore, femoral atherosclerosis exhibits higher levels of ossification and calcification, but lower cholesterol concentrations compared with atherosclerotic lesions of other vascular beds. Such disparities exemplify the diverse progression of ASCVD across arterial beds, pointing towards differential mechanistic pathways in each vascular bed. Hence, this review summarizes current literature on immune-inflammatory mechanisms in various arterial beds in ASCVD to advance our understanding of this disease in an aging society with increased need of vascular bed and patient-specific treatment options.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), Von-Esmarch-Str. 56, University of Münster, 48149 Münster, Germany
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yvonne Döring
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
2
|
Martín Tempestti J, Kim S, Lindsey BD, Veneziani A. A Pseudo-Spectral Method for Wall Shear Stress Estimation from Doppler Ultrasound Imaging in Coronary Arteries. Cardiovasc Eng Technol 2024; 15:647-666. [PMID: 39103664 DOI: 10.1007/s13239-024-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE The Wall Shear Stress (WSS) is the component tangential to the boundary of the normal stress tensor in an incompressible fluid, and it has been recognized as a quantity of primary importance in predicting possible adverse events in cardiovascular diseases, in general, and in coronary diseases, in particular. The quantification of the WSS in patient-specific settings can be achieved by performing a Computational Fluid Dynamics (CFD) analysis based on patient geometry, or it can be retrieved by a numerical approximation based on blood flow velocity data, e.g., ultrasound (US) Doppler measurements. This paper presents a novel method for WSS quantification from 2D vector Doppler measurements. METHODS Images were obtained through unfocused plane waves and transverse oscillation to acquire both in-plane velocity components. These velocity components were processed using pseudo-spectral differentiation techniques based on Fourier approximations of the derivatives to compute the WSS. RESULTS Our Pseudo-Spectral Method (PSM) is tested in two vessel phantoms, straight and stenotic, where a steady flow of 15 mL/min is applied. The method is successfully validated against CFD simulations and compared against current techniques based on the assumption of a parabolic velocity profile. The PSM accurately detected Wall Shear Stress (WSS) variations in geometries differing from straight cylinders, and is less sensitive to measurement noise. In particular, when using synthetic data (noise free, e.g., generated by CFD) on cylindrical geometries, the Poiseuille-based methods and PSM have comparable accuracy; on the contrary, when using the data retrieved from US measures, the average error of the WSS obtained with the PSM turned out to be 3 to 9 times smaller than that obtained by state-of-the-art methods. CONCLUSION The pseudo-spectral approach allows controlling the approximation errors in the presence of noisy data. This gives a more accurate alternative to the present standard and a less computationally expensive choice compared to CFD, which also requires high-quality data to reconstruct the vessel geometry.
Collapse
Affiliation(s)
| | - Saeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Brooks D Lindsey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
- Interdisciplinary BioEngineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Dr, Atlanta, 30322, GA, USA
- Department of Computer Science, Emory University, 400 Dowman Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Hu J, Li F, Xu H, Zang P, Cao X, Mao X, Gao F. Prediction of carotid artery plaque area based on parallel multi-gate attention capture model. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:105125. [PMID: 39465991 DOI: 10.1063/5.0214828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease (CVD) is a group of conditions involving the heart or blood vessels and is a leading cause of death and disability worldwide. Carotid artery plaque, as a key risk factor, is crucial for the early prevention and management of CVD. The purpose of this study is to combine clinical application and deep learning techniques to design a predictive model for the carotid artery plaque area. This model aims to identify individuals at high risk and reduce the incidence of cardiovascular disease through the implementation of relevant preventive measures. This study proposes an innovative multi-gate attention capture (MGAC) model that utilizes data such as risk factors, laboratory tests, and physical examinations to predict the area of carotid artery plaque. Experimental findings reveal the superior performance of the MGAC model, surpassing other commonly used deep learning models with the following metrics: mean absolute error of 4.17, root mean square error of 10.89, mean logarithmic squared error of 0.21, and coefficient of determination of 0.98.
Collapse
Affiliation(s)
- Jiangbo Hu
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feng Li
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hongzeng Xu
- Department of Cardiology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang 110011, China
| | - Peizhuo Zang
- Department of Neurosurgery, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, China
| | - Xingbing Cao
- Zhejiang Nari Suzhi Health Technology Co, Ltd., Hangzhou 310053, China
| | - Xiawei Mao
- Zhejiang Nari Suzhi Health Technology Co, Ltd., Hangzhou 310053, China
| | - Fei Gao
- Zhejiang Nari Suzhi Health Technology Co, Ltd., Hangzhou 310053, China
| |
Collapse
|
4
|
Chee AJY, Ho CK, Yiu BYS, Yu ACH. Time-Resolved Wall Shear Rate Mapping Using High-Frame-Rate Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3367-3381. [PMID: 36343007 DOI: 10.1109/tuffc.2022.3220560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In atherosclerosis, low wall shear stress (WSS) is known to favor plaque development, while high WSS increases plaque rupture risk. To improve plaque diagnostics, WSS monitoring is crucial. Here, we propose wall shear imaging (WASHI), a noninvasive contrast-free framework that leverages high-frame-rate ultrasound (HiFRUS) to map the wall shear rate (WSR) that relates to WSS by the blood viscosity coefficient. Our method measures WSR as the tangential flow velocity gradient along the arterial wall from the flow vector field derived using a multi-angle vector Doppler technique. To improve the WSR estimation performance, WASHI semiautomatically tracks the wall position throughout the cardiac cycle. WASHI was first evaluated with an in vitro linear WSR gradient model; the estimated WSR was consistent with theoretical values (an average error of 4.6% ± 12.4 %). The framework was then tested on healthy and diseased carotid bifurcation models. In both scenarios, key spatiotemporal dynamics of WSR were noted: 1) oscillating shear patterns were present in the carotid bulb and downstream to the internal carotid artery (ICA) where retrograde flow occurs; and 2) high WSR was observed particularly in the diseased model where the measured WSR peaked at 810 [Formula: see text] due to flow jetting. We also showed that WASHI could consistently track arterial wall motion to map its WSR. Overall, WASHI enables high temporal resolution mapping of WSR that could facilitate investigations on causal effects between WSS and atherosclerosis.
Collapse
|
5
|
Investigation of Artery Wall Elasticity Effect on the Prediction of Atherosclerosis by Hemodynamic Factors. Appl Bionics Biomech 2022; 2022:3446166. [PMID: 35422878 PMCID: PMC9005322 DOI: 10.1155/2022/3446166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a vascular disease in which some parts of the artery undergo stenosis due to the aggregation of fat. The causes and location of stenosis can be determined using fluid mechanics and parameters such as pressure, effective wall shear stress, and oscillatory shear index (OSI). The present study, for the first time, numerically investigates the pulsatile blood flow inside arteries with elastic and rigid walls in simple and double stenosis (80% stenosis) by using
-ω model and physiological pulse. The reason for applying the
-ω model in the present study was to provide more consistent results with clinical results to improve the accuracy in estimating atherosclerosis disease. The investigation of the time-mean wall shear stress indicated that for double stenosis, the difference between the results of the rigid and elastic artery assumptions is greater than the case of simple stenosis, so that this difference percent can be up to 2.5 times. In addition, the results showed that the pressure drop for the first stenosis is greater than the second stenosis, by 810 Pa (for solid artery) and 540 Pa (for elastic artery). The results also revealed that for simple stenosis, the length of the diseases prone zone in the elastic artery is 21% longer than the rigid one which this figure for double stenosis is calculated to be about 40%. Comparing the results of the simple stenosis with double, one affirmed that the artery wall thickness growth for case of double stenosis is greater than that of the single one.
Collapse
|
6
|
An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging. Sci Rep 2021; 11:22540. [PMID: 34795350 PMCID: PMC8602310 DOI: 10.1038/s41598-021-01874-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The increasing prevalence of finite element (FE) simulations in the study of atherosclerosis has spawned numerous inverse FE methods for the mechanical characterization of diseased tissue in vivo. Current approaches are however limited to either homogenized or simplified material representations. This paper presents a novel method to account for tissue heterogeneity and material nonlinearity in the recovery of constitutive behavior using imaging data acquired at differing intravascular pressures by incorporating interfaces between various intra-plaque tissue types into the objective function definition. Method verification was performed in silico by recovering assigned material parameters from a pair of vessel geometries: one derived from coronary optical coherence tomography (OCT); one generated from in silico-based simulation. In repeated tests, the method consistently recovered 4 linear elastic (0.1 ± 0.1% error) and 8 nonlinear hyperelastic (3.3 ± 3.0% error) material parameters. Method robustness was also highlighted in noise sensitivity analysis, where linear elastic parameters were recovered with average errors of 1.3 ± 1.6% and 8.3 ± 10.5%, at 5% and 20% noise, respectively. Reproducibility was substantiated through the recovery of 9 material parameters in two more models, with mean errors of 3.0 ± 4.7%. The results highlight the potential of this new approach, enabling high-fidelity material parameter recovery for use in complex cardiovascular computational studies.
Collapse
|
7
|
Geometry and Flow Properties Affect the Phase Shift between Pressure and Shear Stress Waves in Blood Vessels. FLUIDS 2021. [DOI: 10.3390/fluids6110378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The phase shift between pressure and wall shear stress (WSS) has been associated with vascular diseases such as atherosclerosis and aneurysms. The present study aims to understand the effects of geometry and flow properties on the phase shift under the stiff wall assumption, using an immersed-boundary-lattice-Boltzmann method. For pulsatile flow in a straight pipe, the phase shift is known to increase with the Womersley number, but is independent of the flow speed (or the Reynolds number). For a complex geometry, such as a curved pipe, however, we find that the phase shift develops a strong dependence on the geometry and Reynolds number. We observed that the phase shift at the inner bend of the curved vessel and in the aneurysm dome is larger than that in a straight pipe. Moreover, the geometry affects the connection between the phase shift and other WSS-related metrics, such as time-averaged WSS (TAWSS). For straight and curved blood vessels, the phase shift behaves qualitatively similarly to and can thus be represented by the TAWSS, which is a widely used hemodynamic index. However, these observables significantly differ in other geometries, such as in aneurysms. In such cases, one needs to consider the phase shift as an independent quantity that may carry additional valuable information compared to well-established metrics.
Collapse
|
8
|
Pozzi S, Domanin M, Forzenigo L, Votta E, Zunino P, Redaelli A, Vergara C. A surrogate model for plaque modeling in carotids based on Robin conditions calibrated by cine MRI data. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3447. [PMID: 33586336 DOI: 10.1002/cnm.3447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
We propose a surrogate model for the fluid-structure interaction (FSI) problem for the study of blood dynamics in carotid arteries in presence of plaque. This is based on the integration of a numerical model with subject-specific data and clinical imaging. We propose to model the plaque as part of the tissues surrounding the vessel wall through the application of an elastic support boundary condition. In order to characterize the plaque and other surrounding tissues, such as the close-by jugular vein, the elastic parameters of the boundary condition were spatially differentiated and their values were estimated by minimizing the discrepancies between computed vessel displacements and reference values obtained from CINE Magnetic Resonance Imaging data. We applied the model to three subjects with a degree of stenosis greater than 70%. We found that accounting for both plaque and jugular vein in the estimation of the elastic parameters increases the accuracy. In particular, in all patients, mismatches between computed and in vivo measured wall displacements were one to two orders of magnitude lower than the spatial resolution of the original MRI data. These results confirmed the validity of the proposed surrogate plaque model. We also compared fluid-dynamics results with those obtained in a fixed wall setting and in a full FSI model, used as gold standard, highlighting the better accordance of our results in comparison to the rigid ones.
Collapse
Affiliation(s)
- Silvia Pozzi
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Maurizio Domanin
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy
- Unità Operativa di Chirurgia Vascolare, Fondazione I.R.C.C.S. Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Forzenigo
- Unità Operativa di Radiologia, Fondazione I.R.C.C.S. Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Emiliano Votta
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Alberto Redaelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
9
|
Shenouda R, Vancheri S, Maria Bassi E, Nicoll R, Sobhi M, El Sharkawy E, Wester P, Vancheri F, Henein MY. The relationship between carotid and coronary calcification in patients with coronary artery disease. Clin Physiol Funct Imaging 2021; 41:271-280. [PMID: 33583121 DOI: 10.1111/cpf.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atherosclerosis is a multi-system pathology with heterogeneous involvement. We aimed to investigate the relationship between the presence and severity of carotid and coronary calcification in a group of patients with coronary artery disease. METHODS Sixty-three patients presenting with unstable angina or positive stress test for myocardial ischaemia were enrolled in this study. All patients underwent CT scanning of the carotid and coronary arteries using the conventional protocol and Agatston scoring system. Risk factors for atherosclerosis were also analyzed for correlation with the extent of arterial calcification. RESULTS Total coronary artery calcium score (CAC) was several times higher than total carotid calcium score (1274 (1018) vs 6 (124), p = 0·0001, respectively). The left carotid calcium score correlated strongly with the right carotid calcium score (rho = 0·69, p < 0·0001). The total CAC score correlated modestly with the total carotid calcium score (rho = 0·34, p = 0·007), in particular with left carotid score (rho = 0·38, p = 0·002), but not with the right carotid score. The left coronary calcium score correlated with the right coronary calcium score (rho = 0·35, p = 0·004), left carotid calcium score (rho = 0·33, p = 0·007) and left carotid calcium score at the bifurcation (rho = 0·34, p = 0·006). While hypertension correlated with carotid calcium score, diabetes and dyslipidaemia correlated with left CAC score. CONCLUSION In patients with coronary disease, the carotid calcification pattern appeared to be similar between the right and left system in contrast to that of the coronary arteries. CAC correlated only modestly with the carotid score, despite being significantly higher. Hypertension was related to carotid calcium score while diabetes and dyslipidaemia correlated with coronary calcification.
Collapse
Affiliation(s)
- Rafik Shenouda
- International Cardiac Centre - ICC, Alexandria, Egypt.,Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Sergio Vancheri
- Radiology Department, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | | | - Rachel Nicoll
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Mohammed Sobhi
- International Cardiac Centre - ICC, Alexandria, Egypt.,Cardiology Department, Faculty of medicine, Alexandria University, Sharqi, Egypt
| | - Eman El Sharkawy
- International Cardiac Centre - ICC, Alexandria, Egypt.,Cardiology Department, Faculty of medicine, Alexandria University, Sharqi, Egypt
| | - Per Wester
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | | | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
10
|
Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Stress distribution analysis in healthy and stenosed carotid artery models reconstructed from in vivo ultrasonography. Ultrasonography 2021; 40:428-441. [PMID: 33775008 PMCID: PMC8217799 DOI: 10.14366/usg.20131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose This study investigated the accuracy of models reconstructed from ultrasound image processing by comparing the radial displacement waveforms of a subject-specific artery model and evaluated stress changes in the proximal shoulder, throat, and distal shoulder of the plaques depending on the degree of carotid artery stenosis. Methods Three groups of subjects (healthy and with less than 50% or more carotid stenosis) were evaluated with ultrasonography. Two-dimensional transverse imaging of the common carotid artery was performed to reconstruct the geometry. A longitudinal view of the same region was recorded to extract the Kelvin viscoelastic model parameters. The pulse pressure waveform and the effective pressure of perivascular tissue were loaded onto the internal and external walls of the model. Effective, circumferential, and principal stresses applied to the plaque throat, proximal shoulder, and distal shoulder in the transverse planes were extracted. Results The radial displacement waveforms of the model were closely correlated with those of image processing in all three groups. The mean of the effective, circumferential, and principal stresses of the healthy arteries were 15.01±4.93, 12.97±5.07, and 12.39±2.86 kPa, respectively. As stenosis increased from mild to significant, the mean values of the effective, circumferential, and first principal stresses increased significantly (97%, 74%, and 103% at the plaque throat, respectively) (P<0.05). The minimum effective stress was at the lipid pool. The effective stress in calcified areas was higher than in other parts of the artery wall. Conclusion This model can discriminate differences in stresses applied to mildly and severely stenotic plaques.
Collapse
Affiliation(s)
- Effat Soleimani
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | - Nasser Fatouraee
- Department of Medical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Hazhir Saberi
- Department of Radiology, Tehran Medical Sciences University, Imaging Center of Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
11
|
Qian S, Ma T, Zhang N, Liu X, Zhao P, Li X, Chen D, Hu L, Chang L, Xu L, Deng X, Fan Y. Spatiotemporal transfer of nitric oxide in patient-specific atherosclerotic carotid artery bifurcations with MRI and computational fluid dynamics modeling. Comput Biol Med 2020; 125:104015. [DOI: 10.1016/j.compbiomed.2020.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
|
12
|
Sharifzadeh B, Kalbasi R, Jahangiri M, Toghraie D, Karimipour A. Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 192:105442. [PMID: 32192998 DOI: 10.1016/j.cmpb.2020.105442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Atherosclerosis-a condition in which an artery is constricted-alters blood flow in the artery, that can exacerbate the condition. Focusing on previous studies, it can be seen that the k-ε model has been used in the simulation. Therefore, the reverse flow on the back of stenosis is not well represented. In this study, the simulated results are much closer to clinical results, relying on the use of physiological pulses, and considering elasticity of the vessel wall, and the applying k-ω model. It can therefore be claimed that a much more accurate prediction will be made regarding the formation, development and progression of the disease. METHODS Modeling biological systems usually contain many parameters, which cannot be calculated experimentally, or are too costly and time consuming. In addition, it is occasionally required to examine the influence of different physical variables, which, given the complexity of the governing equations, make analytical methods feasible (or very limited). The present study is an attempt to investigate the turbulent pulsatile blood flow in an elastic artery with single and double stenoses using a finite element software program, ADINA 8.8. RESULTS According to the results, the k - ω turbulence model predicted a larger reverse flow in the post-stenotic region and between the two stenoses in comparison with the k - ε model. In other words, the k - ω model results suggest that a larger region is prone to atherosclerosis. In addition, that the k - ε model predicted a greater maximum shear stress at the throat and a shorter reverse flow region (Mean WSS < 0) in both stenosis scenarios. In other words, relative to the k - ε model, the k - ω model underestimated the damage to the plaque and the risk of its rupture though it predicted new stenosis developing behind the previous one. It was observed that the presence of a double stenosis causes the upstream pressure to reach the critical value in less time. Velocity profiles revealed that in the stenosis throat, the maximum velocity exceeds the normal biological state, which may cause disorders in the blood circulation. CONCLUSIONS The artery wall displacement results are suggestive of the greater difference between the two turbulence models in the case with double stenosis compared with single stenosis. Moreover, the difference between the two turbulence models in double stenosis is minimized in both post-stenotic and pre-stenotic regions.
Collapse
Affiliation(s)
- Bahador Sharifzadeh
- Department of Mechanical engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rasool Kalbasi
- Department of Mechanical engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mehdi Jahangiri
- Department of Mechanical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Arash Karimipour
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Horváth M, Hájek P, Štěchovský C, Honěk J, Veselka J. Carotid artery plaque composition and distribution: near-infrared spectroscopy and intravascular ultrasound analysis. Eur Heart J Suppl 2020; 22:F38-F43. [PMID: 32694952 PMCID: PMC7361666 DOI: 10.1093/eurheartj/suaa097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
Most atherosclerotic plaques (APs) form in typical predilection areas of low endothelial shear stress (ESS). On the contrary, previous data hinted that plaques rupture in their proximal parts where accelerated blood flow causes high ESS. It was postulated that high ESS plays an important role in the latter stages of AP formation and in its destabilization. Here, we used near-infrared spectroscopy (NIRS) to analyse the distribution of lipid core based on the presumed exposure to ESS. A total of 117 carotid arteries were evaluated using NIRS and intravascular ultrasound (IVUS) prior to carotid artery stenting. The point of minimal luminal area (MLA) was determined using IVUS. A stepwise analysis of the presence of lipid core was then performed using NIRS. The lipid core presence was quantified as the lipid core burden index (LCBI) within 2 mm wide segments both proximally and distally to the MLA. The analysed vessel was then divided into three 20 mm long thirds (proximal, middle, and distal) for further analysis. The maximal value of LCBI (231.9 ± 245.7) was noted in the segment localized just 2 mm proximally to MLA. The mean LCBI in the middle third was significantly higher than both the proximal (121.4 ± 185.6 vs. 47.0 ± 96.5, P < 0.01) and distal regions (121.4 ± 185.6 vs. 32.4 ± 89.6, P < 0.01). Lipid core was more common in the proximal region when compared with the distal region (mean LCBI 47.0 ± 96.5 vs. 32.4 ± 89.6, P < 0.01).
Collapse
Affiliation(s)
- Martin Horváth
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Petr Hájek
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Cyril Štěchovský
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Jakub Honěk
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Josef Veselka
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| |
Collapse
|
14
|
Long-Term Prognostic Value of Simultaneous Assessment of Atherosclerosis and Ischemia in Patients with Suspected Angina: Implications for Routine Use of Carotid Ultrasound during Stress Echocardiography. J Am Soc Echocardiogr 2020; 33:559-569. [DOI: 10.1016/j.echo.2019.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 11/30/2022]
|
15
|
Musialek P, Dabrowski W, Mazurek A, Tekieli L, Banys RP, Rigla J, Stefaniak J. Quantitative Virtual Histology for In Vivo Evaluation of Human Atherosclerosis—A Plaque Biomechanics-Based Novel Image Analysis Algorithm: Validation and Applications to Atherosclerosis Research. INTRAVASCULAR ULTRASOUND 2020:71-96. [DOI: 10.1016/b978-0-12-818833-0.00005-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Simonetto M, DeSousa K, Campo N, Pandey V, Koch S. Topography of Vertebral Artery Origin Plaques: Characteristics and Determinants. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:331-335. [PMID: 30027627 DOI: 10.1002/jum.14692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Atherosclerotic plaques located at the vertebral artery ostium (VAo) are a mechanism for posterior circulation stroke, but little is known about VAo plaque topography and formation. In this study, we describe the topography of atherosclerotic plaques involving the origin of the vertebral artery (VA). METHODS Cross-sectional analyses of extracranial duplex studies were performed, and VAo plaques were classified based on their topography in 3 groups: (1) exclusively at the VA ostium; (2) predominantly subclavian, with extension into the vertebral ostium; and (3) predominantly ostial, with extension into the subclavian artery). Chi-square and analysis of variance tests were performed to investigate the association between VAo plaque topography and continuous and categorical variables, respectively. RESULTS A total of 99 of 481 (21%) ultrasound duplex studies showed VAo plaques. The majority of the plaques (60%) were found to extend from the subclavian to the ostium. Plaques occurred more frequently at the medial wall of the VAo. No vascular risk factors were associated with plaque formation; however, women were more likely to have plaques involving predominantly or exclusively the VAo (P = .004). CONCLUSIONS We describe 3 different patterns of VAo involvement in patients with ostial atherosclerotic VA disease. VAo plaques occurred almost exclusively at the medial wall of the vessel. Women had more plaques involving predominantly the origin. Prospective studies are needed to investigate the clinical significance of these findings.
Collapse
Affiliation(s)
- Marialaura Simonetto
- Department of Neurology, Miller School of Medicine, University of Miami, Coral Gables, Florida USA
| | - Keith DeSousa
- Department of Neurology, Miller School of Medicine, University of Miami, Coral Gables, Florida USA
| | - Nelly Campo
- Department of Neurology, Miller School of Medicine, University of Miami, Coral Gables, Florida USA
- Department of Neurology, Jackson Memorial Hospital, Miami, Florida USA
| | - Vikas Pandey
- Department of Neurology, Miller School of Medicine, University of Miami, Coral Gables, Florida USA
| | - Sebastian Koch
- Department of Neurology, Miller School of Medicine, University of Miami, Coral Gables, Florida USA
- Department of Neurology, Jackson Memorial Hospital, Miami, Florida USA
| |
Collapse
|
17
|
Tat J, Psaromiligkos IN, Daskalopoulou SS. Carotid Atherosclerotic Plaque Alters the Direction of Longitudinal Motion in the Artery Wall. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2114-2122. [PMID: 27260245 DOI: 10.1016/j.ultrasmedbio.2016.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Longitudinal motion of the artery, a cyclical, bidirectional movement of the wall in the long axis of the artery, has recently gained interest in the characterization of artery function. The aim of this study was to evaluate longitudinal motion in patients with internal carotid atherosclerotic plaques. Speckle tracking ultrasound was used to assess common carotid artery wall motion in 12 patients with carotid plaque causing either moderate (50%-79%) or severe (80%-99%) stenosis based on the North American Carotid Endarterectomy Trial, and 23 healthy participants. Although healthy individuals were found to have a retrograde wall motion pattern, a distinct anterograde pattern was noted with plaque presence. Importantly, patients with severe plaque stenosis had greater anterograde motion (0.53 ± 0.36 mm) than those with moderate stenosis (0.17 ± 0.15 mm) (p < 0.05), likely owing to high wall shear stresses associated with greater peak systolic velocities at the site of stenosis (severe: 342.0 ± 99.4 cm/s, moderate: 177.5 ± 31.2 cm/s, p < 0.01). There were no differences in peak systolic velocities at plaque-free segments between plaque groups (severe: 80.2 ± 24.8 cm/s, moderate: 92.7 ± 23.0 cm/s). Blood flow at stenotic areas better predicted motion than plaque-free segments. We conclude that the presence of carotid plaque can have significant influence on longitudinal motion, with significantly greater anterograde displacements with increased stenosis. Future studies are needed to further investigate carotid artery wall mechanics.
Collapse
Affiliation(s)
- Jimmy Tat
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ioannis N Psaromiligkos
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
Computational study of the fluid-dynamics in carotids before and after endarterectomy. J Biomech 2016; 49:26-38. [DOI: 10.1016/j.jbiomech.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/26/2015] [Accepted: 11/07/2015] [Indexed: 01/24/2023]
|
19
|
Rukhlenko OS, Dudchenko OA, Zlobina KE, Guria GT. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress. PLoS One 2015; 10:e0134028. [PMID: 26222505 PMCID: PMC4519339 DOI: 10.1371/journal.pone.0134028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/05/2015] [Indexed: 01/06/2023] Open
Abstract
Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines.
Collapse
Affiliation(s)
- Oleksii S. Rukhlenko
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Cherkasy National University, Cherkasy, Ukraine
| | | | | | - Georgy Th. Guria
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
20
|
Sui B, Gao P, Lin Y, Jing L, Sun S, Qin H. Hemodynamic parameters distribution of upstream, stenosis center, and downstream sides of plaques in carotid artery with different stenosis: a MRI and CFD study. Acta Radiol 2015; 56:347-54. [PMID: 24676083 DOI: 10.1177/0284185114526713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Histopathological studies have shown significant differences in plaque components and surface conditions between upstream and downstream of the stenosis. It can be deduced that the flow status near the plaques is different from the flow status at the upstream side, stenosis center, or downstream side of the plaque. PURPOSE To study the hemodynamic parameter distribution in different locations near atherosclerotic plaques in the carotid arteries with different stenosis degrees. MATERIAL AND METHODS Eleven patients were recruited in this study. CE-MRA was performed to obtain the carotid three-dimensional surface data and the stenosis degrees were calculated. The hemodynamic parameters including wall shear stress (WSS), pressure, and velocity near the plaques were obtained by computational fluid dynamic (CFD) method. Local hemodynamics parameters were analyzed and compared between different stenosis degree groups, and between upstream, stenosis center, and downstream sides of plaques. Relative ratio of velocity, WSS, and pressure values in different locations was calculated and compared. RESULTS Fourteen carotid arteries (with 4 mild, 6 moderate, and 4 severe stenosis) were analyzed. Significant differences were found in Pressure max (P = 0.025), Pressure mean (P = 0.020), and Pressure min (P = 0.026) between three stenosis groups. It showed significant differences in Vmin (P < 0.001) and WSSmin (P < 0.001) between three different locations. It showed upstream to downstream ratio of WSSmax (P = 0.034) and WSSmean value (P = 0.042) was significantly different between mild and moderate/severe groups. Significant differences were found in upstream to stenosis center ratio of Pressure max value (P = 0.018), Pressure mean value (P = 0.029), and Pressure min value (P = 0.026), as well as in stenosis center to downstream ratio of Pressure min value (P = 0.042). CONCLUSION Velocity, WSS, pressure, and relative ratio of these parameters have certain trends in distribution around the plaques in the carotid arteries.
Collapse
Affiliation(s)
- Binbin Sui
- Radiology Department, Beijing Neurosurgical Institute, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Peiyi Gao
- Radiology Department, Beijing Neurosurgical Institute, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yan Lin
- Radiology Department, Beijing Neurosurgical Institute, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Lina Jing
- Radiology Department, Beijing Neurosurgical Institute, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Shengjun Sun
- Radiology Department, Beijing Neurosurgical Institute, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Haiqiang Qin
- Neurology Department, Affiliated Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
21
|
Effect of Calcification Modulus and Geometry on Stress in Models of Calcified Atherosclerotic Plaque. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Nederveen AJ, Avril S, Speelman L. MRI strain imaging of the carotid artery: present limitations and future challenges. J Biomech 2014; 47:824-33. [PMID: 24468207 DOI: 10.1016/j.jbiomech.2014.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/18/2022]
Abstract
Rupture of atherosclerotic plaques in the carotid artery is a main cause of stroke. Current diagnostics are not sufficient to identify all rupture-prone plaques, and studies have shown that biomechanical factors improve current plaque risk assessment. Strain imaging may be a valuable contribution to this risk assessment. MRI is a versatile imaging technique that offers various methods that are capable of measuring tissue strain. In this review, MR imaging techniques with displacement (DENSE), velocity (PC MRI), or strain (SENC) encoding protocols are discussed, together with post-processing techniques based on time-resolved MRI data. Although several MRI techniques are being developed to improve time-resolved MR imaging, current technical limitations related to spatial and temporal resolutions render MRI strain imaging currently unfit for carotid plaque strain evaluation. A novel approach using non-rigid image registration of MR images to determine strain in carotid arteries based on black blood cine MRI is proposed in this review. This and other post-processing techniques based on time-resolved MRI data may provide a good estimate of plaque strain, but are also dependent on the spatial and temporal resolution of the MR images. However, they seem to be the most promising approach for MRI based plaque strain analysis in the near future.
Collapse
Affiliation(s)
- Aart J Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Stéphane Avril
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines de Saint-Étienne, France
| | - Lambert Speelman
- Department of Biomedical Engineering, Erasmus MC Rotterdam, The Netherlands
| |
Collapse
|
23
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 DOI: 10.1146/annurev-fluid-010313-141418] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
24
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 PMCID: PMC4211638 DOI: 10.1146/annurev-fluid-010313-141309] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
25
|
Khan UA, Thapar A, Shalhoub J, Davies AH. Risk of intracerebral aneurysm rupture during carotid revascularization. J Vasc Surg 2013. [PMID: 23182485 DOI: 10.1016/j.jvs.2012.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Robust guidelines exist for the treatment of carotid stenosis and intracranial aneurysms independently, however, the management of tandem carotid stenosis and intracranial aneurysms remains uncertain. Although the prevalence of tandem pathologies is small (1.9%-3.2%), treating carotid stenosis can alter intracranial hemodynamics potentially predisposing to aneurysm rupture. In this review, our aim was to assess the safety of intervention in this cohort, by analyzing outcomes from the published literature. METHODS The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to conduct the review. Articles from 1947 to 2012 were searched using EMBASE Classic and EMBASE (November, 1947 -March, 2012) and Ovid MEDLINE(R) In-Process and other NonIndexed Citations and Ovid MEDLINE(R) on Ovid SP, http://ClinicalTrials.gov, http://controlled-trials.com and the Cochrane review database using a predefined search strategy. RESULTS One hundred forty-one patients from 27 articles were included. Interventions ranged from single (n=104, 74%), staged (n=26, 18%) to simultaneous procedures (n=11, 8%). The largest cohort of patients was treated by carotid endarterectomy alone (n=92, 66%). The majority of patients presented with a symptomatic carotid stenosis and an asymptomatic ipsilateral intracranial aneurysm (n=70, 50%). Five subarachnoid hemorrhages occurred (4% [5/140], three within 30 days of the procedure and two thereafter) of which two were fatal. All five occurred in patients who underwent carotid endarterectomy as a single procedure (5%). Two of the five patients presented with ruptured posterior communicating artery aneurysms. CONCLUSIONS Published reports of perioperative aneurysm rupture are rare in individuals with tandem carotid stenosis and intracranial aneurysms. This is the first analysis of all published cases. However, it is limited by the small number of studies and the possible underreporting due to publication bias and underdiagnosis where angiography was not performed. Although we report a low incidence of subarachnoid hemorrhage, analysis of registry data with a larger cohort is warranted to confirm these findings.
Collapse
Affiliation(s)
- Ursalan A Khan
- Academic Section of Vascular Surgery, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Abstract
Although the modern surgical era is highlighted by multiple technological advances and innovations, one area that has remained constant is the dependence of the surgeon's vision on white-light reflectance. This renders different body tissues in a limited palette of various shades of pink and red, thereby limiting the visual contrast available to the operating surgeon. Healthy tissue, anatomic variations, and diseased states are seen as slight discolorations relative to each other and differences are inherently limited in dynamic range. In the upcoming years, surgery will undergo a paradigm shift with the use of targeted fluorescence imaging probes aimed at augmenting the surgical armamentarium by expanding the "visible" spectrum available to surgeons. Such fluorescent "smart probes" will provide real-time, intraoperative, pseudo-color, high-contrast delineation of both normal and pathologic tissues. Fluorescent surgical molecular guidance promises another major leap forward to improve patient safety and clinical outcomes, and to reduce overall healthcare costs. This review provides an overview of current and future surgical applications of fluorescence imaging in diseased and nondiseased tissues and focus on the innovative fields of image processing and instrumentation.
Collapse
Affiliation(s)
- Ryan K Orosco
- Division of Head and Neck Surgery, University of California San Diego, La Jolla, CA 92093-0647, USA
| | | | | |
Collapse
|
27
|
McCormick M, Varghese T, Wang X, Mitchell C, Kliewer MA, Dempsey RJ. Methods for robust in vivo strain estimation in the carotid artery. Phys Med Biol 2012; 57:7329-53. [PMID: 23079725 DOI: 10.1088/0031-9155/57/22/7329] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hierarchical block-matching motion tracking algorithm for strain imaging is presented. Displacements are estimated with improved robustness and precision by utilizing a Bayesian regularization algorithm and an unbiased subsample interpolation technique. A modified least-squares strain estimator is proposed to estimate strain images from a noisy displacement input while addressing the motion discontinuity at the wall-lumen boundary. Methods to track deformation over the cardiac cycle incorporate a dynamic frame skip criterion to process data frames with sufficient deformation to produce high signal-to-noise displacement and strain images. Algorithms to accumulate displacement and/or strain on particles in a region of interest over the cardiac cycle are described. New methods to visualize and characterize the deformation measured with the full 2D strain tensor are presented. Initial results from patients imaged prior to carotid endarterectomy suggest that strain imaging detects conditions that are traditionally considered high risk including soft plaque composition, unstable morphology, abnormal hemodynamics and shear of plaque against tethering tissue can be exacerbated by neoangiogenesis. For example, a maximum absolute principal strain exceeding 0.2 is observed near calcified regions adjacent to turbulent flow, protrusion of the plaque into the arterial lumen and regions of low echogenicity associated with soft plaques. Non-invasive carotid strain imaging is therefore a potentially useful tool for detecting unstable carotid plaque.
Collapse
Affiliation(s)
- M McCormick
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
28
|
Three-dimensional ultrasound imaging for the evaluation of carotid atherosclerosis. Atherosclerosis 2011; 219:377-83. [DOI: 10.1016/j.atherosclerosis.2011.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/19/2022]
|