1
|
McAteer MA, McGowan DR, Cook GJR, Leung HY, Ng T, O'Connor JPB, Aloj L, Barnes A, Blower PJ, Brindle KM, Braun J, Buckley C, Darian D, Evans P, Goh V, Grainger D, Green C, Hall MG, Harding TA, Hines CDG, Hollingsworth SJ, Cristinacce PLH, Illing RO, Lee M, Leurent B, Mallett S, Neji R, Norori N, Pashayan N, Patel N, Prior K, Reiner T, Retter A, Taylor A, van der Aart J, Woollcott J, Wong WL, van der Meulen J, Punwani S, Higgins GS. Translation of PET radiotracers for cancer imaging: recommendations from the National Cancer Imaging Translational Accelerator (NCITA) consensus meeting. BMC Med 2025; 23:37. [PMID: 39849494 PMCID: PMC11756105 DOI: 10.1186/s12916-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The clinical translation of positron emission tomography (PET) radiotracers for cancer management presents complex challenges. We have developed consensus-based recommendations for preclinical and clinical assessment of novel and established radiotracers, applied to image different cancer types, to improve the standardisation of translational methodologies and accelerate clinical implementation. METHODS A consensus process was developed using the RAND/UCLA Appropriateness Method (RAM) to gather insights from a multidisciplinary panel of 38 key stakeholders on the appropriateness of preclinical and clinical methodologies and stakeholder engagement for PET radiotracer translation. Panellists independently completed a consensus survey of 57 questions, rating each on a 9-point Likert scale. Subsequently, panellists attended a consensus meeting to discuss survey outcomes and readjust scores independently if desired. Survey items with median scores ≥ 7 were considered 'required/appropriate', ≤ 3 'not required/inappropriate', and 4-6 indicated 'uncertainty remained'. Consensus was determined as ~ 70% participant agreement on whether the item was 'required/appropriate' or 'not required/not appropriate'. RESULTS Consensus was achieved for 38 of 57 (67%) survey questions related to preclinical and clinical methodologies, and stakeholder engagement. For evaluating established radiotracers in new cancer types, in vitro and preclinical studies were considered unnecessary, clinical pharmacokinetic studies were considered appropriate, and clinical dosimetry and biodistribution studies were considered unnecessary, if sufficient previous data existed. There was 'agreement without consensus' that clinical repeatability and reproducibility studies are required while 'uncertainty remained' regarding the need for comparison studies. For novel radiotracers, in vitro and preclinical studies, such as dosimetry and/or biodistribution studies and tumour histological assessment were considered appropriate, as well as comprehensive clinical validation. Conversely, preclinical reproducibility studies were considered unnecessary and 'uncertainties remained' regarding preclinical pharmacokinetic and repeatability evaluation. Other consensus areas included standardisation of clinical study protocols, streamlined regulatory frameworks and patient and public involvement. While a centralised UK clinical imaging research infrastructure and open access federated data repository were considered necessary, there was 'agreement without consensus' regarding the requirement for a centralised UK preclinical imaging infrastructure. CONCLUSIONS We provide consensus-based recommendations, emphasising streamlined methodologies and regulatory frameworks, together with active stakeholder engagement, for improving PET radiotracer standardisation, reproducibility and clinical implementation in oncology.
Collapse
Affiliation(s)
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gary J R Cook
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London and Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK
| | - Hing Y Leung
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Oncology Translational Research, GSK, Stevenage, UK
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anna Barnes
- Southeast Region, Office of the Chief Scientific Officer, NHS-England, England, UK
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Phil J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - John Braun
- RMH Radiotherapy Focus Group & RMH Biomedical Research Centre Consumer Group, Sutton, UK
| | | | | | - Paul Evans
- GE HealthCare, Pharmaceutical Diagnostics, Chalfont St. Giles, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Radiology, NHS Foundation Trust, Guy's and St Thomas, London, UK
| | - David Grainger
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Carol Green
- Patient and Public Representative, Oxford, UK
| | - Matt G Hall
- National Physical Laboratory, Teddington, UK
| | - Thomas A Harding
- Prostate Cancer UK, London, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | | | | | - Rowland O Illing
- Department of Surgery & Interventional Science, University College London, London, UK
| | - Martin Lee
- Clinical Trial and Statistics Unit, Institute of Cancer Research, Sutton, UK
- The Royal Marsden Clinical Research Facility, London, UK
| | - Baptiste Leurent
- Department of Statistical Science, University College London, London, UK
| | - Sue Mallett
- Centre for Medical Imaging, University College London, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare Limited, Camberley, UK
| | | | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Neel Patel
- Department of Radiology, Churchill Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Telix Pharmaceuticals Limited, North Melbourne, Australia
| | | | - Thomas Reiner
- Evergreen Theragnostics, Springfield, NJ, 07081, USA
| | - Adam Retter
- Centre for Medical Imaging, University College London, London, UK
| | - Alasdair Taylor
- University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Lancaster, UK
| | | | | | - Wai-Lup Wong
- PET CT Department, Strickland Scanner Centre Mount Vernon Hospital, Northwood, UK
| | - Jan van der Meulen
- Department of Health Services Research & Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | | |
Collapse
|
2
|
Rossi A, Cattabriga A, Bezzi D. Symptomatic Myeloma: PET, Whole-Body MR Imaging with Diffusion-Weighted Imaging or Both. PET Clin 2024; 19:525-534. [PMID: 38969566 DOI: 10.1016/j.cpet.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
According to international guidelines, patients with suspected myeloma should primarily undergo low-dose whole-body computed tomography (CT) for diagnostic purposes. To optimize sensitivity and specificity and enable treatment response assessment, whole-body MR (WB-MR) imaging should include diffusion-weighted imaging with apparent diffusion coefficient maps and T1-weighted Dixon sequences with bone marrow Fat Fraction Quantification. At baseline WB-MR imaging shows greater sensitivity for the detecting focal lesions and diffuse bone marrow infiltration pattern than 18F-fluorodeoxyglucose PET-CT, which is considered of choice for evaluating response to treatment and minimal residual disease and imaging of extramedullary disease.
Collapse
Affiliation(s)
- Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna; Dipartimento di Scienze Mediche e Chirurgiche, Via Massarenti 9, 40138 Bologna, Italy
| | | |
Collapse
|
3
|
Chen Y, Ma C, Yang P, Mao K, Gao Y, Chen L, Wang Z, Bian Y, Shao C, Lu J. Values of apparent diffusion coefficient in pancreatic cancer patients receiving neoadjuvant therapy. BMC Cancer 2024; 24:1160. [PMID: 39294623 PMCID: PMC11412028 DOI: 10.1186/s12885-024-12934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND To investigate the values of apparent diffusion coefficient (ADC) for the treatment response evaluation in pancreatic cancer (PC) patients receiving neoadjuvant therapy (NAT). METHODS This study included 103 NAT patients with histologically proven PC. ADC maps were generated using monoexponential diffusion-weighted imaging (b values: 50, 800 s/mm2). Tumors' minimum, maximum, and mean ADCs were measured and compared pre- and post-NAT. Variations in ADC values measured between pre- and post-NAT completion for NAT methods (chemotherapy, chemoradiotherapy), tumor locations (head/neck, body/tail), tumor regression grade (TRG) levels (0-2, 3), N stages (N0, N1/N2) and tumor resection margin status (R0, R1), were further analyzed. RESULTS The minimum, maximum, and mean ADC values all increased dramatically after NAT, rising from 23.4 to 25.4% (all p < 0.001): mean (average: 1.626 × 10- 3 mm2/s vs. 1.315 × 10- 3 mm2/s), minimum (median: 1.274 × 10- 3 mm2/s vs. 1.034 × 10- 3 mm2/s), and maximum (average: 1.981 × 10- 3 mm2/s vs. 1.580 × 10- 3 mm2/s). The ADCs between the subgroups of all the criteria under investigation did not differ significantly for the minimum, maximum, or mean values pre- or post-NAT (P = 0.08 to 1.00). In the patients with borderline resectable PC (n = 47), the rate of tumor size changes after NAT was correlated with the pre-NAT mean ADC values (Spearman's coefficient: 0.288, P = 0.049). CONCLUSIONS The ADC values of PC increased significantly following NAT; however, the percentage increases failed to provide any predictive value for the resection margin status or TRG levels.
Collapse
Affiliation(s)
- Yufei Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Chao Ma
- College of Electronic and Information Engineering, Tongji University, Shanghai, China.
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Kuanzheng Mao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yisha Gao
- Department of Pathology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| |
Collapse
|
4
|
Candito A, Holbrey R, Ribeiro A, Messiou C, Tunariu N, Koh DM, Blackledge MD. Deep Learning for Delineation of the Spinal Canal in Whole-Body Diffusion-Weighted Imaging: Normalising Inter- and Intra-Patient Intensity Signal in Multi-Centre Datasets. Bioengineering (Basel) 2024; 11:130. [PMID: 38391616 PMCID: PMC10885936 DOI: 10.3390/bioengineering11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Whole-Body Diffusion-Weighted Imaging (WBDWI) is an established technique for staging and evaluating treatment response in patients with multiple myeloma (MM) and advanced prostate cancer (APC). However, WBDWI scans show inter- and intra-patient intensity signal variability. This variability poses challenges in accurately quantifying bone disease, tracking changes over follow-up scans, and developing automated tools for bone lesion delineation. Here, we propose a novel automated pipeline for inter-station, inter-scan image signal standardisation on WBDWI that utilizes robust segmentation of the spinal canal through deep learning. METHODS We trained and validated a supervised 2D U-Net model to automatically delineate the spinal canal (both the spinal cord and surrounding cerebrospinal fluid, CSF) in an initial cohort of 40 patients who underwent WBDWI for treatment response evaluation (80 scans in total). Expert-validated contours were used as the target standard. The algorithm was further semi-quantitatively validated on four additional datasets (three internal, one external, 207 scans total) by comparing the distributions of average apparent diffusion coefficient (ADC) and volume of the spinal cord derived from a two-component Gaussian mixture model of segmented regions. Our pipeline subsequently standardises WBDWI signal intensity through two stages: (i) normalisation of signal between imaging stations within each patient through histogram equalisation of slices acquired on either side of the station gap, and (ii) inter-scan normalisation through histogram equalisation of the signal derived within segmented spinal canal regions. This approach was semi-quantitatively validated in all scans available to the study (N = 287). RESULTS The test dice score, precision, and recall of the spinal canal segmentation model were all above 0.87 when compared to manual delineation. The average ADC for the spinal cord (1.7 × 10-3 mm2/s) showed no significant difference from the manual contours. Furthermore, no significant differences were found between the average ADC values of the spinal cord across the additional four datasets. The signal-normalised, high-b-value images were visualised using a fixed contrast window level and demonstrated qualitatively better signal homogeneity across scans than scans that were not signal-normalised. CONCLUSION Our proposed intensity signal WBDWI normalisation pipeline successfully harmonises intensity values across multi-centre cohorts. The computational time required is less than 10 s, preserving contrast-to-noise and signal-to-noise ratios in axial diffusion-weighted images. Importantly, no changes to the clinical MRI protocol are expected, and there is no need for additional reference MRI data or follow-up scans.
Collapse
Affiliation(s)
- Antonio Candito
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard Holbrey
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Ana Ribeiro
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
5
|
Ahlawat S. Current state-of-the-art imaging techniques in the domain of whole-body MRI and its advantages over other whole-body PET in different musculoskeletal diseases. Eur Radiol 2023; 33:8573-8575. [PMID: 37439937 DOI: 10.1007/s00330-023-09883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Shivani Ahlawat
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 601 N Caroline St, 3rd Fl, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Keaveney S, Dragan A, Rata M, Blackledge M, Scurr E, Winfield JM, Shur J, Koh DM, Porta N, Candito A, King A, Rennie W, Gaba S, Suresh P, Malcolm P, Davis A, Nilak A, Shah A, Gandhi S, Albrizio M, Drury A, Pratt G, Cook G, Roberts S, Jenner M, Brown S, Kaiser M, Messiou C. Image quality in whole-body MRI using the MY-RADS protocol in a prospective multi-centre multiple myeloma study. Insights Imaging 2023; 14:170. [PMID: 37840055 PMCID: PMC10577121 DOI: 10.1186/s13244-023-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND The Myeloma Response Assessment and Diagnosis System (MY-RADS) guidelines establish a standardised acquisition and analysis pipeline for whole-body MRI (WB-MRI) in patients with myeloma. This is the first study to assess image quality in a multi-centre prospective trial using MY-RADS. METHODS The cohort consisted of 121 examinations acquired across ten sites with a range of prior WB-MRI experience, three scanner manufacturers and two field strengths. Image quality was evaluated qualitatively by a radiologist and quantitatively using a semi-automated pipeline to quantify common artefacts and image quality issues. The intra- and inter-rater repeatability of qualitative and quantitative scoring was also assessed. RESULTS Qualitative radiological scoring found that the image quality was generally good, with 94% of examinations rated as good or excellent and only one examination rated as non-diagnostic. There was a significant correlation between radiological and quantitative scoring for most measures, and intra- and inter-rater repeatability were generally good. When the quality of an overall examination was low, this was often due to low quality diffusion-weighted imaging (DWI), where signal to noise ratio (SNR), anterior thoracic signal loss and brain geometric distortion were found as significant predictors of examination quality. CONCLUSIONS It is possible to successfully deliver a multi-centre WB-MRI study using the MY-RADS protocol involving scanners with a range of manufacturers, models and field strengths. Quantitative measures of image quality were developed and shown to be significantly correlated with radiological assessment. The SNR of DW images was identified as a significant factor affecting overall examination quality. TRIAL REGISTRATION ClinicalTrials.gov, NCT03188172 , Registered on 15 June 2017. CRITICAL RELEVANCE STATEMENT Good overall image quality, assessed both qualitatively and quantitatively, can be achieved in a multi-centre whole-body MRI study using the MY-RADS guidelines. KEY POINTS • A prospective multi-centre WB-MRI study using MY-RADS can be successfully delivered. • Quantitative image quality metrics were developed and correlated with radiological assessment. • SNR in DWI was identified as a significant predictor of quality, allowing for rapid quality adjustment.
Collapse
Affiliation(s)
- Sam Keaveney
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | - Alina Dragan
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Mihaela Rata
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Matthew Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Erica Scurr
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Jessica M Winfield
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Joshua Shur
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Dow-Mu Koh
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Antonio Candito
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Alexander King
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Winston Rennie
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Suchi Gaba
- University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Priya Suresh
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Paul Malcolm
- Norfolk & Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Amy Davis
- Epsom & St. Helier University Hospitals NHS Trust, Epsom, UK
| | | | - Aarti Shah
- Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
| | | | - Mauro Albrizio
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arnold Drury
- Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK
| | - Guy Pratt
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gordon Cook
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sadie Roberts
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Matthew Jenner
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Martin Kaiser
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Christina Messiou
- MRI Unit, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
7
|
Sjöholm T, Tarai S, Malmberg F, Strand R, Korenyushkin A, Enblad G, Ahlström H, Kullberg J. A whole-body diffusion MRI normal atlas: development, evaluation and initial use. Cancer Imaging 2023; 23:87. [PMID: 37710346 PMCID: PMC10503210 DOI: 10.1186/s40644-023-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Statistical atlases can provide population-based descriptions of healthy volunteers and/or patients and can be used for region- and voxel-based analysis. This work aims to develop whole-body diffusion atlases of healthy volunteers scanned at 1.5T and 3T. Further aims include evaluating the atlases by establishing whole-body Apparent Diffusion Coefficient (ADC) values of healthy tissues and including healthy tissue deviations in an automated tumour segmentation task. METHODS Multi-station whole-body Diffusion Weighted Imaging (DWI) and water-fat Magnetic Resonance Imaging (MRI) of healthy volunteers (n = 45) were acquired at 1.5T (n = 38) and/or 3T (n = 29), with test-retest imaging for five subjects per scanner. Using deformable image registration, whole-body MRI data was registered and composed into normal atlases. Healthy tissue ADCmean was manually measured for ten tissues, with test-retest percentage Repeatability Coefficient (%RC), and effect of age, sex and scanner assessed. Voxel-wise whole-body analyses using the normal atlases were studied with ADC correlation analyses and an automated tumour segmentation task. For the latter, lymphoma patient MRI scans (n = 40) with and without information about healthy tissue deviations were entered into a 3D U-Net architecture. RESULTS Sex- and Body Mass Index (BMI)-stratified whole-body high b-value DWI and ADC normal atlases were created at 1.5T and 3T. %RC of healthy tissue ADCmean varied depending on tissue assessed (4-48% at 1.5T, 6-70% at 3T). Scanner differences in ADCmean were visualised in Bland-Altman analyses of dually scanned subjects. Sex differences were measurable for liver, muscle and bone at 1.5T, and muscle at 3T. Volume of Interest (VOI)-based multiple linear regression, and voxel-based correlations in normal atlas space, showed that age and ADC were negatively associated for liver and bone at 1.5T, and positively associated with brain tissue at 1.5T and 3T. Adding voxel-wise information about healthy tissue deviations in an automated tumour segmentation task gave numerical improvements in the segmentation metrics Dice score, sensitivity and precision. CONCLUSIONS Whole-body DWI and ADC normal atlases were created at 1.5T and 3T, and applied in whole-body voxel-wise analyses.
Collapse
Affiliation(s)
- Therese Sjöholm
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sambit Tarai
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Filip Malmberg
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Robin Strand
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | | | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
8
|
Chen Y, Yang P, Fu C, Bian Y, Shao C, Ma C, Lu J. Variabilities in apparent diffusion coefficient (ADC) measurements of the spleen and the paraspinal muscle: A single center large cohort study. Heliyon 2023; 9:e18166. [PMID: 37519768 PMCID: PMC10372245 DOI: 10.1016/j.heliyon.2023.e18166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Evaluation of the variabilities in apparent diffusion coefficient (ADC) measurements of the spleen (ADCspleen) and the paraspinal muscles (ADCmuscle) to identify the reference organ for normalizing the ADC from the abdominal diffusion weighted imaging (DWI). Methods Two MRI scanners, with 314 abdominal exams on the GE and 929 on the Siemens system, were used for MRI examinations including DWI (b-values, 50 and 800 s/mm2). For a subset of 73 exams on the Siemens system a second exam was conducted. Four regions of interest (ROIs) in each exam were placed to measure the ADCspleen and the bilateral ADCmuscle. ADC variability between patients (on each scanner separately), ADC variability due to ROI placement between the two ROIs in each organ, and variability in the subset between the first and second exams were assessed. Results The ADCspleen was more scattered and variable than the ADCmuscle in the comparability (n = 929 and 314 for two MRI scanners, respectively) and repeatability (n = 73) datasets. The Bland-Altmann bias and limits of agreement (LoAs) for the ADCspleen (ICC, 0.47; CV, 0.070) and ADCmuscle (ICC, 0.67; CV, 0.023) in the repeatability datasets (n = 73) were -0.1 (-25.7%-25.6%) and -0.3 (-8.8%-8.1%), respectively. For the Siemens system, the Bland-Altmann bias and LoAs for the ADCspleen (ICC, 0.72; CV, 0.061) and ADCmuscle (ICC, 0.53; CV, 0.030) in the comparability datasets (n = 929) were 2.1 (-20.0%-24.2%) and 0.7 (-10.0%-11.4%), respectively. Similar findings have been found in the GE system (n = 314). The CVs for the ADCmuscle measurements were lower than those of the ADCspleen both in the repeatability and the comparability analyses (all p < 0.001). Conclusion Paraspinal muscles demonstrate better reference characteristics than the spleen in estimating ADC variability of abdominal DWI.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Siemens Healthineers, Shenzhen, 518057, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
- College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
9
|
Evaluation of prostate multi parameter bone structures for martial arts practitioners based on magnetic resonance imaging. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Eltonbary HTAI, Elmashad NM, Khodair SA, Abou Khadrah RS. Suppression of background body signals in whole-body diffusion-weighted imaging for detection of bony metastases: a pilot study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023. [DOI: 10.1186/s43055-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Abstract
Background
Whole-body diffusion-weighted magnetic resonance is being developed as a tool for assessing tumor spread. Patients with known primary tumors require meticulous evaluation to assess metastasis for better staging; we attempted to detect bony metastasis without radiation exposure. Our study's goal was to use whole-body diffusion-weighted imaging with background body signal suppression (WB-DWBIS) to evaluate bony metastasis in confirmed patients who have primary tumors.
Results
Our study included 90 patients with known primary cancer, 10 patients were excluded as they had no bony metastasis, from 80 patients: 36 (45.0%) having one site of metastasis, 36 (45%) having two sites of metastasis, and 8 (10.0%) having three sites of metastasis. 56 (70.0%) of the metastasis sites were bony metastasis, and 76 were mixed both bony and non-bony, including 32(40.0%) lung, 16 (20.0%) liver, and 28 (35%) lymph nodes. Sensitivity of bone scanning in detecting metastasis was as follows: 95.1% sensitivity and 92.0% accuracy, while that of whole-body diffusion-weighted image with background signals suppression was 94.8% sensitivity and 91.7% accuracy, WB-DWBIS inter-observer agreement in the detection of bony metastatic deposits in cancer patients was good (0.7 45, agreement = 93.2%).
Conclusions
Using WB-DWBIS images, bone lesion identification and characterization (site and number) were improved, producing outcomes similar to bone scanning without the use of ionizing radiation.
Collapse
|
11
|
Prostate and metastasis diffusion volume based on apparent diffusion coefficient as a prognostic factor in Hormone-naïve prostate Cancer. Clin Exp Metastasis 2023; 40:187-195. [PMID: 36914924 DOI: 10.1007/s10585-023-10200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
In this study, to assess the utility of whole-body DWI (WB-DWI) as an imaging biomarker for metastatic hormone-naïve prostate cancer (mHNPC), we evaluated tumor diffusion volume based on apparent diffusion coefficient (ADC) values. WB-DWI results obtained from 62 mHNPC patients were evaluated in this retrospective analysis. The association with castration resistant-free survival (CFS) was evaluated for both prostate and metastatic tumor diffusion volume (pDV and mDV, respectively) based on WB-DWI. The usefulness of pDV and mDV based on ADC values to predict CFS was also examined. During the follow-up period, 22 patients progressed to castration-resistant prostate cancer, and the median CFS was 42.6 months. The median mDV and pDV were 6.7 and 12.6 mL, respectively. mDV was a significant predictor of CFS (hazard ratio [HR]: 2.75; p = 0.022), while pDV was not significant. When DV was divided into groups by ADC values (× 10- 3 mm2/s) of 0.4-1.0 and 1.0-1.8 (× 10- 3 mm2/s), mDV with ADC values (× 10- 3 mm2/s) of 0.4-1.0 (mDV0.4-1.0) showed a more favorable association with CFS compared to total mDV. On multivariate analysis, mDV0.4-1.0 and Gleason grade group had a statistically significant association with CFS (HR: 4.0; p = 0.004, and HR: 3.4; p = 0.006, respectively), while pDV with ADC values (× 10- 3 mm2/s) of 0.4-1.0 did not have a significant association. mDV is useful for predicting CFS in mHNPC patients. mDV may be a better imaging biomarker when based on ADC values.
Collapse
|
12
|
Knill AK, Blackledge MD, Curcean A, Larkin J, Turajlic S, Riddell A, Koh DM, Messiou C, Winfield JM. Optimisation of b-values for the accurate estimation of the apparent diffusion coefficient (ADC) in whole-body diffusion-weighted MRI in patients with metastatic melanoma. Eur Radiol 2023; 33:863-871. [PMID: 36169688 PMCID: PMC9889461 DOI: 10.1007/s00330-022-09088-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To establish optimised diffusion weightings ('b-values') for acquisition of whole-body diffusion-weighted MRI (WB-DWI) for estimation of the apparent diffusion coefficient (ADC) in patients with metastatic melanoma (MM). Existing recommendations for WB-DWI have not been optimised for the tumour properties in MM; therefore, evaluation of acquisition parameters is essential before embarking on larger studies. METHODS Retrospective clinical data and phantom experiments were used. Clinical data comprised 125 lesions from 14 examinations in 11 patients with multifocal MM, imaged before and/or after treatment with immunotherapy at a single institution. ADC estimates from these data were applied to a model to estimate the optimum b-value. A large non-diffusing phantom was used to assess eddy current-induced geometric distortion. RESULTS Considering all tumour sites from pre- and post-treatment examinations together, metastases exhibited a large range of mean ADC values, [0.67-1.49] × 10-3 mm2/s, and the optimum high b-value (bhigh) for ADC estimation was 1100 (10th-90th percentile: 740-1790) s/mm2. At higher b-values, geometric distortion increased, and longer echo times were required, leading to reduced signal. CONCLUSIONS Theoretical optimisation gave an optimum bhigh of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in MM, with the large range of optimum b-values reflecting the wide range of ADC values in these tumours. Geometric distortion and minimum echo time increase at higher b-values and are not included in the theoretical optimisation; bhigh in the range 750-1100 s/mm2 should be adopted to maintain acceptable image quality but performance should be evaluated for a specific scanner. KEY POINTS • Theoretical optimisation gave an optimum high b-value of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in metastatic melanoma. • Considering geometric distortion and minimum echo time (TE), a b-value in the range 750-1100 s/mm2 is recommended. • Sites should evaluate the performance of specific scanners to assess the effect of geometric distortion and minimum TE.
Collapse
Affiliation(s)
- Annemarie K Knill
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Andra Curcean
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Samra Turajlic
- The Royal Marsden NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| | | | - Dow Mu Koh
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Messiou
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| | - Jessica M Winfield
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Kim DK, Park SS, Jung JY. [Clinical Application and Limitations of Myeloma Response Assessment and Diagnosis System (MY-RADS)]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:51-74. [PMID: 36818710 PMCID: PMC9935961 DOI: 10.3348/jksr.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
Multiple myeloma, which is a proliferative disease of plasma cells that originate from a single clone, is the second most common hematologic malignancy following non-Hodgkin lymphoma. In the past, its diagnosis was made based on clinical findings (so-called "CRAB") and a skeletal survey using radiographs. However, since the implementation of the International Myeloma Working Group's revised guideline regarding the radiologic diagnosis of multiple myeloma, whole-body (WB) MRI has emerged to play a central role in the early diagnosis of multiple myeloma. Diffusion-weighted imaging and fat quantification using Dixon methods enable treatment response assessment by MRI. In keeping with the trend, a multi-institutional and multidisciplinary consensus for standardized image acquisition and reporting known as the Myeloma Response Assessment and Diagnostic System (MY-RADS) has recently been proposed. This review aims to describe the clinical application of WB-MRI based on MY-RADS in multiple myeloma, discuss its limitations, and suggest future directions for improvement.
Collapse
Affiliation(s)
- Dong Kyun Kim
- Department of Radiology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Wang J, Ma C, Yang P, Wang Z, Chen Y, Bian Y, Shao C, Lu J. Diffusion-Weighted Imaging of the Abdomen: Correction for Gradient Nonlinearity Bias in Apparent Diffusion Coefficient. J Magn Reson Imaging 2022. [PMID: 36373955 DOI: 10.1002/jmri.28529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gradient nonlinearity (GNL) introduces spatial nonuniformity bias in apparent diffusion coefficient (ADC) measurements, especially at large offsets from the magnet isocenter. PURPOSE To investigate the effects of GNL in abdominal ADC measurements and to develop an ADC bias correction procedure. STUDY TYPE Retrospective. PHANTOM/POPULATION Two homemade ultrapure water phantoms/25 patients with histologically confirmed pancreatic ductal adenocarcinoma (PDAC). FIELD STRENGTH/SEQUENCE A 3.0 T/diffusion-weighted imaging (DWI) with single-shot echo-planar imaging sequence. ASSESSMENT ADC bias was computed in the three orthogonal directions at different offset locations. The spatial-dependent correctors of ADC bias were generated from the ADCs of phantom 1. The ADCs were estimated before and after corrections for the phantom 1 with both the proposed approach and the theoretical GNL correction method. For the patients, ADCs were measured in abdominal tissues including left and right liver lobes, PDAC, spleen, bilateral kidneys, and bilateral paraspinal muscles. STATISTICAL TEST Friedman tests and Wilcoxon tests. RESULTS The ADC bias measured by phantom 1 was 9.7% and 12.6% higher in the right-left and anterior-posterior directions and 9.2% lower in the superior-inferior direction at the 150 mm offsets from the magnetic isocenter. The corrected vs. the uncorrected ADCs measurements (median: 2.20 × 10-3 mm2 /sec for both the proposed method and the theoretical GNL method vs. 2.31 × 10-3 mm2 /sec, respectively) and their relative ADC errors (0.014, 0.016, and 0.054, respectively) were lower in the phantom 1. The relative ADC errors substantially decreased after correction in the phantom 2 (median: 0.048 and -0.008, respectively). The ADCs of all the abdominal tissues were lower after correction except for the left liver lobes (P = 0.13). DATA CONCLUSION GNL bias in abdominal ADC can be measured by a DWI phantom. The proposed correction procedure was successfully applied for the bias correction in abdominal ADC. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China.,College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Zhen Wang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Yufei Chen
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, China
| |
Collapse
|
15
|
Zormpas-Petridis K, Tunariu N, Collins DJ, Messiou C, Koh DM, Blackledge MD. Deep-learned estimation of uncertainty in measurements of apparent diffusion coefficient from whole-body diffusion-weighted MRI. Comput Biol Med 2022; 149:106091. [PMID: 36115298 DOI: 10.1016/j.compbiomed.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To use deep learning to calculate the uncertainty in apparent diffusion coefficient (σADC) voxel-wise measurements to clinically impact the monitoring of treatment response and improve the quality of ADC maps. MATERIALS AND METHODS We use a uniquely designed diffusion-weighted imaging (DWI) acquisition protocol that provides gold-standard measurements of σADC to train a deep learning model on two separate cohorts: 16 patients with prostate cancer and 28 patients with mesothelioma. Our network was trained with a novel cost function, which incorporates a perception metric and a b-value regularisation term, on ADC maps calculated by combinations of 2 or 3 b-values (e.g. 50/600/900, 50/900, 50/600, 600/900 s/mm2). We compare the accuracy of the deep-learning based approach for estimation of σADC with gold-standard measurements. RESULTS The model accurately predicted the σADC for every b-value combination in both cohorts. Mean values of σADC within areas of active disease deviated from those measured by the gold-standard by 4.3% (range, 2.87-6.13%) for the prostate and 3.7% (range, 3.06-4.54%) for the mesothelioma cohort. We also showed that the model can easily be adapted for a different DWI protocol and field-of-view with only a few images (as little as a single patient) using transfer learning. CONCLUSION Deep learning produces maps of σADC from standard clinical diffusion-weighted images (DWI) when 2 or more b-values are available.
Collapse
Affiliation(s)
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Department of Radiology, The Royal Marsden National Health Service Foundation Trust, Surrey, United Kingdom
| | - David J Collins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Department of Radiology, The Royal Marsden National Health Service Foundation Trust, Surrey, United Kingdom
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Department of Radiology, The Royal Marsden National Health Service Foundation Trust, Surrey, United Kingdom
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
16
|
Hubbard Cristinacce PL, Keaveney S, Aboagye EO, Hall MG, Little RA, O'Connor JPB, Parker GJM, Waterton JC, Winfield JM, Jauregui-Osoro M. Clinical translation of quantitative magnetic resonance imaging biomarkers - An overview and gap analysis of current practice. Phys Med 2022; 101:165-182. [PMID: 36055125 DOI: 10.1016/j.ejmp.2022.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE This overview of the current landscape of quantitative magnetic resonance imaging biomarkers (qMR IBs) aims to support the standardisation of academic IBs to assist their translation to clinical practice. METHODS We used three complementary approaches to investigate qMR IB use and quality management practices within the UK: 1) a literature search of qMR and quality management terms during 2011-2015 and 2016-2020; 2) a database search for clinical research studies using qMR IBs during 2016-2020; and 3) a survey to ascertain the current availability and quality management practices for clinical MRI scanners and associated equipment at research institutions across the UK. RESULTS The analysis showed increased use of all qMR methods between the periods 2011-2015 and 2016-2020 and diffusion-tensor MRI and volumetry to be popular methods. However, the "translation ratio" of journal articles to clinical research studies was higher for qMR methods that have evidence of clinical translation via a commercial route, such as fat fraction and T2 mapping. The number of journal articles citing quality management terms doubled between the periods 2011-2015 and 2016-2020; although, its proportion relative to all journal articles only increased by 3.0%. The survey suggested that quality assurance (QA) and quality control (QC) of data acquisition procedures are under-reported in the literature and that QA/QC of acquired data/data analysis are under-developed and lack consistency between institutions. CONCLUSIONS We summarise current attempts to standardise and translate qMR IBs, and conclude by outlining the ideal quality management practices and providing a gap analysis between current practice and a metrological standard.
Collapse
Affiliation(s)
| | - Sam Keaveney
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, W12 0NN London, UK
| | - Matt G Hall
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
| | - Ross A Little
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - James P B O'Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, 90 High Holborn, London WC1V 6LJ, UK; Bioxydyn Ltd, Manchester M15 6SZ, UK
| | - John C Waterton
- Bioxydyn Ltd, Manchester M15 6SZ, UK; Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Jessica M Winfield
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Maite Jauregui-Osoro
- Department of Surgery & Cancer, Division of Cancer, Imperial College London, W12 0NN London, UK
| |
Collapse
|
17
|
Rata M, Blackledge M, Scurr E, Winfield J, Koh DM, Dragan A, Candito A, King A, Rennie W, Gaba S, Suresh P, Malcolm P, Davis A, Nilak A, Shah A, Gandhi S, Albrizio M, Drury A, Roberts S, Jenner M, Brown S, Kaiser M, Messiou C. Implementation of Whole-Body MRI (MY-RADS) within the OPTIMUM/MUKnine multi-centre clinical trial for patients with myeloma. Insights Imaging 2022; 13:123. [PMID: 35900614 PMCID: PMC9334517 DOI: 10.1186/s13244-022-01253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole-body (WB) MRI, which includes diffusion-weighted imaging (DWI) and T1-w Dixon, permits sensitive detection of marrow disease in addition to qualitative and quantitative measurements of disease and response to treatment of bone marrow. We report on the first study to embed standardised WB-MRI within a prospective, multi-centre myeloma clinical trial (IMAGIMM trial, sub-study of OPTIMUM/MUKnine) to explore the use of WB-MRI to detect minimal residual disease after treatment. METHODS The standardised MY-RADS WB-MRI protocol was set up on a local 1.5 T scanner. An imaging manual describing the MR protocol, quality assurance/control procedures and data transfer was produced and provided to sites. For non-identical scanners (different vendor or magnet strength), site visits from our physics team were organised to support protocol optimisation. The site qualification process included review of phantom and volunteer data acquired at each site and a teleconference to brief the multidisciplinary team. Image quality of initial patients at each site was assessed. RESULTS WB-MRI was successfully set up at 12 UK sites involving 3 vendor systems and two field strengths. Four main protocols (1.5 T Siemens, 3 T Siemens, 1.5 T Philips and 3 T GE scanners) were generated. Scanner limitations (hardware and software) and scanning time constraint required protocol modifications for 4 sites. Nevertheless, shared methodology and imaging protocols enabled other centres to obtain images suitable for qualitative and quantitative analysis. CONCLUSIONS Standardised WB-MRI protocols can be implemented and supported in prospective multi-centre clinical trials. Trial registration NCT03188172 clinicaltrials.gov; registration date 15th June 2017 https://clinicaltrials.gov/ct2/show/study/NCT03188172.
Collapse
Affiliation(s)
- Mihaela Rata
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK.
| | - Matthew Blackledge
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Erica Scurr
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Jessica Winfield
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Dow-Mu Koh
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Alina Dragan
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Antonio Candito
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Alexander King
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Suchi Gaba
- Royal Stoke University Hospital, Stoke-on-Trent, UK
| | - Priya Suresh
- University Hospitals Plymouth NHS Foundation Trust, Plymouth, UK
| | - Paul Malcolm
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Amy Davis
- Epsom and St. Helier University Hospitals NHS Trust, Epsom, UK
| | | | - Aarti Shah
- Basingstoke and North Hampshire Hospital, Basingstoke, UK
| | | | - Mauro Albrizio
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arnold Drury
- Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK
| | - Sadie Roberts
- University of Leeds Clinical Trial Research Unit, Leeds, UK
| | - Matthew Jenner
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Brown
- University of Leeds Clinical Trial Research Unit, Leeds, UK
| | - Martin Kaiser
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| | - Christina Messiou
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Downs Road, SM2 5PT, Sutton, London, UK
| |
Collapse
|
18
|
Sjöholm T, Kullberg J, Strand R, Engström M, Ahlström H, Malmberg F. Improved geometric accuracy of whole body diffusion-weighted imaging at 1.5T and 3T using reverse polarity gradients. Sci Rep 2022; 12:11605. [PMID: 35804034 PMCID: PMC9270424 DOI: 10.1038/s41598-022-15872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Whole body diffusion-weighted imaging (WB-DWI) is increasingly used in oncological applications, but suffers from misalignments due to susceptibility-induced geometric distortion. As such, DWI and structural images acquired in the same scan session are not geometrically aligned, leading to difficulties in e.g. lesion detection and segmentation. In this work we assess the performance of the reverse polarity gradient (RPG) method for correction of WB-DWI geometric distortion. Multi-station DWI and structural magnetic resonance imaging (MRI) data of healthy controls were acquired at 1.5T (n = 20) and 3T (n = 20). DWI data was distortion corrected using the RPG method based on b = 0 s/mm2 (b0) and b = 50 s/mm2 (b50) DWI acquisitions. Mutual information (MI) between low b-value DWI and structural data increased with distortion correction (P < 0.05), while improvements in region of interest (ROI) based similarity metrics, comparing the position of incidental findings on DWI and structural data, were location dependent. Small numerical differences between non-corrected and distortion corrected apparent diffusion coefficient (ADC) values were measured. Visually, the distortion correction improved spine alignment at station borders, but introduced registration-based artefacts mainly for the spleen and kidneys. Overall, the RPG distortion correction gave an improved geometric accuracy for WB-DWI data acquired at 1.5T and 3T. The b0- and b50-based distortion corrections had a very similar performance.
Collapse
Affiliation(s)
- T Sjöholm
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - J Kullberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, Mölndal, Sweden
| | - R Strand
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - M Engström
- Applied Science Laboratory, GE Healthcare, Uppsala, Sweden
| | - H Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, Mölndal, Sweden
| | - F Malmberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
De Muzio F, Grassi F, Dell’Aversana F, Fusco R, Danti G, Flammia F, Chiti G, Valeri T, Agostini A, Palumbo P, Bruno F, Cutolo C, Grassi R, Simonetti I, Giovagnoni A, Miele V, Barile A, Granata V. A Narrative Review on LI-RADS Algorithm in Liver Tumors: Prospects and Pitfalls. Diagnostics (Basel) 2022; 12:1655. [PMID: 35885561 PMCID: PMC9319674 DOI: 10.3390/diagnostics12071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the sixth most detected tumor and the third leading cause of tumor death worldwide. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with specific risk factors and a targeted population. Imaging plays a major role in the management of HCC from screening to post-therapy follow-up. In order to optimize the diagnostic-therapeutic management and using a universal report, which allows more effective communication among the multidisciplinary team, several classification systems have been proposed over time, and LI-RADS is the most utilized. Currently, LI-RADS comprises four algorithms addressing screening and surveillance, diagnosis on computed tomography (CT)/magnetic resonance imaging (MRI), diagnosis on contrast-enhanced ultrasound (CEUS) and treatment response on CT/MRI. The algorithm allows guiding the radiologist through a stepwise process of assigning a category to a liver observation, recognizing both major and ancillary features. This process allows for characterizing liver lesions and assessing treatment. In this review, we highlighted both major and ancillary features that could define HCC. The distinctive dynamic vascular pattern of arterial hyperenhancement followed by washout in the portal-venous phase is the key hallmark of HCC, with a specificity value close to 100%. However, the sensitivity value of these combined criteria is inadequate. Recent evidence has proven that liver-specific contrast could be an important tool not only in increasing sensitivity but also in diagnosis as a major criterion. Although LI-RADS emerges as an essential instrument to support the management of liver tumors, still many improvements are needed to overcome the current limitations. In particular, features that may clearly distinguish HCC from cholangiocarcinoma (CCA) and combined HCC-CCA lesions and the assessment after locoregional radiation-based therapy are still fields of research.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Ginevra Danti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Federica Flammia
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Giuditta Chiti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Tommaso Valeri
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Area of Cardiovascular and Interventional Imaging, Department of Diagnostic Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Antonio Barile
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| |
Collapse
|
20
|
Caroli A. Diffusion-Weighted Magnetic Resonance Imaging: Clinical Potential and Applications. J Clin Med 2022; 11:3339. [PMID: 35743409 PMCID: PMC9224775 DOI: 10.3390/jcm11123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Since its discovery in the 1980s [...].
Collapse
Affiliation(s)
- Anna Caroli
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, BG, Italy
| |
Collapse
|
21
|
Lenoir V, Delattre BMA, M'RaD Y, De Vito C, de Perrot T, Becker M. Diffusion-Weighted Imaging to Assess HPV-Positive versus HPV-Negative Oropharyngeal Squamous Cell Carcinoma: The Importance of b-Values. AJNR Am J Neuroradiol 2022; 43:905-912. [PMID: 35618419 DOI: 10.3174/ajnr.a7521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Controversy exists as to whether ADC histograms are capable to distinguish human papillomavirus-positive (HPV+) from human papillomavirus-negative (HPV-) oropharyngeal squamous cell carcinoma. We investigated how the choice of b-values influences the capability of ADC histograms to distinguish between the two tumor types. MATERIALS AND METHODS Thirty-four consecutive patients with histologically proved primary oropharyngeal squamous cell carcinoma (11 HPV+ and 23 HPV-) underwent 3T MR imaging with a single-shot EPI DWI sequence with 6 b-values (0, 50, 100, 500, 750, 1000 s/mm2). Monoexponentially calculated perfusion-sensitive (including b=0 s/mm2) and perfusion-insensitive/true diffusion ADC maps (with b ≥ 100 s/mm2 as the lowest b-value) were generated using Matlab. The choice of b-values included 2 b-values (ADCb0-1000, ADCb100-1000, ADCb500-1000, ADCb750-1000) and 3-6 b-values (ADCb0-750-1000, ADCb0-500-750-1000, ADCb0-50-100-1000, ADCb0-50-100-750-1000, ADCb0-50-100-500-750-1000). Readers blinded to the HPV- status contoured all tumors. ROIs were then copied onto ADC maps, and their histograms were compared. RESULTS ADC histogram metrics in HPV+ and HPV- oropharyngeal squamous cell carcinoma changed significantly depending on the b-values. The mean ADC was lower, and skewness was higher in HPV+ than in HPV- oropharyngeal squamous cell carcinoma only for ADCb0-1000, ADCb0-750-1000, and ADCb0-500-750-1000 (P < .05), allowing distinction between the 2 tumor types. Kurtosis was significantly higher in HPV+ versus HPV- oropharyngeal squamous cell carcinoma for all b-value combinations except 2 perfusion-insensitive maps (ADCb500-1000 and ADCb750-1000). Among all b-value combinations, kurtosis on ADCb0-1000 had the highest diagnostic performance to distinguish HPV+ from HPV- oropharyngeal squamous cell carcinoma (area under the curve = 0.893; sensitivity = 100%, specificity = 82.6%). Acquiring multiple b-values for ADC calculation did not improve the distinction between HPV+ and HPV- oropharyngeal squamous cell carcinoma. CONCLUSIONS The choice of b-values significantly affects ADC histogram metrics in oropharyngeal squamous cell carcinoma. Distinguishing HPV+ from HPV- oropharyngeal squamous cell carcinoma is best possible on the ADCb0-1000 map.
Collapse
Affiliation(s)
- V Lenoir
- From the Division of Radiology (V.L., B.M.D., Y.M., T.d.P., M.B.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - B M A Delattre
- From the Division of Radiology (V.L., B.M.D., Y.M., T.d.P., M.B.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Y M'RaD
- From the Division of Radiology (V.L., B.M.D., Y.M., T.d.P., M.B.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - C De Vito
- Division of Clinical Pathology (C.D.V.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - T de Perrot
- From the Division of Radiology (V.L., B.M.D., Y.M., T.d.P., M.B.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - M Becker
- From the Division of Radiology (V.L., B.M.D., Y.M., T.d.P., M.B.), Diagnostic Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Wennmann M, Thierjung H, Bauer F, Weru V, Hielscher T, Grözinger M, Gnirs R, Sauer S, Goldschmidt H, Weinhold N, Bonekamp D, Schlemmer HP, Weber TF, Delorme S, Rotkopf LT. Repeatability and Reproducibility of ADC Measurements and MRI Signal Intensity Measurements of Bone Marrow in Monoclonal Plasma Cell Disorders: A Prospective Bi-institutional Multiscanner, Multiprotocol Study. Invest Radiol 2022; 57:272-281. [PMID: 34839306 DOI: 10.1097/rli.0000000000000838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES Apparent diffusion coefficient (ADC) and signal intensity (SI) measurements play an increasing role in magnetic resonance imaging (MRI) of monoclonal plasma cell disorders. The purpose of this study was to assess interrater variability, repeatability, and reproducibility of ADC and SI measurements from bone marrow (BM) under variation of MRI protocols and scanners. PATIENTS AND METHODS Fifty-five patients with suspected or confirmed monoclonal plasma cell disorder were prospectively included in this institutional review board-approved study and underwent several measurements after the standard clinical whole-body MR scan, including repeated scan after repositioning, scan with a second MRI protocol, scan at a second 1.5 T scanner with a harmonized MRI protocol, and scan at a 3 T scanner. For T1-weighted, T2-weighted STIR, B800 images, and ADC maps, regions of interest were placed in the BM of the iliac crest and sacral bone, and in muscle tissue for image normalization. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. RESULTS Interrater variability and repeatability experiments showed a maximal relative bias of -0.077 and a maximal coefficient of variation of 16.2% for all sequences. Although the deviations at the second 1.5 T scanner with harmonized MRI protocol to the first 1.5 T scanner showed a maximal relative bias of 0.124 for all sequences, the variation of the MRI protocol and scan at the 3 T scanner led to large relative biases of up to -0.357 and -0.526, respectively. When comparing the 3 T scanner to the 1.5 T scanner, normalization to muscle reduced the bias of T1-weighted and T2-weighted sequences, but not of ADC maps. CONCLUSIONS The MRI scanners with identical field strength and harmonized MRI protocols can provide relatively stable quantitative measurements of BM ADC and SI. Deviations in MRI field strength and MRI protocol should be avoided when applying ADC cutoff values, which were established at other scanners or when performing multicentric imaging trials.
Collapse
Affiliation(s)
- Markus Wennmann
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Heidi Thierjung
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ)
| | | | - Martin Grözinger
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Regula Gnirs
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | - Sandra Sauer
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg
| | | | - Niels Weinhold
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg
| | - David Bonekamp
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | | - Tim Frederik Weber
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Delorme
- From the Division of Radiology, German Cancer Research Center (DKFZ)
| | | |
Collapse
|
23
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
24
|
Chen Y, Jiang Z, Guan X, Li H, Li C, Tang C, Lei Y, Dang Y, Song B, Long L. The value of multi-parameter diffusion and perfusion magnetic resonance imaging for evaluating epithelial-mesenchymal transition in rectal cancer. Eur J Radiol 2022; 150:110245. [DOI: 10.1016/j.ejrad.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
|
25
|
Long-Term Stability of Gradient Characteristics Warrants Model-Based Correction of Diffusion Weighting Bias. Tomography 2022; 8:364-375. [PMID: 35202195 PMCID: PMC8875771 DOI: 10.3390/tomography8010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The study aims to test the long-term stability of gradient characteristics for model-based correction of diffusion weighting (DW) bias in an apparent diffusion coefficient (ADC) for multisite imaging trials. Single spin echo (SSE) DWI of a long-tube ice-water phantom was acquired quarterly on six MR scanners over two years for individual diffusion gradient channels, along with B0 mapping, as a function of right-left (RL) and superior-inferior (SI) offsets from the isocenter. Additional double spin-echo (DSE) DWI was performed on two systems. The offset dependences of derived ADC were fit to 4th-order polynomials. Chronic shim gradients were measured from spatial derivatives of B0 maps along the tube direction. Gradient nonlinearity (GNL) was modeled using vendor-provided gradient field descriptions. Deviations were quantified by root-mean-square differences (RMSD), normalized to reference ice-water ADC, between the model and reference (RMSDREF), measurement and model (RMSDEXP), and temporal measurement variations (RMSDTMP). Average RMSDREF was 4.9 ± 3.2 (%RL) and –14.8 ± 3.8 (%SI), and threefold larger than RMSDEXP. RMSDTMP was close to measurement errors (~3%). GNL-induced bias across gradient systems varied up to 20%, while deviation from the model accounted at most for 6.5%, and temporal variation for less than 3% of ADC reproducibility error. Higher SSE RMSDEXP = 7.5–11% was reduced to 2.5–4.8% by DSE, consistent with the eddy current origin. Measured chronic shim gradients below 0.1 mT/m had a minor contribution to ADC bias. The demonstrated long-term stability of spatial ADC profiles and consistency with system GNL models justifies retrospective and prospective DW bias correction based on system gradient design models. Residual errors due to eddy currents and shim gradients should be corrected independent of GNL.
Collapse
|
26
|
Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol 2022; 51:101-122. [PMID: 34523007 DOI: 10.1007/s00256-021-03903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 02/02/2023]
Abstract
The last decades, increasing research has been conducted on dynamic contrast-enhanced and diffusion-weighted MRI techniques in multiple myeloma and its precursors. Apart from anatomical sequences which are prone to interpretation errors due to anatomical variants, other pathologies and subjective evaluation of signal intensities, dynamic contrast-enhanced and diffusion-weighted MRI provide additional information on microenvironmental changes in bone marrow and are helpful in the diagnosis, staging and follow-up of plasma cell dyscrasias. Diffusion-weighted imaging provides information on diffusion (restriction) of water molecules in bone marrow and in malignant infiltration. Qualitative evaluation by visually assessing images with different diffusion sensitising gradients and quantitative evaluation of the apparent diffusion coefficient are studied extensively. Dynamic contrast-enhanced imaging provides information on bone marrow vascularisation, perfusion, capillary resistance, vascular permeability and interstitial space, which are systematically altered in different disease stages and can be evaluated in a qualitative and a (semi-)quantitative manner. Both diffusion restriction and abnormal dynamic contrast-enhanced MRI parameters are early biomarkers of malignancy or disease progression in focal lesions or in regions with diffuse abnormal signal intensities. The added value for both techniques lies in better detection and/or characterisation of abnormal bone marrow otherwise missed or misdiagnosed on anatomical MRI sequences. Increased detection rates of focal lesions or diffuse bone marrow infiltration upstage patients to higher disease stages, provide earlier access to therapy and slower disease progression and allow closer monitoring of high-risk patients. Despite promising results, variations in imaging protocols, scanner types and post-processing methods are large, thus hampering universal applicability and reproducibility of quantitative imaging parameters. The myeloma response assessment and diagnosis system and the international myeloma working group provide a systematic multicentre approach on imaging and propose which parameters to use in multiple myeloma and its precursors in an attempt to overcome the pitfalls of dynamic contrast-enhanced and diffusion-weighted imaging.Single sentence summary statementDiffusion-weighted imaging and dynamic contrast-enhanced MRI provide important additional information to standard anatomical MRI techniques for diagnosis, staging and follow-up of patients with plasma cell dyscrasias, although some precautions should be taken on standardisation of imaging protocols to improve reproducibility and application in multiple centres.
Collapse
|
27
|
Koerber SA, Fink CA, Dendl K, Schmitt D, Niegisch G, Mamlins E, Giesel FL. [Imaging of oligometastatic disease in selected urologic cancers]. Urologe A 2021; 60:1561-1569. [PMID: 34850260 DOI: 10.1007/s00120-021-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Local treatment of the primary or metastatic sites in urologic malignancies is promising when compared to systemic therapy alone, leading to the definition of a potentially curative oligometastatic state. OBJECTIVES Comparison of imaging modalities regarding local and metastatic tumor sites in urologic cancers. METHODS Review of comparative trials addressing quality criteria of imaging modalities. RESULTS Depending on primary tumor and metastatic site, conventional imaging modalities such as computer tomography (CT) and bone scintigraphy still represent the standard of care in Germany. Due to superior quality criteria, hybrid-imaging techniques were widely adopted for oncological staging and particular due to the new PSMA-ligand (PSMA-PET/CT) in prostate cancer imaging. The development of new radioisotopes as well as their clinical application remains a focus of current research. CONCLUSIONS High-quality diagnostic imaging modalities lay the groundwork for a precise definition of an oligometastatic state. By enabling treatment of the entire tumor burden, a delay of systemic therapy, longer progression-free survival, or even curative treatment may become achievable.
Collapse
Affiliation(s)
- S A Koerber
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C A Fink
- Klinik für Radioonkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - K Dendl
- Klinik für Nuklearmedizin, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstraße 5, 40225, Düsseldorf, Deutschland.,Klinik für Nuklearmedizin, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - D Schmitt
- Klinik für Nuklearmedizin, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstraße 5, 40225, Düsseldorf, Deutschland
| | - G Niegisch
- Klinik für Urologie, Medizinische Fakultät, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - E Mamlins
- Klinik für Nuklearmedizin, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstraße 5, 40225, Düsseldorf, Deutschland
| | - F L Giesel
- Klinik für Nuklearmedizin, Universitätsklinikum Düsseldorf, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstraße 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
28
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
29
|
Petralia G, Zugni F, Summers PE, Colombo A, Pricolo P, Grazioli L, Colagrande S, Giovagnoni A, Padhani AR. Whole-body magnetic resonance imaging (WB-MRI) for cancer screening: recommendations for use. Radiol Med 2021; 126:1434-1450. [PMID: 34338948 PMCID: PMC8558201 DOI: 10.1007/s11547-021-01392-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is currently recommended for cancer screening in adult and paediatric subjects with cancer predisposition syndromes, representing a substantial aid for prolonging health and survival of these subjects with a high oncological risk. Additionally, the number of studies exploring the use of WB-MRI for cancer screening in asymptomatic subjects from the general population is growing. The primary aim of this review was to analyse the acquisition protocols found in the literature, in order to identify common sequences across published studies and to discuss the need of additional ones for specific populations. The secondary aim of this review was to provide a synthesis of current recommendations regarding the use of WB-MRI for cancer screening.
Collapse
Affiliation(s)
- Giuseppe Petralia
- Precision Imaging and Research Unit, Department of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hematology, University of Milan, Milan, Italy.
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luigi Grazioli
- First Department of Radiology, Civic and University Hospital of Brescia, Brescia, Italy
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit N. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Andrea Giovagnoni
- Department of Radiology, Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK
| |
Collapse
|
30
|
Prognostic impact of posttransplant FDG PET/CT scan in multiple myeloma. Blood Adv 2021; 5:2753-2759. [PMID: 34242392 DOI: 10.1182/bloodadvances.2020004131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease that may be evaluated by a broad array of imaging and laboratory techniques to measure disease activity and predict prognosis. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning has been shown to be predictive of patient outcomes throughout the disease course. We sought to corroborate these findings by examining the prognostic impact of PET/CT scanning in the posttransplant setting. We retrospectively analyzed PET/CT scans in 229 MM patients receiving an autologous stem cell transplant (ASCT) near day 100, and correlated these findings with time to progression(TTP) and overall survival (OS) to assess the impact of day 100 PET/CT scan findings as an independent prognostic factor. The median OS for the entire cohort was 61.5 months (95% confidence interval [CI], 49-75) and the median TTP was 18.5 months (95% CI, 15.4-21.8). Among patients with abnormal day 100 PET findings (PET+), median TTP was 12.4 months vs 24 months among those with normal PET findings (PET-) (P < .0001). The median OS in the PET+ group was 46 months compared with 99 months in the PET- group (P < .0001). We conclude that an abnormal PET/CT scan near day 100 post-ASCT is predictive of shorter TTP and OS, with prognostic significance retained after adjusting for disease response and other prognostic variables in MM.
Collapse
|
31
|
Granata V, Grassi R, Fusco R, Belli A, Cutolo C, Pradella S, Grazzini G, La Porta M, Brunese MC, De Muzio F, Ottaiano A, Avallone A, Izzo F, Petrillo A. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma. Infect Agent Cancer 2021; 16:53. [PMID: 34281580 PMCID: PMC8287696 DOI: 10.1186/s13027-021-00393-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
This article provides an overview of diagnostic evaluation and ablation treatment assessment in Hepatocellular Carcinoma (HCC). Only studies, in the English language from January 2010 to January 202, evaluating the diagnostic tools and assessment of ablative therapies in HCC patients were included. We found 173 clinical studies that satisfied the inclusion criteria.HCC may be noninvasively diagnosed by imaging findings. Multiphase contrast-enhanced imaging is necessary to assess HCC. Intravenous extracellular contrast agents are used for CT, while the agents used for MRI may be extracellular or hepatobiliary. Both gadoxetate disodium and gadobenate dimeglumine may be used in hepatobiliary phase imaging. For treatment-naive patients undergoing CT, unenhanced imaging is optional; however, it is required in the post treatment setting for CT and all MRI studies. Late arterial phase is strongly preferred over early arterial phase. The choice of modality (CT, US/CEUS or MRI) and MRI contrast agent (extracelllar or hepatobiliary) depends on patient, institutional, and regional factors. MRI allows to link morfological and functional data in the HCC evaluation. Also, Radiomics is an emerging field in the assessment of HCC patients.Postablation imaging is necessary to assess the treatment results, to monitor evolution of the ablated tissue over time, and to evaluate for complications. Post- thermal treatments, imaging should be performed at regularly scheduled intervals to assess treatment response and to evaluate for new lesions and potential complications.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Milan, Italy
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Silvia Pradella
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Grazzini
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
32
|
Zhang B, Bian B, Zhao Z, Lin F, Zhu Z, Lou M. Correlations between apparent diffusion coefficient values of WB-DWI and clinical parameters in multiple myeloma. BMC Med Imaging 2021; 21:98. [PMID: 34103001 PMCID: PMC8186136 DOI: 10.1186/s12880-021-00631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background Whole-body diffusion-weighted imaging (WB-DWI) is a method for evaluating bone marrow infiltration in multiple myeloma (MM). This study seeks to elucidate the correlation between the apparent diffusion coefficient (ADC) value and some selected clinical parameters.
Methods A total of 101 Chinese patients with MM who had undergone WB-DWI from May 2017 to May 2019 were enrolled in this study. The ADC values of the MM lesions and the clinical parameters were quantified at the first (baseline) visit and after four-course induction chemotherapy. Multiple linear regression and logistic analyses were carried out to find the implicit inherent relationships within the patients’ data. Results The paired Wilcoxon test showed that the ADC values at the baseline visit (ADC0) were significantly lower than the values after four-course induction chemotherapy (ADC4 c) (p < 0.001), including different therapeutic responses. The Revised International Staging System (RISS) stage, type of MM, and β2-microglobulin (β2-MG) were predictors of clinically significant increases or decreases in the ADC values (p < 0.05). Multiple linear regression showed that the ADC0 was negatively associated with β2-MG (p < 0.001) and immunoglobulin heavy chain gene rearrangement (p = 0.012), while the RISS Stage III (p = 0.001), type IgG λ (p = 0.005), and albumin were negatively associated with ADC4 c (p = 0.010). The impacts of the therapeutic response were associated with ADC0 and immunoglobulin heavy chain gene rearrangement (p < 0.001). Conclusion The ADC values of WB-DWI may be associated with clinical parameters of MM including the fluorescence in situ hybridization result, and may be useful in the prognosis of patients with MM. Trial Registration: ChiCTR2000029587
Collapse
Affiliation(s)
- Bei Zhang
- Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China.,Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Bingyang Bian
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Zhiwei Zhao
- Department of Hand and Foot Surgery, First Hospital of Jilin University, Changchun, China
| | - Fang Lin
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Zining Zhu
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Mingwu Lou
- Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China. .,Department of Radiology, Longgang Central Hospital of Shenzhen, No. 6082, Longgang Road, Longgang District, Shenzhen, 518116, Guangdong Province, China.
| |
Collapse
|
33
|
Winfield JM, Blackledge MD, Tunariu N, Koh DM, Messiou C. Whole-body MRI: a practical guide for imaging patients with malignant bone disease. Clin Radiol 2021; 76:715-727. [PMID: 33934876 DOI: 10.1016/j.crad.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
Whole-body magnetic resonance imaging (MRI) is now a crucial tool for the assessment of the extent of systemic malignant bone disease and response to treatment, and forms part of national and international recommendations for imaging patients with myeloma or metastatic prostate cancer. Recent developments in scanners have enabled acquisition of good-quality whole-body MRI data within 45 minutes on modern MRI systems from all main manufacturers. This provides complimentary morphological and functional whole-body imaging; however, lack of prior experience and acquisition times required can act as a barrier to adoption in busy radiology departments. This article aims to tackle the former by reviewing the indications and providing guidance for technical delivery and clinical interpretation of whole-body MRI for patients with malignant bone disease.
Collapse
Affiliation(s)
- J M Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - M D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - N Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - D-M Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - C Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK; MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
34
|
Petralia G, Koh DM, Attariwala R, Busch JJ, Eeles R, Karow D, Lo GG, Messiou C, Sala E, Vargas HA, Zugni F, Padhani AR. Oncologically Relevant Findings Reporting and Data System (ONCO-RADS): Guidelines for the Acquisition, Interpretation, and Reporting of Whole-Body MRI for Cancer Screening. Radiology 2021; 299:494-507. [PMID: 33904776 DOI: 10.1148/radiol.2021201740] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acknowledging the increasing number of studies describing the use of whole-body MRI for cancer screening, and the increasing number of examinations being performed in patients with known cancers, an international multidisciplinary expert panel of radiologists and a geneticist with subject-specific expertise formulated technical acquisition standards, interpretation criteria, and limitations of whole-body MRI for cancer screening in individuals at higher risk, including those with cancer predisposition syndromes. The Oncologically Relevant Findings Reporting and Data System (ONCO-RADS) proposes a standard protocol for individuals at higher risk, including those with cancer predisposition syndromes. ONCO-RADS emphasizes structured reporting and five assessment categories for the classification of whole-body MRI findings. The ONCO-RADS guidelines are designed to promote standardization and limit variations in the acquisition, interpretation, and reporting of whole-body MRI scans for cancer screening. Published under a CC BY 4.0 license Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Giuseppe Petralia
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Dow-Mu Koh
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Raj Attariwala
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Joseph J Busch
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Ros Eeles
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - David Karow
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Gladys G Lo
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Christina Messiou
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Evis Sala
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Hebert A Vargas
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Fabio Zugni
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Anwar R Padhani
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| |
Collapse
|
35
|
Colombo A, Saia G, Azzena AA, Rossi A, Zugni F, Pricolo P, Summers PE, Marvaso G, Grimm R, Bellomi M, Jereczek-Fossa BA, Padhani AR, Petralia G. Semi-Automated Segmentation of Bone Metastases from Whole-Body MRI: Reproducibility of Apparent Diffusion Coefficient Measurements. Diagnostics (Basel) 2021; 11:diagnostics11030499. [PMID: 33799913 PMCID: PMC7998160 DOI: 10.3390/diagnostics11030499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Using semi-automated software simplifies quantitative analysis of the visible burden of disease on whole-body MRI diffusion-weighted images. To establish the intra- and inter-observer reproducibility of apparent diffusion coefficient (ADC) measures, we retrospectively analyzed data from 20 patients with bone metastases from breast (BCa; n = 10; aged 62.3 ± 14.8) or prostate cancer (PCa; n = 10; aged 67.4 ± 9.0) who had undergone examinations at two timepoints, before and after hormone-therapy. Four independent observers processed all images twice, first segmenting the entire skeleton on diffusion-weighted images, and then isolating bone metastases via ADC histogram thresholding (ADC: 650–1400 µm2/s). Dice Similarity, Bland-Altman method, and Intraclass Correlation Coefficient were used to assess reproducibility. Inter-observer Dice similarity was moderate (0.71) for women with BCa and poor (0.40) for men with PCa. Nonetheless, the limits of agreement of the mean ADC were just ±6% for women with BCa and ±10% for men with PCa (mean ADCs: 941 and 999 µm2/s, respectively). Inter-observer Intraclass Correlation Coefficients of the ADC histogram parameters were consistently greater in women with BCa than in men with PCa. While scope remains for improving consistency of the volume segmented, the observer-dependent variability measured in this study was appropriate to distinguish the clinically meaningful changes of ADC observed in patients responding to therapy, as changes of at least 25% are of interest.
Collapse
Affiliation(s)
- Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
- Correspondence:
| | - Giulia Saia
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Alcide A. Azzena
- Postgraduate School in Radiodiagnostics, University of Milan, 20122 Milan, Italy;
| | - Alice Rossi
- Radiology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Paul E. Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Robert Grimm
- MR Applications Pre-Development, Siemens Healthcare, 91052 Erlangen, Germany;
| | - Massimo Bellomi
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Barbara A. Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Anwar R. Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood HA6 2RN, UK;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
36
|
Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer. ACTA ACUST UNITED AC 2021; 7:66-79. [PMID: 33704226 PMCID: PMC8048371 DOI: 10.3390/tomography7010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Respiratory motion and increased susceptibility effects at high magnetic fields pose challenges for quantitative diffusion-weighted MRI (DWI) of a mouse abdomen on preclinical MRI systems. We demonstrate the first application of radial k-space-sampled (RAD) DWI of a mouse abdomen using a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) on a 4.7 T preclinical scanner equipped with moderate gradient capability. RAD DWI was compared with the echo-planar imaging (EPI)-based DWI method with similar voxel volumes and acquisition times over a wide range of b-values (0.64, 535, 1071, 1478, and 2141 mm2/s). The repeatability metrics are assessed in a rigorous test-retest study (n = 10 for each DWI protocol). The four-shot EPI DWI protocol leads to higher signal-to-noise ratio (SNR) in diffusion-weighted images with persisting ghosting artifacts, whereas the RAD DWI protocol produces relatively artifact-free images over all b-values examined. Despite different degrees of motion mitigation, both RAD DWI and EPI DWI allow parametric maps of apparent diffusion coefficients (ADC) to be produced, and the ADC of the PDAC tumor estimated by the two methods are 1.3 ± 0.24 and 1.5 ± 0.28 × 10-3 mm2/s, respectively (p = 0.075, n = 10), and those of a water phantom are 3.2 ± 0.29 and 2.8 ± 0.15 × 10-3 mm2/s, respectively (p = 0.001, n = 10). Bland-Altman plots and probability density function reveal good repeatability for both protocols, whose repeatability metrics do not differ significantly. In conclusion, RAD DWI enables a more effective respiratory motion mitigation but lower SNR, while the performance of EPI DWI is expected to improve with more advanced gradient hardware.
Collapse
|
37
|
Yoshida S, Takahara T, Arita Y, Toda K, Yamada I, Tanaka H, Yokoyama M, Matsuoka Y, Yoshimura R, Fujii Y. Genuine- and induced-oligometastatic castration-resistant prostate cancer: clinical features and clinical outcomes after progressive site-directed therapy. Int Urol Nephrol 2021; 53:1119-1125. [PMID: 33452956 DOI: 10.1007/s11255-020-02762-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To evaluate the clinical characteristics of genuine- and induced-oligometastatic castration-resistant prostate cancer (OM-CRPC) and assess the therapeutic effect of progressive-site directed therapy (PSDT). METHODS We performed a retrospective analysis of 45 patients with OM-CRPC. Whole-body diffusion-weighted MRI (WB-DWI) was used to diagnose oligo-progressive disease. Based on the clinical and radiological findings, the OM-CRPCs were classified as genuine or induced. PSDT was performed with the intent to ablate all the progressive sites detected on WB-DWI with radiotherapy. Systemic therapy remained unchanged during and after PSDT. RESULTS A total of 31 (69%) and 14 (31%) patients were diagnosed with genuine- and induced-OM-CRPC, respectively. The genuine-OM-CRPC group had significantly fewer patients treated with taxane-based chemotherapy and new hormonal drugs than the induced-OM-CRPC group. Of these, 26 OM-CRPC patients were treated with PSDT, and a 50% PSA decline was observed in 14 (93%) of 15 patients with genuine-OM-CRPC and 4 (36%) of 11 patients with induced-OM-CRPC (P = 0.033). Further, the duration of PSA-progression-free survival was significantly longer in the genuine-OM-CRPC group than in the induced-OM-CRPC group (8.7 vs. 5.8 months, P = 0.040). CONCLUSIONS PSDT can be a promising treatment option for genuine-OM-CRPC. The procedure might also be considered effective for induced-OM-CRPC, although there was less therapeutic benefit of PSDT in patients with induced-OM-CRPC than in patients with genuine-OM-CRPC.
Collapse
Affiliation(s)
- Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Kanagawa, 259-1292, Japan
- Department of Radiology, Advanced Imaging Center Yaesu Clinic, Tokyo, 113-0027, Japan
| | - Yuki Arita
- Departments of Diagnostic Radiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuma Toda
- Department of Radiation Therapeutics and Oncology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Ichiro Yamada
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Minato Yokoyama
- Department of Urology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yoh Matsuoka
- Department of Urology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryoichi Yoshimura
- Department of Radiation Therapeutics and Oncology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
38
|
Michoux NF, Ceranka JW, Vandemeulebroucke J, Peeters F, Lu P, Absil J, Triqueneaux P, Liu Y, Collette L, Willekens I, Brussaard C, Debeir O, Hahn S, Raeymaekers H, de Mey J, Metens T, Lecouvet FE. Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study. Eur Radiol 2021; 31:4514-4527. [PMID: 33409773 DOI: 10.1007/s00330-020-07522-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multicenter oncology trials increasingly include MRI examinations with apparent diffusion coefficient (ADC) quantification for lesion characterization and follow-up. However, the repeatability and reproducibility (R&R) limits above which a true change in ADC can be considered relevant are poorly defined. This study assessed these limits in a standardized whole-body (WB)-MRI protocol. METHODS A prospective, multicenter study was performed at three centers equipped with the same 3.0-T scanners to test a WB-MRI protocol including diffusion-weighted imaging (DWI). Eight healthy volunteers per center were enrolled to undergo test and retest examinations in the same center and a third examination in another center. ADC variability was assessed in multiple organs by two readers using two-way mixed ANOVA, Bland-Altman plots, coefficient of variation (CoV), and the upper limit of the 95% CI on repeatability (RC) and reproducibility (RDC) coefficients. RESULTS CoV of ADC was not influenced by other factors (center, reader) than the organ. Based on the upper limit of the 95% CI on RC and RDC (from both readers), a change in ADC in an individual patient must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central and peripheral zones of the prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be significant. CONCLUSIONS This study proposes R&R limits above which ADC changes can be considered as a reliable quantitative endpoint to assess disease or treatment-related changes in the tissue microstructure in the setting of multicenter WB-MRI trials. KEY POINTS • The present study showed the range of R&R of ADC in WB-MRI that may be achieved in a multicenter framework when a standardized protocol is deployed. • R&R was not influenced by the site of acquisition of DW images. • Clinically significant changes in ADC measured in a multicenter WB-MRI protocol performed with the same type of MRI scanner must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central zone and peripheral zone of prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be detected with a 95% confidence level.
Collapse
Affiliation(s)
- Nicolas F Michoux
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium.
| | - Jakub W Ceranka
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jef Vandemeulebroucke
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frank Peeters
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Pierre Lu
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Julie Absil
- Radiology Department, Université libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Perrine Triqueneaux
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Yan Liu
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Laurence Collette
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | | | | | - Olivier Debeir
- LISA (Laboratories of Image Synthesis and Analysis), Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Stephan Hahn
- LISA (Laboratories of Image Synthesis and Analysis), Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | | | - Thierry Metens
- Radiology Department, Université libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Frédéric E Lecouvet
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| |
Collapse
|
39
|
Van Nieuwenhove S, Van Damme J, Padhani AR, Vandecaveye V, Tombal B, Wuts J, Pasoglou V, Lecouvet FE. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging 2020; 55:653-680. [PMID: 33382151 DOI: 10.1002/jmri.27485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, updated definitions for the different stages of prostate cancer and risk for distant disease, along with the advent of new therapies, have remarkably changed the management of patients. The two expectations from imaging are accurate staging and appropriate assessment of disease response to therapies. Modern, next-generation imaging (NGI) modalities, including whole-body magnetic resonance imaging (WB-MRI) and nuclear medicine (most often prostate-specific membrane antigen [PSMA] positron emission tomography [PET]/computed tomography [CT]) bring added value to these imaging tasks. WB-MRI has proven its superiority over bone scintigraphy (BS) and CT for the detection of distant metastasis, also providing reliable evaluations of disease response to treatment. Comparison of the effectiveness of WB-MRI and molecular nuclear imaging techniques with regard to indications and the definition of their respective/complementary roles in clinical practice is ongoing. This paper illustrates the evolution of WB-MRI imaging protocols, defines the current state-of-the art, and highlights the latest developments and future challenges. The paper presents and discusses WB-MRI indications in the care pathway of men with prostate cancer in specific key situations: response assessment of metastatic disease, "all in one" cancer staging, and oligometastatic disease.
Collapse
Affiliation(s)
- Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Van Damme
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Anwar R Padhani
- Mount Vernon Cancer Centre, Mount Vernon Hospital, London, UK
| | - Vincent Vandecaveye
- Department of Radiology and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Bertrand Tombal
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joris Wuts
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
40
|
Isaac A, Lecouvet F, Dalili D, Fayad L, Pasoglou V, Papakonstantinou O, Ahlawat S, Messiou C, Weber MA, Padhani AR. Detection and Characterization of Musculoskeletal Cancer Using Whole-Body Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2020; 24:726-750. [PMID: 33307587 DOI: 10.1055/s-0040-1719018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.
Collapse
Affiliation(s)
- Amanda Isaac
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Guy's & St Thomas' Hospitals, London, United Kingdom
| | - Frederic Lecouvet
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Danoob Dalili
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laura Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Vasiliki Pasoglou
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Olympia Papakonstantinou
- 2nd Department of Radiology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Anwar R Padhani
- The Institute of Cancer Research, London, United Kingdom.,Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|
41
|
Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, Curcean A, Koh DM. What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century. Br J Radiol 2020; 93:20200562. [PMID: 32822545 PMCID: PMC8519652 DOI: 10.1259/bjr.20200562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI (DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI hardware and software advances have reduced acquisition times, with studies taking 40-50 min to complete.The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning will shorten image acquisition times and image analyses, making the technique more competitive against other imaging technologies.
Collapse
Affiliation(s)
| | - Matthew Blackledge
- Department of Radiotherapy, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | - Giuseppe Petralia
- Department of Radiology, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy
| | - Anwar Padhani
- Mount Vernon Hospital, The Paul Strickland Scanner Centre, Rickmansworth Road, Northwood, Middlesex, UK
| | - Sebastian Curcean
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | | | - Dow-Mu Koh
- Drug Development Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| |
Collapse
|
42
|
Feldhaus JM, Garner HW, Wessell DE. Society of skeletal radiology member utilization and performance of whole-body MRI in adults. Skeletal Radiol 2020; 49:1731-1736. [PMID: 32444914 DOI: 10.1007/s00256-020-03471-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate musculoskeletal (MSK) radiologist whole-body magnetic resonance imaging (WBMRI) practice patterns in an effort to better understand current MSK clinical utilization and the need for standardized coding. METHODS A 12-question survey was created in Survey Monkey®. The survey was e-mailed to Society of Skeletal Radiology (SSR) members on September 19, 2018. The survey included questions on SSR member demographics and on their experience with WBMRI. RESULTS One hundred sixty-four of 1454 (11%) SSR members responded to the survey. A minority (32%; n = 52/164) of respondents reported that their institutions routinely perform WBMRI. The most common indication was multiple myeloma (78%, n = 51/65). The most commonly utilized sequences were coronal short tau inversion recovery (STIR) (79%, n = 52/66) and coronal T1 without fat saturation (73%, n = 48/66). A large proportion of respondents (48%, n = 31/64) did not know the code used for billing WBMRI at their institutions. Of the remaining respondents, 23% (n = 15/64) reported use of the bone marrow MRI code, 16% (n = 10/64) the chest/abdomen/pelvis combination code, and 9% (n = 6/64) the unlisted MRI procedure code. CONCLUSION There is variation in who is responsible for the protocol and interpretation of WBMRI, as well as how the exam is performed and how the exam is coded, which raise barriers to broad implementation. Recent WBMRI guidelines for multiple myeloma and prostate cancer can mitigate many of these barriers, but they do not address the coding and reimbursement challenges. Collaborative multi-society development of a new CPT® code for WBMRI may be a worthwhile endeavor.
Collapse
Affiliation(s)
- Jacob M Feldhaus
- GLOBIS: Global Imaging Solutions, 503 Eisenhower Drive, Savannah, GA, 31406, USA
| | - Hillary W Garner
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Daniel E Wessell
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
43
|
Beuselinck B, Pans S, Bielen J, De Wever L, Noppe N, Vanderschueren G, De Keyzer F, Baldewijns M, Lerut E, Laenen A, Verbiest A, Roussel E, Albersen M, Vandecaveye V. Whole-body diffusion-weighted magnetic resonance imaging for the detection of bone metastases and their prognostic impact in metastatic renal cell carcinoma patients treated with angiogenesis inhibitors. Acta Oncol 2020; 59:818-824. [PMID: 32297532 DOI: 10.1080/0284186x.2020.1750696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Metastatic renal cell carcinoma (mRCC) patients with bone metastases (BM) are at high risk for skeletal related events and have a poorer outcome when treated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs). Computed tomography (CT) lacks sensitivity to detect BM in mRCC. We aimed to determine the added value of whole body diffusion-weighted magnetic resonance imaging (WB-DWI/MRI) to CT for the detection of BM in mRCC and to estimate the prognostic impact of the number of BM in mRCC patients treated with VEGFR-TKIs.Material and methods: We conducted a prospective study including consecutive mRCC patients treated with a first-line VEGFR-TKI in the metastatic setting. All patients underwent a pretreatment thoracic-abdominal-pelvic CT and WB-DWI/MRI. CT and WB-DWI/MRI were compared for the detection of BM. The number of detected BM was correlated with response rate (RR), progression-free survival (PFS) and overall survival (OS) after start of the VEGFR-TKI.Results: Ninety-two patients were included. BM were found in 55% of the patients by WB-DWI/MRI and in 43% of the patients by CT (p = .003). Mean number of BM discovered per patient was 6.8 by WB-DWI/MRI versus 1.9 by CT (p = .006). The cutoff of ≤5 versus >5 BM on WB-DWI/MRI had the highest discriminative power for all outcome measures. Patients with >5 BM had a lower RR (10% versus 42%), more frequently early progressive disease (43% versus 13%, p = .003), shorter PFS (4 versus 10 months, p = .006) and shorter OS (10 versus 35 months, p < .0001) compared to patients with ≤5 BM.Conclusion: WB-DWI/MRI detects significantly more BM in mRCC patients than CT, allowing better estimation of the prognostic impact of BM in mRCC patients treated with VEGFR-TKIs. The prognostic impact should now be validated in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Benoit Beuselinck
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Steven Pans
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Jurgen Bielen
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Wever
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Noppe
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Evelyne Lerut
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - Annelies Verbiest
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Blackledge MD, Tunariu N, Zungi F, Holbrey R, Orton MR, Ribeiro A, Hughes JC, Scurr ED, Collins DJ, Leach MO, Koh DM. Noise-Corrected, Exponentially Weighted, Diffusion-Weighted MRI (niceDWI) Improves Image Signal Uniformity in Whole-Body Imaging of Metastatic Prostate Cancer. Front Oncol 2020; 10:704. [PMID: 32457842 PMCID: PMC7225292 DOI: 10.3389/fonc.2020.00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: To characterize the voxel-wise uncertainties of Apparent Diffusion Coefficient (ADC) estimation from whole-body diffusion-weighted imaging (WBDWI). This enables the calculation of a new parametric map based on estimates of ADC and ADC uncertainty to improve WBDWI imaging standardization and interpretation: NoIse-Corrected Exponentially-weighted diffusion-weighted MRI (niceDWI). Methods: Three approaches to the joint modeling of voxel-wise ADC and ADC uncertainty (σADC) are evaluated: (i) direct weighted least squares (DWLS), (ii) iterative linear-weighted least-squares (IWLS), and (iii) smoothed IWLS (SIWLS). The statistical properties of these approaches in terms of ADC/σADC accuracy and precision is compared using Monte Carlo simulations. Our proposed post-processing methodology (niceDWI) is evaluated using an ice-water phantom, by comparing the contrast-to-noise ratio (CNR) with conventional exponentially-weighted DWI. We present the clinical feasibility of niceDWI in a pilot cohort of 16 patients with metastatic prostate cancer. Results: The statistical properties of ADC and σADC conformed closely to the theoretical predictions for DWLS, IWLS, and SIWLS fitting routines (a minor bias in parameter estimation is observed with DWLS). Ice-water phantom experiments demonstrated that a range of CNR could be generated using the niceDWI approach, and could improve CNR compared to conventional methods. We successfully implemented the niceDWI technique in our patient cohort, which visually improved the in-plane bias field compared with conventional WBDWI. Conclusions: Measurement of the statistical uncertainty in ADC estimation provides a practical way to standardize WBDWI across different scanners, by providing quantitative image signals that improve its reliability. Our proposed method can overcome inter-scanner and intra-scanner WBDWI signal variations that can confound image interpretation.
Collapse
Affiliation(s)
- Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Nina Tunariu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Fabio Zungi
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Richard Holbrey
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Matthew R Orton
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Ana Ribeiro
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Julie C Hughes
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Erica D Scurr
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - David J Collins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Martin O Leach
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
45
|
Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in clinical MR-guided radiotherapy. Radiat Oncol 2020; 15:93. [PMID: 32370788 PMCID: PMC7201982 DOI: 10.1186/s13014-020-01524-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART.Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing.The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
Collapse
Affiliation(s)
- Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
| | - Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany
- German Cancer Consortium (DKTK), 81377, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133, Milano, Italy
- Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Privata Campeggi 53, 27100, Pavia, Italy
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Centre Utrecht, PO box 85500, 3508 GA, Utrecht, The Netherlands
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748, Garching, Germany.
| |
Collapse
|
46
|
Diagnostic Value of Whole-Body DWI With Background Body Suppression Plus Calculation of Apparent Diffusion Coefficient at 3 T Versus 18F-FDG PET/CT for Detection of Bone Metastases. AJR Am J Roentgenol 2020; 214:446-454. [PMID: 31799866 DOI: 10.2214/ajr.19.21656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Iima M, Partridge SC, Le Bihan D. Six DWI questions you always wanted to know but were afraid to ask: clinical relevance for breast diffusion MRI. Eur Radiol 2020; 30:2561-2570. [PMID: 31965256 DOI: 10.1007/s00330-019-06648-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Diffusion MRI (often called diffusion-weighted imaging or DWI) has enjoyed a tremendous growth since its introduction in the mid-1980s, especially to investigate neurological disorders and in oncology. At a time when standardization and quality control appear as critical as ever to support widespread utilization, our aim was to address common fundamental questions that arise regarding results obtained with DWI. We focus on six questions taking breast DWI as an example, as breast DWI is increasingly used in clinical practice, but most of our conclusions would apply to DWI in general. We show especially that noise can act in a pernicious way specific to DWI. Ignoring such noise effects could lead to incorrect data interpretations or conclusions, of which authors and readers may be genuinely unaware. While addressing these six questions, we give practical examples of how noise effects can be understood, corrected when possible, or taken to our advantage. Key Points • Ignoring noise effects in DWI could lead to incorrect data interpretations or conclusions, of which authors and readers may be genuinely unaware. • In vivo apparent diffusion coefficient (ADC) decreases with b value, which must therefore be reported along with ADC. • Synthesized DWI boosts contrast at the expense of accurate diffusion/microstructure characterization.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.,Breast Imaging, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, Gif-sur-Yvette, France. .,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
48
|
Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, Martincich L, Partridge SC, Patterson A, Pinker K, Thibault F, Camps-Herrero J, Le Bihan D. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol 2019; 30:1436-1450. [PMID: 31786616 PMCID: PMC7033067 DOI: 10.1007/s00330-019-06510-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/03/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
Abstract
The European Society of Breast Radiology (EUSOBI) established an International Breast DWI working group. The working group consists of clinical breast MRI experts, MRI physicists, and representatives from large vendors of MRI equipment, invited based upon proven expertise in breast MRI and/or in particular breast DWI, representing 25 sites from 16 countries. The aims of the working group are (a) to promote the use of breast DWI into clinical practice by issuing consensus statements and initiate collaborative research where appropriate; (b) to define necessary standards and provide practical guidance for clinical application of breast DWI; (c) to develop a standardized and translatable multisite multivendor quality assurance protocol, especially for multisite research studies; (d) to find consensus on optimal methods for image processing/analysis, visualization, and interpretation; and (e) to work collaboratively with system vendors to improve breast DWI sequences. First consensus recommendations, presented in this paper, include acquisition parameters for standard breast DWI sequences including specifications of b values, fat saturation, spatial resolution, and repetition and echo times. To describe lesions in an objective way, levels of diffusion restriction/hindrance in the breast have been defined based on the published literature on breast DWI. The use of a small ROI placed on the darkest part of the lesion on the ADC map, avoiding necrotic, noisy or non-enhancing lesion voxels is currently recommended. The working group emphasizes the need for standardization and quality assurance before ADC thresholds are applied. The working group encourages further research in advanced diffusion techniques and tailored DWI strategies for specific indications. Key Points • The working group considers breast DWI an essential part of a multiparametric breast MRI protocol and encourages its use. • Basic requirements for routine clinical application of breast DWI are provided, including recommendations on b values, fat saturation, spatial resolution, and other sequence parameters. • Diffusion levels in breast lesions are defined based on meta-analysis data and methods to obtain a reliable ADC value are detailed.
Collapse
Affiliation(s)
- Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria
| | - Ritse M Mann
- Department of Radiology, Radboud University Medical Centre, Nijmegen, Netherlands. .,Department of Radiology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eric E Sigmund
- Department of Radiology, New York University School of Medicine, NYU Langone Health, Ney York, NY, 10016, USA
| | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew Patterson
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katja Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria.,MSKCC, New York, NY, 10065, USA
| | | | | | - Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute, Gif Sur Yvette, France
| | | |
Collapse
|
49
|
Adeleke S, Latifoltojar A, Sidhu H, Galazi M, Shah TT, Clemente J, Davda R, Payne HA, Chouhan MD, Lioumi M, Chua S, Freeman A, Rodriguez-Justo M, Coolen A, Vadgama S, Morris S, Cook GJ, Bomanji J, Arya M, Chowdhury S, Wan S, Haroon A, Ng T, Ahmed HU, Punwani S. Localising occult prostate cancer metastasis with advanced imaging techniques (LOCATE trial): a prospective cohort, observational diagnostic accuracy trial investigating whole-body magnetic resonance imaging in radio-recurrent prostate cancer. BMC Med Imaging 2019; 19:90. [PMID: 31730466 PMCID: PMC6858718 DOI: 10.1186/s12880-019-0380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accurate whole-body staging following biochemical relapse in prostate cancer is vital in determining the optimum disease management. Current imaging guidelines recommend various imaging platforms such as computed tomography (CT), Technetium 99 m (99mTc) bone scan and 18F-choline and recently 68Ga-PSMA positron emission tomography (PET) for the evaluation of the extent of disease. Such approach requires multiple hospital attendances and can be time and resource intensive. Recently, whole-body magnetic resonance imaging (WB-MRI) has been used in a single visit scanning session for several malignancies, including prostate cancer, with promising results, providing similar accuracy compared to the combined conventional imaging techniques. The LOCATE trial aims to investigate the application of WB-MRI for re-staging of patients with biochemical relapse (BCR) following external beam radiotherapy and brachytherapy in patients with prostate cancer. METHODS/DESIGN The LOCATE trial is a prospective cohort, multi-centre, non-randomised, diagnostic accuracy study comparing WB-MRI and conventional imaging. Eligible patients will undergo WB-MRI in addition to conventional imaging investigations at the time of BCR and will be asked to attend a second WB-MRI exam, 12-months following the initial scan. WB-MRI results will be compared to an enhanced reference standard comprising all the initial, follow-up imaging and non-imaging investigations. The diagnostic performance (sensitivity and specificity analysis) of WB-MRI for re-staging of BCR will be investigated against the enhanced reference standard on a per-patient basis. An economic analysis of WB-MRI compared to conventional imaging pathways will be performed to inform the cost-effectiveness of the WB-MRI imaging pathway. Additionally, an exploratory sub-study will be performed on blood samples and exosome-derived human epidermal growth factor receptor (HER) dimer measurements will be taken to investigate its significance in this cohort. DISCUSSION The LOCATE trial will compare WB-MRI versus the conventional imaging pathway including its cost-effectiveness, therefore informing the most accurate and efficient imaging pathway. TRIAL REGISTRATION LOCATE trial was registered on ClinicalTrial.gov on 18th of October 2016 with registration reference number NCT02935816.
Collapse
Affiliation(s)
- Sola Adeleke
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
| | - Arash Latifoltojar
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
| | - Harbir Sidhu
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
- Department of Radiology, University College London Hospital, London, 235 Euston Road, London, NW1 2BU UK
| | - Myria Galazi
- Molecular Oncology Group, University College London, Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD UK
| | - Taimur T. Shah
- Division of Surgery and Interventional Science, University College London, 4th floor, 21 University Street, London, WC1E UK
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Joey Clemente
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
| | - Reena Davda
- Oncology Department, University College London Hospital, 235 Euston Road, London, NW1 2BU UK
| | - Heather Ann Payne
- Oncology Department, University College London Hospital, 235 Euston Road, London, NW1 2BU UK
| | - Manil D. Chouhan
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
- Department of Radiology, University College London Hospital, London, 235 Euston Road, London, NW1 2BU UK
| | - Maria Lioumi
- Comprehensive Cancer Imaging Centre (CCIC), King’s College, London, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
| | - Sue Chua
- Department of Nuclear Medicine, The Royal Marsden Hospital NHS Foundation Trust, Down’s Road, Sutton, SM2 5PT UK
| | - Alex Freeman
- Histopathology Department, University College London Hospital, 4th Floor, Rockefeller Building University Street, London, WC1 6DE UK
| | - Manuel Rodriguez-Justo
- Histopathology Department, University College London Hospital, 4th Floor, Rockefeller Building University Street, London, WC1 6DE UK
| | - Anthony Coolen
- Institute for Mathematical and Molecular Biomedicine, King’s College London, Hodgkin Building, Guy’s Campus, London, SE1 1UL UK
| | - Sachin Vadgama
- Department of Applied Health Research, University College London, 1-19 Torrington Place, Fitzrovia, London, WC1E 7HB UK
| | - Steve Morris
- Department of Applied Health Research, University College London, 1-19 Torrington Place, Fitzrovia, London, WC1E 7HB UK
| | - Gary J. Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St. Thomas’ Hospital, London, SE1 7EH UK
| | - Jamshed Bomanji
- Institute of Nuclear Medicine, University College London Hospital, 5th Floor Tower, 235 Euston Road, London, NW1 2BU UK
| | - Manit Arya
- Urology Department, University College Hospital, Westmoreland Street, 16-18 Westmoreland Street, London, W1G 8PH UK
| | - Simon Chowdhury
- Oncology Department, Guy’s and St. Thomas’ Hospital, Westminster Bridge road, Lambeth, London, SE1 7EH UK
| | - Simon Wan
- Institute of Nuclear Medicine, University College London Hospital, 5th Floor Tower, 235 Euston Road, London, NW1 2BU UK
| | - Athar Haroon
- Department of Nuclear Medicine, St Bartholomew’s Hospital, West Smithfield, London, EC1A 7BE UK
| | - Tony Ng
- Molecular Oncology Group, University College London, Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD UK
| | - Hashim Uddin Ahmed
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Urology Department, Imperial College Healthcare NHS Trust, London, W2 1NY UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, 2nd floor Charles Bell house, 43-45 Foley Street, London, W1W 7TS UK
- Department of Radiology, University College London Hospital, London, 235 Euston Road, London, NW1 2BU UK
| |
Collapse
|
50
|
Whole-body diffusion-weighted imaging with background body signal suppression in the detection of osseous and extra-osseous metastases. Pol J Radiol 2019; 84:e453-e458. [PMID: 31969965 PMCID: PMC6964352 DOI: 10.5114/pjr.2019.90057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To assess the reproducibility of detection of osseous and extra-osseous metastases in cancer patients using whole-body diffusion-weighted imaging with background body signal suppression (WB-DWIBS). Material and methods A prospective study was conducted on 39 consecutive patients (21 females, 18 males; mean age 48 years) with metastases, who underwent WB-DWIBS on a 1.5-T MR scanner. Image analysis was performed independently by two blinded observers. Inter-observer agreement was assessed for the detection of osseous (spinal, appendicular) and extra-osseous (hepatic, pulmonary, nodal, and peritoneal) metastases. Results The overall inter-observer agreement of WB-DWIBS in the detection of osseous and extra-osseous metastases was excellent (κ = 0.887, agreement = 94.44%, p = 0.001). There was excellent inter-observer agreement of both observers for the detection of osseous spinal (κ = 0.846, agreement = 92.3%), osseous appendicular (κ = 0.898, agreement = 94.8 %), hepatic (κ = 0.847, agreement = 92.3%), pulmonary (κ = 0.938, agreement = 97.4%), nodal metastases (κ = 0.856, agreement = 94.9%), and peritoneal metastasis (κ = 0.772, agreement = 94.9%). Conclusion We concluded that WB-DWIBS is reproducible for detection of osseous and extra-osseous metastases in cancer patients.
Collapse
|