1
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Moore C, Hsu CC, Chen WM, Chen BPC, Han C, Story M, Aguilera T, Pop LM, Hannan R, Fu YX, Saha D, Timmerman R. Personalized Ultrafractionated Stereotactic Adaptive Radiotherapy (PULSAR) in Preclinical Models Enhances Single-Agent Immune Checkpoint Blockade. Int J Radiat Oncol Biol Phys 2021; 110:1306-1316. [PMID: 33794306 PMCID: PMC8286324 DOI: 10.1016/j.ijrobp.2021.03.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Harnessing the immune-stimulatory effects of radiation by combining it with immunotherapy is a promising new treatment strategy. However, more studies characterizing immunotherapy and radiation dose scheduling for the optimal therapeutic effect is essential for designing clinical trials. METHODS AND MATERIALS A new ablative radiation dosing scheme, personalized ultrafractionated stereotactic adaptive radiation therapy (PULSAR), was tested in combination with α-PD-L1 therapy in immune-activated and resistant syngeneic immunocompetent mouse models of cancer. Specifically, tumor growth curves comparing immunotherapy and radiation therapy dose sequencing were evaluated in immunologically cold and hot tumor models. The response relative to cytotoxic killer T cells was evaluated using an α-CD8 depleting antibody, and immunologic memory was tested by tumor rechallenge of cured mice. RESULTS We report that both radiation and immunotherapy sequencing, as well as radiation therapy fraction spacing, affect the combination treatment response. Better tumor control was achieved by giving α-PD-L1 therapy during or after radiation, and spacing fractions 10 days apart (PULSAR) achieved better tumor control than traditional daily fractions. We showed that CD8+ depleting antibody abrogated tumor control in the PULSAR combination treatment, and certain treatment schedules induced immunologic memory. CONCLUSIONS These results illustrate that radiation therapy dosing and scheduling affect tumor control, in combination with checkpoint blockade therapies. PULSAR-style radiation dosing is more complementary in combination with single-agent immunotherapy than traditional daily fractions in this preclinical model. Preclinical investigation could prove helpful in designing clinical trials investigating combination therapy.
Collapse
Affiliation(s)
| | | | - Wei-Min Chen
- Radiation Oncology; Harold C. Simmons Comprehensive Cancer
| | | | | | - Michael Story
- Radiation Oncology; Harold C. Simmons Comprehensive Cancer
| | - Todd Aguilera
- Radiation Oncology; Harold C. Simmons Comprehensive Cancer
| | | | | | | | - Debabrata Saha
- Radiation Oncology; Harold C. Simmons Comprehensive Cancer
| | - Robert Timmerman
- Radiation Oncology; Harold C. Simmons Comprehensive Cancer; Department of Neurosurgery, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Wilson LJ, Newhauser WD. Generalized approach for radiotherapy treatment planning by optimizing projected health outcome: preliminary results for prostate radiotherapy patients. Phys Med Biol 2021; 66:065007. [PMID: 33545710 DOI: 10.1088/1361-6560/abe3cf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Research in cancer care increasingly focuses on survivorship issues, e.g. managing disease- and treatment-related morbidity and mortality occurring during and after treatment. This necessitates innovative approaches that consider treatment side effects in addition to tumor cure. Current treatment-planning methods rely on constrained iterative optimization of dose distributions as a surrogate for health outcomes. The goal of this study was to develop a generally applicable method to directly optimize projected health outcomes. We developed an outcome-based objective function to guide selection of the number, angle, and relative fluence weight of photon and proton radiotherapy beams in a sample of ten prostate-cancer patients by optimizing the projected health outcome. We tested whether outcome-optimized radiotherapy (OORT) improved the projected longitudinal outcome compared to dose-optimized radiotherapy (DORT) first for a statistically significant majority of patients, then for each individual patient. We assessed whether the results were influenced by the selection of treatment modality, late-risk model, or host factors. The results of this study revealed that OORT was superior to DORT. Namely, OORT maintained or improved the projected health outcome of photon- and proton-therapy treatment plans for all ten patients compared to DORT. Furthermore, the results were qualitatively similar across three treatment modalities, six late-risk models, and 10 patients. The major finding of this work was that it is feasible to directly optimize the longitudinal (i.e. long- and short-term) health outcomes associated with the total (i.e. therapeutic and stray) absorbed dose in all of the tissues (i.e. healthy and diseased) in individual patients. This approach enables consideration of arbitrary treatment factors, host factors, health endpoints, and times of relevance to cancer survivorship. It also provides a simpler, more direct approach to realizing the full beneficial potential of cancer radiotherapy.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, United States of America
| |
Collapse
|
4
|
Wilson LJ, Newhauser WD. Justification and optimization of radiation exposures: a new framework to aggregate arbitrary detriments and benefits. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:389-405. [PMID: 32556631 DOI: 10.1007/s00411-020-00855-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Myriad radiation effects, including benefits and detriments, complicate justifying and optimizing radiation exposures. The purpose of this study was to develop a comprehensive conceptual framework and corresponding quantitative methods to aggregate the detriments and benefits of radiation exposures to individuals, groups, and populations. In this study, concepts from the ICRP for low dose were integrated with clinical techniques focused on high dose to develop a comprehensive figure of merit (FOM) that takes into account arbitrary host- and exposure-related factors, endpoints, and time points. The study built on existing methods with three new capabilities: application to individuals, groups, and populations; extension to arbitrary numbers and types of endpoints; and inclusion of limitation, where relevant. The FOM was applied to three illustrative exposure situations: emergency response, diagnostic imaging, and cancer radiotherapy, to evaluate its utility in diverse settings. The example application to radiation protection revealed the FOM's utility in optimizing the benefits and risks to a population while keeping individual exposures below applicable regulatory limits. Examples in diagnostic imaging and cancer radiotherapy demonstrated the FOM's utility for guiding population- and patient-specific decisions in medical applications. The major finding of this work is that it is possible to quantitatively combine the benefits and detriments of any radiation exposure situation involving an individual or population to perform cost-effectiveness analyses using the ICRP key principles of radiation protection. This FOM fills a chronic gap in the application of radiation-protection theory, i.e., limitations of generalized frameworks to algorithmically justify and optimize radiation exposures. This new framework potentially enhances objective optimization and justification, especially in complex exposure situations.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA.
- Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA, 70809, USA.
| |
Collapse
|
5
|
Vinnikov VA, Belyakov O. Radiation Exposure Biomarkers in the Practice of Medical Radiology: Cooperative Research and the Role of the International Atomic Energy Agency (IAEA) Biodosimetry/Radiobiology Laboratory. HEALTH PHYSICS 2020; 119:83-94. [PMID: 32483044 DOI: 10.1097/hp.0000000000001266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strategy toward personalized medicine in radiation oncology, nuclear medicine, and diagnostic and interventional radiology demands a specific set of assays for individualized estimation of radiation load for safety concerns and prognosis of normal tissue reactions caused by ionizing radiation. Apparently, it seems reasonable to use validated radiation dosimetric biomarkers for these purposes. However, a number of gaps in knowledge and methodological limitations still have to be resolved until dosimetric biomarkers will start to play a valuable role in clinical practice beyond radiation protection and radiation medicine. An extensive international multicenter research is necessary to improve the methodology of clinical applications of biodosimetry. That became a rationale for launching the IAEA Coordinated Research Project E35010 MEDBIODOSE: "Applications of Biological Dosimetry Methods in Radiation Oncology, Nuclear Medicine, and Diagnostic and Interventional Radiology." At the 2 Coordination Meeting on MEDBIODOSE (18-22 February 2019, Recife, Brazil), participants reported progress in the usage of biological dosimetry for genotoxicity assessment and/or individualization of radiotherapy treatment plans. Another avenue of research was the prognosis of normal tissue toxicity and cancer risk prediction using biomarkers' yield measured in vivo or after ex vivo irradiation of patients' cells. Other important areas are mechanisms of cytogenetic radiation response, validation of new radiation biomarkers, development of innovative techniques, automated and high-throughput assays for biodosimetry, and the overall improvement of biodosimetry service. An important aspect of clinical application of biodosimetry is standardization of techniques and unification of approaches to data interpretation. The new IAEA Biodosimetry/Radiobiology Laboratory, which is being established, will provide support for this activity. The declared lab's mission includes, among other tasks, a harmonization of the biodosimetry applications with relevant international standards, guidelines on good laboratory practice, and the IAEA EPR-Biodosimetry manual.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- Grigoriev Institute for Medical Radiology, Ukranian National Academy of Medical Sciences, Pushkinskaya 82, Kharkiv 61024 Ukraine
| | - Oleg Belyakov
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, Vienna A-1400, Austria
| |
Collapse
|
6
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
7
|
Schneider CW, Newhauser WD, Wilson LJ, Kapsch RP. A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs. ACTA ACUST UNITED AC 2019; 64:185017. [DOI: 10.1088/1361-6560/ab303a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Groves AM, Williams JP. Saving normal tissues - a goal for the ages. Int J Radiat Biol 2019; 95:920-935. [PMID: 30822213 PMCID: PMC7183326 DOI: 10.1080/09553002.2019.1589654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Almost since the earliest utilization of ionizing radiation, many within the radiation community have worked toward either preventing (i.e. protecting) normal tissues from unwanted radiation injury or rescuing them from the downstream consequences of exposure. However, despite over a century of such investigations, only incremental gains have been made toward this goal and, with certainty, no outright panacea having been found. In celebration of the 60th anniversary of the International Journal of Radiation Biology and to chronicle the efforts that have been made to date, we undertook a non-rigorous survey of the articles published by normal tissue researchers in this area, using those that have appeared in the aforementioned journal as a road map. Three 'snapshots' of publications on normal tissue countermeasures were taken: the earliest (1959-1963) and most recent (2013-2018) 5-year of issues, as well as a 5-year intermediate span (1987-1991). Limiting the survey solely to articles appearing within International Journal of Radiation Biology likely reduced the number of translational studies interrogated given the basic science tenor of this particular publication. In addition, by taking 'snapshots' rather than considering the entire breadth of the journal's history in this field, important papers that were published during the interim periods were omitted, for which we apologize. Nonetheless, since the journal's inception, we observed that, during the chosen periods, the majority of studies undertaken in the field of normal tissue countermeasures, whether investigating radiation protectants, mitigators or treatments, have focused on agents that interfere with the physical, chemical and/or biological effects known to occur during the acute period following whole body/high single dose exposures. This relatively narrow approach to the reduction of normal tissue effects, especially those that can take months, if not years, to develop, seems to contradict our growing understanding of the progressive complexities of the microenvironmental disruption that follows the initial radiation injury. Given the analytical tools now at our disposal and the enormous benefits that may be reaped in terms of improving patient outcomes, as well as the potential for offering countermeasures to those affected by accidental or mass casualty exposures, it appears time to broaden our approaches to developing normal tissue countermeasures. We have no doubt that the contributors and readership of the International Journal of Radiation Biology will continue to contribute to this effort for the foreseeable future.
Collapse
Affiliation(s)
- Angela M. Groves
- Departments of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
9
|
Evolution of the Supermodel: Progress in Modelling Radiotherapy Response in Mice. Clin Oncol (R Coll Radiol) 2019; 31:272-282. [PMID: 30871751 DOI: 10.1016/j.clon.2019.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.
Collapse
|
10
|
Ghita M, Dunne V, Hanna GG, Prise KM, Williams JP, Butterworth KT. Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. Br J Radiol 2019; 92:20180473. [PMID: 30653332 DOI: 10.1259/bjr.20180473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite a major paradigm shift in radiotherapy planning and delivery over the past three decades with continuing refinements, radiation-induced lung damage (RILD) remains a major dose limiting toxicity in patients receiving thoracic irradiations. Our current understanding of the biological processes involved in RILD which includes DNA damage, inflammation, senescence and fibrosis, is based on clinical observations and experimental studies in mouse models using conventional radiation exposures. Whilst these studies have provided vital information on the pulmonary radiation response, the current implementation of small animal irradiators is enabling refinements in the precision and accuracy of dose delivery to mice which can be applied to studies of RILD. This review presents the current landscape of preclinical studies in RILD using small animal irradiators and highlights the challenges and opportunities for the further development of this emerging technology in the study of normal tissue damage in the lung.
Collapse
Affiliation(s)
- Mihaela Ghita
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Victoria Dunne
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Gerard G Hanna
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK.,2 Northern Ireland Cancer Centre, Belfast City Hospital , Belfast , Northern Ireland, UK
| | - Kevin M Prise
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| | - Jaqueline P Williams
- 3 University of Rochester Medical Centre, University of Rochester , Rochester , USA
| | - Karl T Butterworth
- 1 Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast , Northern Ireland, UK
| |
Collapse
|
11
|
Braunstein S, Wang L, Newhauser W, Tenenholz T, Rong Y, van der Kogel A, Dominello M, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The United States should build additional proton therapy facilities. J Appl Clin Med Phys 2019; 20:7-12. [PMID: 30735613 PMCID: PMC6370982 DOI: 10.1002/acm2.12537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Steve Braunstein
- Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Li Wang
- Department of Radiation Oncology, University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
| | - Todd Tenenholz
- Department of Radiation Oncology, West Virginia University, Morgantown, WV, USA
| | - Yi Rong
- Department of Radiation Oncology, University of California - Davis Cancer Center, Sacramento, CA, USA
| | | | - Michael Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Joiner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Gershenson Radiation Oncology Center, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|