1
|
Zhang X, Qiu Y, Jiang W, Yang Z, Wang M, Li Q, Liu Y, Yan X, Yang G, Shen J. Mean Apparent Propagator MRI: Quantitative Assessment of Tumor-Stroma Ratio in Invasive Ductal Breast Carcinoma. Radiol Imaging Cancer 2024; 6:e230165. [PMID: 38874529 PMCID: PMC11287226 DOI: 10.1148/rycan.230165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/07/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Purpose To determine whether metrics from mean apparent propagator (MAP) MRI perform better than apparent diffusion coefficient (ADC) value in assessing the tumor-stroma ratio (TSR) status in breast carcinoma. Materials and Methods From August 2021 to October 2022, 271 participants were prospectively enrolled (ClinicalTrials.gov identifier: NCT05159323) and underwent breast diffusion spectral imaging and diffusion-weighted imaging. MAP MRI metrics and ADC were derived from the diffusion MRI data. All participants were divided into high-TSR (stromal component < 50%) and low-TSR (stromal component ≥ 50%) groups based on pathologic examination. Clinicopathologic characteristics were collected, and MRI findings were assessed. Logistic regression was used to determine the independent variables for distinguishing TSR status. The area under the receiver operating characteristic curve (AUC) and sensitivity, specificity, and accuracy were compared between the MAP MRI metrics, either alone or combined with clinicopathologic characteristics, and ADC, using the DeLong and McNemar test. Results A total of 181 female participants (mean age, 49 years ± 10 [SD]) were included. All diffusion MRI metrics differed between the high-TSR and low-TSR groups (P < .001 to P = .01). Radial non-Gaussianity from MAP MRI and lymphovascular invasion were significant independent variables for discriminating the two groups, with a higher AUC (0.81 [95% CI: 0.74, 0.87] vs 0.61 [95% CI: 0.53, 0.68], P < .001) and accuracy (138 of 181 [76%] vs 106 of 181 [59%], P < .001) than that of the ADC. Conclusion MAP MRI may serve as a better approach than conventional diffusion-weighted imaging in evaluating the TSR of breast carcinoma. Keywords: MR Diffusion-weighted Imaging, MR Imaging, Breast, Oncology ClinicalTrials.gov Identifier: NCT05159323 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Wei Jiang
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Zehong Yang
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Mengzhu Wang
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Qin Li
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Yeqing Liu
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Xu Yan
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Guang Yang
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| | - Jun Shen
- From the Department of Radiology (X.Z., Y.Q., W.J., Z.Y., J.S.),
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene
Regulation, Medical Research Center (X.Z., Y.Q., W.J., Z.Y., Q.L., Y.L., J.S.),
and Department of Pathology (Q.L., Y.L.), Sun Yat-Sen Memorial Hospital, Sun
Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120,
People’s Republic of China; Department of Radiology, the First
People’s Hospital of Kashi Prefecture, Kashi, People’s Republic of
China (Y.Q.); Department of MR Scientific Marketing, Siemens Healthineers,
Guangzhou, People’s Republic of China (M.W., X.Y.); and Shanghai Key
Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East
China Normal University, Shanghai, People’s Republic of China
(G.Y.)
| |
Collapse
|
2
|
Ab Mumin N, Ramli Hamid MT, Abdul Hamid S, Chiew SF, Ahmad Saman MS, Rahmat K. Magnetic resonance imaging features of invasive breast cancer association with the tumour stromal ratio. PLoS One 2023; 18:e0290772. [PMID: 37624821 PMCID: PMC10456176 DOI: 10.1371/journal.pone.0290772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To assess the association between breast cancer tumour stroma and magnetic resonance imaging (MRI) features. MATERIALS AND METHODS A total of 84 patients with treatment-naïve invasive breast cancer were enrolled into this retrospective study. The tumour stroma ratio (TSR) was estimated from the amount of tumour stroma in the pathology specimen of the breast tumour. The MRI images of the patients were analysed based on Breast Imaging Reporting and Data Systems (ACR-BIRADS) for qualitative features which include T2- weighted, diffusion-weighted images (DWI) and dynamic contrast-enhanced (DCE) for kinetic features. The mean signal intensity (SI) of Short Tau Inversion Recovery (STIR), with the ratio of STIR of the lesion and pectoralis muscle (L/M ratio) and apparent diffusion coefficient (ADC) value, were measured for the quantitative features. Correlation tests were performed to assess the relationship between TSR and MRI features. RESULTS There was a significant correlation between the margin of mass, enhancement pattern, and STIR signal intensity of breast cancer and TSR. There were 54.76% (n = 46) in the low stromal group and 45.24% (n = 38) in the high stromal group. A significant association were seen between the margin of the mass and TSR (p = 0.034) between the L/M ratio (p <0.001), and between STIR SI of the lesion and TSR (p<0.001). The median L/M ratio was significantly higher in the high TSR group as compared to the lower TSR group (p < 0.001). CONCLUSION Breast cancer with high stroma had spiculated margins, lower STIR signal intensity, and a heterogeneous pattern of enhancement. Hence, in this preliminary study, certain MRI features showed a potential to predict TSR.
Collapse
Affiliation(s)
- Nazimah Ab Mumin
- Faculty of Medicine, Department of Radiology, Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Shamsiah Abdul Hamid
- Faculty of Medicine, Department of Radiology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Seow-Fan Chiew
- Faculty of Medicine, Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Kartini Rahmat
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Barb AC, Fenesan MP, Pirtea M, Margan MM, Tomescu L, Ceban E, Cimpean AM, Melnic E. Reassessing Breast Cancer-Associated Fibroblasts (CAFs) Interactions with Other Stromal Components and Clinico-Pathologic Parameters by Using Immunohistochemistry and Digital Image Analysis (DIA). Cancers (Basel) 2023; 15:3823. [PMID: 37568639 PMCID: PMC10417678 DOI: 10.3390/cancers15153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) stroma has CD34- and αSMA-positive cancer-associated fibroblasts (CAFs) differently distributed. During malignant transformation, CD34-positive fibroblasts decrease while αSMA-positive CAFs increase. The prevalence of αSMA-positive CAFs in BC stroma makes microscopic examination difficult without digital image analysis processing (DIA). DIA was used to compare CD34- and αSMA-positive CAFs among breast cancer molecular subgroups. DIA-derived data were linked to age, survival, tumor stroma vessels, tertiary lymphoid structures (TLS), invasion, and recurrence. METHODS Double immunostaining for CD34 and αSMA showed different CAF distribution patterns in normal and BC tissues. Single CD34 immunohistochemistry on supplemental slides quantified tumor stroma CD34_CAFs. Digital image analysis (DIA) data on CAF density, intensity, stromal score, and H-score were correlated with clinico-pathologic factors. RESULTS CD34/αSMA CAF proportion was significantly related to age in Luminal A (LA), Luminal B (LB), and HER2 subtypes. CD34_CAF influence on survival, invasion, and recurrence of LA, LB-HER2, and TNBC subtypes was found to be significant. The CD34/αSMA-expressing CAFs exhibited a heterogeneous impact on stromal vasculature and TLS. CONCLUSION BC stromal CD34_CAFs/αSMA_CAFs have an impact on survival, invasion, and recurrence differently between BC molecular subtypes. The tumor stroma DIA assessment may have predictive potential to prognosis and long-term follow-up of patients with breast cancer.
Collapse
Affiliation(s)
- Alina Cristina Barb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Marilena Pirtea
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
| | - Mădălin-Marius Margan
- Department of Functional Sciences/Discipline of Public Health, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Larisa Tomescu
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Emil Ceban
- Department of Urology and Surgical Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
- Laboratory of Andrology, Functional Urology and Sexual Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, 300011 Timisoara, Romania
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| |
Collapse
|
4
|
Yuan J, Wen Q, Wang H, Wang J, Liu K, Zhan S, Liu M, Gong Z, Tan W. The use of quantitative T1-mapping to identify cells and collagen fibers in rectal cancer. Front Oncol 2023; 13:1189334. [PMID: 37546428 PMCID: PMC10399696 DOI: 10.3389/fonc.2023.1189334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Aim This study aimed to explore the value of T1 mapping in assessing the grade and stage of rectal adenocarcinoma and its correlation with tumor tissue composition. Methods Informed consent was obtained from all rectal cancer patients after approval by the institutional review board. Twenty-four patients (14 women and 10 men; mean age, 64.46 years; range, 35 - 82 years) were enrolled in this prospective study. MRI examinations were performed using 3.0T MR scanner before surgery. HE, immunohistochemical, and masson trichrome-staining was performed on the surgically resected tumors to assess the degree of differentiation, stage, and invasion. Two radiologists independently analyzed native T1 and postcontrast T1 for each lesion, and calculated the extracellular volume (ECV) was calculated from T1 values. Intraclass correlation coefficient (ICC) and Bland-Altman plots were applied to analyze the interobserver agreement of native T1 values and postcontrast T1 values. Student's t-test and one-way analysis of variance (ANOVA) were used to test the differences between T1 mapping parameters and differentiation types, T and N stages, and venous and neural invasion. Pearson correlation coefficients were used to analyze the correlation of T1 mapping extraction parameters with caudal type homeobox 2 (CDX-2), Ki-67 index, and collagen expression. Results Both the native and postcontrast T1 values had an excellent interobserver agreement (ICC 0.945 and 0.942, respectively). Postcontrast T1 values indicated significant differences in venous invasion (t=2.497, p=0.021) and neural invasion (t=2.254, p=0.034). Pearson's correlation analysis showed a significant positive correlation between native T1 values and Ki-67 (r=-0.407, p=0.049). There was a significant positive correlation between ECV and collagen expression (r=0.811, p=.000) and a significant negative correlation between ECV and CDX-2 (r=-0.465, p=0.022) and Ki-67 (r=-0.549, p=0.005). Conclusion Postcontrast T1 value can be used to assess venous and neural invasion in rectal cancer. ECV measurements based on T1 mapping can be used to identify cells and collagen fibers in rectal cancer.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Wen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoyan Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liu
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxiao Liu
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai, China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - WenLi Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Le MK, Odate T, Kawai M, Oishi N, Kondo T. Investigating the role of core needle biopsy in evaluating tumor-stroma ratio (TSR) of invasive breast cancer: a retrospective study. Breast Cancer Res Treat 2023; 197:113-121. [PMID: 36335529 DOI: 10.1007/s10549-022-06768-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Tumor-stroma ratio (TSR) of invasive breast carcinoma has gained attention in recent years due to its prognostic significance. Previous studies showed TSR is a potential biomarker for indicating the tumor response to neoadjuvant chemotherapy. However, it is not clear how well TSR evaluation in biopsy specimens might reflect the TSR in resection specimens. We conducted a study to investigate whether biopsy evaluation of TSR can be an alternative method. METHOD We collected cases with invasive breast carcinoma of no special type (IBC-NST) from University of Yamanashi hospital between 2011 and 2017 whose biopsy and resection specimens both had a pathologically diagnosis of IBC-NST (n = 146). We conceptualized a method for evaluating TSR in biopsy specimens within a preliminary cohort (n = 50). Within the studied cohort (n = 96), biopsy-based TSR (b-TSR) and resection-based TSR (r-TSR) were scored by two pathologists. We then evaluated our method's validity and performance by measuring interobserver variability between the two pathologists, Spearman's correlation between b-TSR and r-TSR, and the receiver operating characteristics (ROC) analysis for defining stroma-rich and stroma-poor tumors. RESULTS Intra-class coefficient between the two pathologists was 0.59. The correlation coefficients between b-TSR and r-TSR in the two pathologists were 0.45 and 0.37. The ROC areas under the curve were 0.7 and 0.67. By considering an r-TSR of < 50% as stroma-rich, the sensitivity and specificity of detecting stroma-rich tumors were 64.1% and 66.7%, respectively, when b-TSR was < 40%. CONCLUSION Our current b-TSR evaluation method can provide information about r-TSR and facilitate pre-treatment therapy follow-up.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Toru Odate
- Department of Pathology, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Masataka Kawai
- Department of Pathology, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
7
|
Duan Z, Fang S, Hu J, Tao J, Zhang K, Deng X, Wang S, Liu Y. Correlation of Intravoxel Incoherent Motion and Diffusion Kurtosis
MR
Imaging Models With Reactive Stromal Grade in Prostate Cancer. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Zhiqing Duan
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Shaobo Fang
- Department of Medical Imaging Zhengzhou University People's Hospital & Henan Provincial People's Hospital Zhengzhou Henan People's Republic of China
- Academy of Medical Sciences Zhengzhou University Zhengzhou Henan People's Republic of China
| | - Jiawei Hu
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Juan Tao
- Department of Pathology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Kai Zhang
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Xiyang Deng
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Shaowu Wang
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| | - Yajie Liu
- Department of Radiology, The Second Hospital Dalian Medical University Dalian People's Republic of China
| |
Collapse
|
8
|
Zang H, Liu HL, Zhu LY, Wang X, Wei LM, Lou JJ, Zou QG, Wang SQ, Wang SJ, Jiang YN. Diagnostic performance of DCE-MRI, multiparametric MRI and multimodality imaging for discrimination of breast non-mass-like enhancement lesions. Br J Radiol 2022; 95:20220211. [PMID: 35522775 PMCID: PMC10162064 DOI: 10.1259/bjr.20220211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate and compare the diagnostic performance of dynamic contrast-enhanced (DCE)-MRI, multiparametric MRI (mpMRI), and multimodality imaging (MMI) combining mpMRI and mammography (MG) for discriminating breast non-mass-like enhancement (NME) lesions. METHODS This retrospective study enrolled 193 patients with 199 lesions who underwent 3.0 T MRI and MG from January 2017 to December 2019. The features of DCE-MRI, turbo inversion recovery magnitude (TIRM), and diffusion-weighted imaging (DWI) were assessed by two breast radiologists. Then, all lesions were divided into microcalcification and non-microcalcification groups to assess the features of MG. Comparisons were performed between groups using univariate analyses. Then, multivariate analyses were performed to construct diagnostic models for distinguishing NME lesions. Diagnostic performance was evaluated by using the area under the curve (AUC) and the differences between AUCs were evaluated by using the DeLong test. RESULTS Overall (n = 199), mpMRI outperformed DCE-MRI alone (AUCmpMRI = 0.924 vs. AUCDCE-MRI = 0.884; p = 0.007). Furthermore, MMI outperformed both mpMRI and MG (the microcalcification group [n = 140]: AUCMMI = 0.997 vs. AUCmpMRI = 0.978, p = 0.018 and AUCMMI = 0.997 vs. AUCMG = 0.912, p < 0.001; the non-microcalcification group [n = 59]: AUCMMI = 0.857 vs. AUCmpMRI = 0.768, p = 0.044 and AUCMMI = 0.857 vs. AUCMG = 0.759, p = 0.039). CONCLUSION & ADVANCES IN KNOWLEDGE DCE-MRI combined with DWI and TIRM information could improve the diagnostic performance for discriminating NME lesions compared with DCE-MRI alone. Furthermore, MMI combining mpMRI and MG showed better discrimination than both mpMRI and MG.
Collapse
Affiliation(s)
- Hui Zang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Hong-li Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Li-yu Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Liang-min Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, China
| | - Jian-juan Lou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qi-gui Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Si-qi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Shou-ju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Yan-ni Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| |
Collapse
|
9
|
Li T, Yu Z, Yang Y, Fu Z, Chen Z, Li Q, Zhang K, Luo Z, Qiu Z, Huang C. Rapid multi-dynamic algorithm for gray image analysis of the stroma percentage on colorectal cancer. J Cancer 2021; 12:4561-4573. [PMID: 34149920 PMCID: PMC8210572 DOI: 10.7150/jca.58887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Tumor stroma percentage (TSP), as an independent, low-cost prognostic factor, could complement current pathology and act as a more feasible risk factor for prognosis. However, TSP hadn't been applied into TNM staging. Here, the objective of our study was to investigate the prognostic significance of TSP in a robust rapid multi-dynamic approach with the application of MATLAB and threshold Algorithm for Gray Image analysis. Methods: Using a retrospective collection of 1539 CRC patients comprising three independent cohorts; one SGH cohort (N=996) and two validation cohorts (N =106, N= 437) from 2 institutions. We investigated 996 CRC of no special type. According to our established thresholds, 357 cases (35.84%) were classified as TSP-high and 639 cases (64.16%) as TSP-low. We determined the gray image area as the stromal part of the WSI and calculated the stroma percentage with our proposed method on MATLAB software. Results: In both TSP-cad(50%) and TSP-cad(median), multivariate analysis showed the TSP-cad was an independent prognostic factor for the vessel invasion and tumor location. For OS, TSP-manual HR=1.512 (95% CI 1.045-2.187); TSP-cad HR=1.443 (95% CI 0.993-2.097) and TSP-cad(median) HR=1.632 (95% CI 1.105-2.410). Fortunately, TSP-manual and TSP-cad were also found independent prognostic factor in all the cohorts. It was found that TSP-cad had slightly higher HR and wider CI than TSP-manual. Conclusions: Our research showed that TSP was an independent prognostic factor in CRC. Moreover, threshold algorithm for the quantitation of TSP could be established. In conclusion, with this Rapid multi-dynamic threshold Algorithm for Gray Image counting of TSP, which showed a higher accuracy than manual evaluation by pathologists and could be a practical method for CRC to guide clinical decision making.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China.,Graduate School of Bengbu Medical College, Bengbu 233000, China
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education
| | - Yan Yang
- Graduate School of Bengbu Medical College, Bengbu 233000, China
| | - Zhongmao Fu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| | - Ziang Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Kundong Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| | - Zhengjun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201600, China
| |
Collapse
|
10
|
Winfield JM, Wakefield JC, Brenton JD, AbdulJabbar K, Savio A, Freeman S, Pace E, Lutchman-Singh K, Vroobel KM, Yuan Y, Banerjee S, Porta N, Ahmed Raza SE, deSouza NM. Biomarkers for site-specific response to neoadjuvant chemotherapy in epithelial ovarian cancer: relating MRI changes to tumour cell load and necrosis. Br J Cancer 2021; 124:1130-1137. [PMID: 33398064 PMCID: PMC7961011 DOI: 10.1038/s41416-020-01217-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diffusion-weighted magnetic resonance imaging (DW-MRI) potentially interrogates site-specific response to neoadjuvant chemotherapy (NAC) in epithelial ovarian cancer (EOC). METHODS Participants with newly diagnosed EOC due for platinum-based chemotherapy and interval debulking surgery were recruited prospectively in a multicentre study (n = 47 participants). Apparent diffusion coefficient (ADC) and solid tumour volume (up to 10 lesions per participant) were obtained from DW-MRI before and after NAC (including double-baseline for repeatability assessment in n = 19). Anatomically matched lesions were analysed after surgical excision (65 lesions obtained from 25 participants). A trained algorithm determined tumour cell fraction, percentage tumour and percentage necrosis on histology. Whole-lesion post-NAC ADC and pre/post-NAC ADC changes were compared with histological metrics (residual tumour/necrosis) for each tumour site (ovarian, omental, peritoneal, lymph node). RESULTS Tumour volume reduced at all sites after NAC. ADC increased between pre- and post-NAC measurements. Post-NAC ADC correlated negatively with tumour cell fraction. Pre/post-NAC changes in ADC correlated positively with percentage necrosis. Significant correlations were driven by peritoneal lesions. CONCLUSIONS Following NAC in EOC, the ADC (measured using DW-MRI) increases differentially at disease sites despite similar tumour shrinkage, making its utility site-specific. After NAC, ADC correlates negatively with tumour cell fraction; change in ADC correlates positively with percentage necrosis. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT01505829.
Collapse
Affiliation(s)
- Jessica M Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jennifer C Wakefield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - James D Brenton
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Antonella Savio
- Department of Pathology, Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Susan Freeman
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Erika Pace
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Kerryn Lutchman-Singh
- Swansea Gynaecological Oncology Centre, Swansea Bay University Health Board, Singleton Hospital, Swansea, SA2 8QA, UK
| | - Katherine M Vroobel
- Department of Pathology, Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Susana Banerjee
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Shan E Ahmed Raza
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Nandita M deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
- MRI Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
11
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
12
|
Yamaguchi K, Hara Y, Kitano I, Hamamoto T, Kiyomatsu K, Yamasaki F, Yamaguchi R, Nakazono T, Egashira R, Imaizumi T, Irie H. Relationship between MRI findings and invasive breast cancer with podoplanin-positive cancer-associated fibroblasts. Breast Cancer 2021; 28:572-580. [PMID: 33389554 DOI: 10.1007/s12282-020-01198-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Purpose of our study is to assess the relationship between MRI findings and invasive breast cancer (IBC) with cancer-associated fibroblasts (CAFs) that are positive for podoplanin. METHODS We retrospectively analyzed the consecutive 109 IBCs. The IBCs were dichotomized as with (+) or without (-) podoplanin-positive CAFs. In MRI analyses, the dichotomized IBCs were compared the lesion to muscle ratio (L/M ratio) in STIR images, the ADC value, the distribution of kinetic parameters, and morphological findings. RESULTS Of the 109 IBCs, 28 (26%) IBCs had podoplanin(+) CAFs. Compared to the podoplanin(-) group, the podoplanin(+) group tended to have a more malignant pathological status. In the STIR images, the podoplanin(+) group had significantly higher L/M ratio (7.59 vs. 6.55, p = 0.040). In a dynamic study, the podoplanin(+) group had a significantly higher percentage of the washout pattern (42.21% vs. 29.43%, p = 0.045). There were 23 mass lesions and 5 non-mass enhancement (NME) lesions in the podoplanin(+) group, and 69 mass lesions and 12 NME lesions in the podoplanin(-) group. The mass lesions of the podoplanin(-) group had a significantly higher likelihood of showing an irregular shape (n = 47 vs. 8, p = 0.035). The podoplanin(+) group's lesions had a significantly higher likelihood of showing a circumscribed margin (n = 14 vs. 6, p < 0.001) and a rim enhancement (n = 10 vs. 13, p = 0.047). In multivariate analyses, only high nuclear grade was significant predictive value of podoplanin(+) CAFs. CONCLUSION Although not significant in multivariate analyses, MRI findings may be used to determine the podoplanin-positive CAF status of invasive breast cancer.
Collapse
Affiliation(s)
- Ken Yamaguchi
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Yukiko Hara
- Department of Radiology, Saga Central Hospital, 3-8-1 Hyogominami, Saga, 849-8522, Japan
| | - Isao Kitano
- Department of Radiology, Saga Central Hospital, 3-8-1 Hyogominami, Saga, 849-8522, Japan
| | | | - Kazumitsu Kiyomatsu
- Department of Surgery, Saga Central Hospital, 3-8-1 Hyogominami, Saga, 849-8522, Japan
| | - Fumio Yamasaki
- Department of Pathology, Saga Central Hospital, 3-8-1 Hyogominami, Saga, 849-8522, Japan
| | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, 155-1 Kokubu, Kurume, 859-0863, Japan
| | - Takahiko Nakazono
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Ryoko Egashira
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takeshi Imaizumi
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hiroyuki Irie
- Department of Radiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
13
|
Zunder SM, Perez-Lopez R, de Kok BM, Raciti MV, van Pelt GW, Dienstmann R, Garcia-Ruiz A, Meijer CA, Gelderblom H, Tollenaar RA, Nuciforo P, Wasser MN, Mesker WE. Correlation of the tumour-stroma ratio with diffusion weighted MRI in rectal cancer. Eur J Radiol 2020; 133:109345. [PMID: 33120239 DOI: 10.1016/j.ejrad.2020.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/06/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study evaluated the correlation between intratumoural stroma proportion, expressed as tumour-stroma ratio (TSR), and apparent diffusion coefficient (ADC) values in patients with rectal cancer. METHODS This multicentre retrospective study included all consecutive patients with rectal cancer, diagnostically confirmed by biopsy and MRI. The training cohort (LUMC, Netherlands) included 33 patients and the validation cohort (VHIO, Spain) 69 patients. Two observers measured the mean and minimum ADCs based on single-slice and whole-volume segmentations. The TSR was determined on diagnostic haematoxylin & eosin stained slides of rectal tumour biopsies. The correlation between TSR and ADC was assessed by Spearman correlation (rs). RESULTS The ADC values between stroma-low and stroma-high tumours were not significantly different. Intra-class correlation (ICC) demonstrated a good level of agreement for the ADC measurements, ranging from 0.84-0.86 for single slice and 0.86-0.90 for the whole-volume protocol. No correlation was observed between the TSR and ADC values, with ADCmeanrs= -0.162 (p= 0.38) and ADCminrs= 0.041 (p= 0.82) for the single-slice and rs= -0.108 (p= 0.55) and rs= 0.019 (p= 0.92) for the whole-volume measurements in the training cohort, respectively. Results from the validation cohort were consistent; ADCmeanrs= -0.022 (p= 0.86) and ADCminrs = 0.049 (p= 0.69) for the single-slice and rs= -0.064 (p= 0.59) and rs= -0.063 (p= 0.61) for the whole-volume measurements. CONCLUSIONS Reproducibility of ADC values is good. Despite positive reports on the correlation between TSR and ADC values in other tumours, this could not be confirmed for rectal cancer.
Collapse
Affiliation(s)
- Stéphanie M Zunder
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands; Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Natzaret 115-117. 08035 Barcelona, Spain
| | - Bente M de Kok
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Maria Vittoria Raciti
- Radiomics Group, Vall d'Hebron Institute of Oncology, Natzaret 115-117. 08035 Barcelona, Spain
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rodrigo Dienstmann
- Department of Oncology Data Science, Vall d'Hebron Institute of Oncology, Cellex Center, Natzaret 115-117 08035 Barcelona, Spain
| | - Alonso Garcia-Ruiz
- Radiomics Group, Vall d'Hebron Institute of Oncology, Natzaret 115-117. 08035 Barcelona, Spain
| | - C Arnoud Meijer
- Department of Radiology, Martini Hospital, Van Swietenplein 1, 9728 NT Groningen The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rob A Tollenaar
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Paolo Nuciforo
- Department of Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Cellex Center, Natzaret 115-117 08035 Barcelona, Spain
| | - Martin N Wasser
- Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
14
|
Hayashi Y, Satake H, Ishigaki S, Ito R, Kawamura M, Kawai H, Iwano S, Naganawa S. Kinetic volume analysis on dynamic contrast-enhanced MRI of triple-negative breast cancer: associations with survival outcomes. Br J Radiol 2020; 93:20190712. [PMID: 31821036 PMCID: PMC7055451 DOI: 10.1259/bjr.20190712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/06/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To evaluate the associations between computer-aided diagnosis (CAD)-generated kinetic volume parameters and survival in triple-negative breast cancer (TNBC) patients. METHODS 40 patients with TNBC who underwent pre-operative MRI between March 2008 and March 2014 were included. We analyzed CAD-generated parameters on dynamic contrast-enhanced MRI, visual MRI assessment, and histopathological data. Cox proportional hazards models were used to determine associations with survival outcomes. RESULTS 12 of the 40 (30.0%) patients experienced recurrence and 7 died of breast cancer after a median follow-up of 73.6 months. In multivariate analysis, higher percentage volume (%V) with more than 200% initial enhancement rate correlated with worse disease-specific survival (hazard ratio, 1.12; 95% confidence interval, 1.02-1.22; p-value, 0.014) and higher %V with more than 100% initial enhancement rate followed by persistent curve type at 30% threshold correlated with worse disease-specific survival (hazard ratio, 1.33; 95% confidence interval, 1.10-1.61; p-value, 0.004) and disease-free survival (hazard ratio, 1.27; 95% confidence interval, 1.12-1.43; p-value, 0.000). CONCLUSION CAD-generated kinetic volume parameters may correlate with survival in TNBC patients. Further study would be necessary to validate our results on larger cohorts. ADVANCES IN KNOWLEDGE CAD generated kinetic volume parameters on breast MRI can predict recurrence and survival outcome of patients in TNBC. Varying the enhancement threshold improved the predictive performance of CAD generated kinetic volume parameter.
Collapse
Affiliation(s)
- Yoko Hayashi
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Iwano
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Li Y, Wang Z, Chen F, Qin X, Li C, Zhao Y, Yan C, Wu Y, Hao P, Xu Y. Intravoxel incoherent motion diffusion-weighted MRI in patients with breast cancer: Correlation with tumor stroma characteristics. Eur J Radiol 2019; 120:108686. [DOI: 10.1016/j.ejrad.2019.108686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
|