1
|
Kunkyab T, Magliari A, Jirasek A, Mou B, Hyde D. Semi-automated vertex placement for lattice radiotherapy and dosimetric verification using 3D polymer gel dosimetry. J Appl Clin Med Phys 2024; 25:e14489. [PMID: 39186819 PMCID: PMC11540016 DOI: 10.1002/acm2.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE To evaluate the feasibility of an open-source, semi-automated, and reproducible vertex placement tool to improve the efficiency of lattice radiotherapy (LRT) planning. We used polymer gel dosimetry with a Cone Beam CT (CBCT) readout to commission this LRT technique. MATERIAL AND METHODS We generated a volumetric modulated arc therapy (VMAT)-based LRT plan on a 2 L NIPAM polymer gel dosimeter using our Eclipse Acuros version 15.6 AcurosXB beam model, and also recalculated the plan with a pre-clinical Acuros v18.0 dose calculation algorithm with the enhanced leaf modelling (ELM). With the assistance of the MAAS-SFRThelper software, a lattice vertex diameter of 1.5 cm and center-to-center spacing of 3 cm were used to place the spheres in a hexagonal, closed packed structure. The verification plan included four gantry arcs with 15°, 345°, 75°, 105° collimator angles. The spheres were prescribed 20 Gy to 50% of their combined volume. The 6 MV Flattening Filter Free beam energy was used to deliver the verification plan. The dosimetric accuracy of the LRT delivery was evaluated with 1D dose profiles, 2D isodose maps, and a 3D global gamma analysis. RESULTS Qualitative comparisons between the 1D dose profiles of the Eclipse plan and measured gel showed good consistency at the prescription dose mark. The average diameter measured 13.3 ± 0.2 mm (gel for v15.6), 12.6 mm (v15.6 plan), 13.1 ± 0.2 mm (gel for v18.0), and 12.3 mm (v18.0 plan). 3D gamma analysis showed that all gamma pass percent were > 95% except at 1% and 2% at the 1 mm distance to agreement criteria. CONCLUSION This study presents a novel application of gel dosimetry in verifying the dosimetric accuracy of LRT, achieving excellent 3D gamma results. The treatment planning was facilitated by publicly available software that automatically placed the vertices for consistency and efficiency.
Collapse
Affiliation(s)
- Tenzin Kunkyab
- Department of Computer Science, Mathematics, Physics and StatisticsThe University of British Columbia OkanaganKelownaBritish ColumbiaCanada
- BC CancerKelownaBritish ColumbiaCanada
| | | | - Andrew Jirasek
- Department of Computer Science, Mathematics, Physics and StatisticsThe University of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Benjamin Mou
- BC CancerKelownaBritish ColumbiaCanada
- Department of SurgeryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Derek Hyde
- Department of Computer Science, Mathematics, Physics and StatisticsThe University of British Columbia OkanaganKelownaBritish ColumbiaCanada
- BC CancerKelownaBritish ColumbiaCanada
| |
Collapse
|
2
|
Bekker RA, Obertopp N, Redler G, Penagaricano J, Caudell JJ, Yamoah K, Pilon-Thomas S, Moros EG, Enderling H. Spatially fractionated GRID radiation potentiates immune-mediated tumor control. Radiat Oncol 2024; 19:121. [PMID: 39272128 PMCID: PMC11401399 DOI: 10.1186/s13014-024-02514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumor-immune interactions shape a developing tumor and its tumor immune microenvironment (TIME) resulting in either well-infiltrated, immunologically inflamed tumor beds, or immune deserts with low levels of infiltration. The pre-treatment immune make-up of the TIME is associated with treatment outcome; immunologically inflamed tumors generally exhibit better responses to radio- and immunotherapy than non-inflamed tumors. However, radiotherapy is known to induce opposing immunological consequences, resulting in both immunostimulatory and inhibitory responses. In fact, it is thought that the radiation-induced tumoricidal immune response is curtailed by subsequent applications of radiation. It is thus conceivable that spatially fractionated radiotherapy (SFRT), administered through GRID blocks (SFRT-GRID) or lattice radiotherapy to create areas of low or high dose exposure, may create protective reservoirs of the tumor immune microenvironment, thereby preserving anti-tumor immune responses that are pivotal for radiation success. METHODS We have developed an agent-based model (ABM) of tumor-immune interactions to investigate the immunological consequences and clinical outcomes after 2 Gy × 35 whole tumor radiation therapy (WTRT) and SFRT-GRID. The ABM is conceptually calibrated such that untreated tumors escape immune surveillance and grow to clinical detection. Individual ABM simulations are initialized from four distinct multiplex immunohistochemistry (mIHC) slides, and immune related parameter rates are generated using Latin Hypercube Sampling. RESULTS In silico simulations suggest that radiation-induced cancer cell death alone is insufficient to clear a tumor with WTRT. However, explicit consideration of radiation-induced anti-tumor immunity synergizes with radiation cytotoxicity to eradicate tumors. Similarly, SFRT-GRID is successful with radiation-induced anti-tumor immunity, and, for some pre-treatment TIME compositions and modeling parameters, SFRT-GRID might be superior to WTRT in providing tumor control. CONCLUSION This study demonstrates the pivotal role of the radiation-induced anti-tumor immunity. Prolonged fractionated treatment schedules may counteract early immune recruitment, which may be protected by SFRT-facilitated immune reservoirs. Different biological responses and treatment outcomes are observed based on pre-treatment TIME composition and model parameters. A rigorous analysis and model calibration for different tumor types and immune infiltration states is required before any conclusions can be drawn for clinical translation.
Collapse
Affiliation(s)
- Rebecca A Bekker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Nina Obertopp
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - José Penagaricano
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Studer G, Jeller D, Streller T, Huebner D, Glanzmann C. Time-Related Outcome Following Palliative Spatially Fractionated Stereotactic Radiation Therapy (Lattice) of Large Tumors - A Case Series. Adv Radiat Oncol 2024; 9:101566. [PMID: 39247539 PMCID: PMC11378109 DOI: 10.1016/j.adro.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/08/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Lattice radiation therapy (LRT), a form of spatially fractionated radiation therapy, holds promise for treating large tumors. Despite its introduction in clinical practice around 2010, there remains limited information on its time-related outcomes despite consistently high response rates and tolerability. We assessed the time-related outcome of our palliative LRT cohort. Methods and Materials We conducted an analysis of our LRT program, which involved 45 palliative patients with 56 lesions larger than 7 cm, treated between January 2022 and November 2023. Prospectively defined treatment protocols included delivering 20 to 25 Gy/5 fractions to the tumor with a stereotactic simultaneously integrated boost (SIB) of 60 to 65 Gy to lattice vertices (n = 45/56) or, mainly in preirradiated lesions, single fraction stereotaxy with 1 × 15 to 20 Gy to vertices only (n = 11/56). Follow-up (FU) intervals were determined based on clinical considerations, considering the mostly highly palliative situation of included patients. Outcome assessments focused on subjective benefit and objective radiologic FU response. Results The mean/median FU was 5.5/4.0 months (0.3-21 months). A total of 25/45 (56%) patients died after a mean/median of 3.9/2.0 months (0.3-14 months). Fourteen of 56 lesions (25%) were previously irradiated, with a mean/median of 18/13 months (4-72 months) prior to LRT. The mean/median gross tumor volume (GTV) measured 797/415 cc (54-4027 cc) and 14/13 cm (7-28 cm). Subjective statements at LRT completion were available from 37 symptomatic patients: 32/37 (87%) reported fast symptom relief, and 5/37 felt no change under LRT or at LRT completion. Early tolerance was excellent (G0-1). FU imaging was available from 40/56 lesions (71%): progression in 3/40 at first exam one at 1.5 and 4 months post-LRT, and stable disease (±10%) in 5/40 assessed at 2, 3, 3, and 4 months post-LRT. First measure shrinkage of 48%/30% (10%-100%) was found in 32/40 lesions (80%) after a mean/median of 2.8/3 months (0.3-7 months). Maximum shrinkage over time based on 21 cases with at least 1 FU imaging measured a mean/median of 62%/60% after 6.2/5.5 months. The duration of radiologic response was a mean/median of 7.4/7.0 months (1-21 months). Conclusions Short-course LRT emerged as an effective and well-tolerated palliative option for very large lesions, whether treatment-naïve or previously irradiated. Nearly 90% of symptomatic patients reported significant subjective benefit, and 80% of assessed lesions demonstrated tumor shrinkage ≥10%, with a mean response duration of >6 months.
Collapse
Affiliation(s)
- Gabriela Studer
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - David Jeller
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Tino Streller
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Dirk Huebner
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| | - Christoph Glanzmann
- Radiation Oncology, Lucerne Cantonal University Teaching Hospital (LUKS), Lucerne, Switzerland
| |
Collapse
|
4
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024:10.1038/s41569-024-01056-4. [PMID: 38987578 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Sheikh K, Li H, Wright JL, Yanagihara TK, Halthore A. The Peaks and Valleys of Photon Versus Proton Spatially Fractionated Radiotherapy. Semin Radiat Oncol 2024; 34:292-301. [PMID: 38880538 DOI: 10.1016/j.semradonc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially-fractionated radiotherapy (SFRT) delivers high doses to small areas of tumor while sparing adjacent tissue, including intervening disease. In this review, we explore the evolution of SFRT technological advances, contrasting approaches with photon and proton beam radiotherapy. We discuss unique dosimetric considerations and physical properties of SFRT, as well as review the preclinical literature that provides an emerging understanding of biological mechanisms. We emphasize crucial areas of future study and highlight clinical trials that are underway to assess SFRT's safety and efficacy, with a focus on immunotherapeutic synergies. The review concludes with practical considerations for SFRT's clinical application, advocating for strategies that leverage its unique dosimetric and biological properties for improved patient outcomes.
Collapse
Affiliation(s)
- Khadija Sheikh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC.
| | - Heng Li
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| | - Theodore K Yanagihara
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Aditya Halthore
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| |
Collapse
|
6
|
Jenkins SV, Johnsrud AJ, Dings RPM, Griffin RJ. Bystander Effects in Spatially Fractionated Radiation Therapy: From Molecule To Organism To Clinical Implications. Semin Radiat Oncol 2024; 34:284-291. [PMID: 38880537 PMCID: PMC11185274 DOI: 10.1016/j.semradonc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The standard of care for radiation therapy is numerous, low-dose fractions that are distributed homogeneously throughout the tumor. An alternative strategy under scrutiny is to apply spatially fractionated radiotherapy (high and low doses throughout the tumor) in one or several fractions, either alone or followed by conventional radiation fractionation . Spatial fractionation allows for significant sparing of normal tissue, and the regions of tumor or normal tissue that received sublethal doses can give rise to beneficial bystander effects in both cases. Bystander effects are broadly defined as biological responses that are significantly greater than would be anticipated based on the radiation dose received. Typically these effects are initiated by diffusion of reactive oxygen species and secretion of various cytokines. As demonstrated in the literature, spatial fractionation related bystander effects can occur locally from cell to cell and in what are known as "cohort effects," which tend to take the form of restructuring of the vasculature, enhanced immune infiltration, and development of immunological memory. Other bystander effects can take place at distant sites in what are known as "abscopal effects." While these events are rare, they are mediated by the immune system and can result in the eradication of secondary and metastatic disease. Currently, due to the complexity and variability of these bystander effects, they are not thoroughly understood, but as knowledge improves they may present significant opportunities for improved clinical outcomes.
Collapse
Affiliation(s)
- Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR..
| | | | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
7
|
Shen J, Su X, Wang Q, Ke Y, Zheng T, Mao Y, Wang Z, Dong J, Duan S. Current and future perspectives on the regulation and functions of miR-545 in cancer development. CANCER PATHOGENESIS AND THERAPY 2024; 2:142-154. [PMID: 39027151 PMCID: PMC11252520 DOI: 10.1016/j.cpt.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 07/20/2024]
Abstract
Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Tianyu Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
8
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
9
|
Gregucci F, Beal K, Knisely JPS, Pagnini P, Fiorentino A, Bonzano E, Vanpouille-Box CI, Cisse B, Pannullo SC, Stieg PE, Formenti SC. Biological Insights and Radiation-Immuno-Oncology Developments in Primary and Secondary Brain Tumors. Cancers (Basel) 2024; 16:2047. [PMID: 38893165 PMCID: PMC11171192 DOI: 10.3390/cancers16112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant central nervous system (CNS) cancers include a group of heterogeneous dis-eases characterized by a relative resistance to treatments and distinguished as either primary tumors arising in the CNS or secondary tumors that spread from other organs into the brain. Despite therapeutic efforts, they often cause significant mortality and morbidity across all ages. Radiotherapy (RT) remains the main treatment for brain cancers, improving associated symptoms, improving tumor control, and inducing a cure in some. However, the ultimate goal of cancer treatment, to improve a patient's survival, remains elusive for many CNS cancers, especially primary tumors. Over the years, there have thus been many preclinical studies and clinical trials designed to identify and overcome mechanisms of resistance to improve outcomes after RT and other therapies. For example, immunotherapy delivered concurrent with RT, especially hypo-fractionated stereotactic RT, is synergistic and has revolutionized the clinical management and outcome of some brain tumors, in particular brain metastases (secondary brain tumors). However, its impact on gliomas, the most common primary malignant CNS tumors, remains limited. In this review, we provide an overview of radioresistance mechanisms, the emerging strategies to overcome radioresistance, the role of the tumor microenviroment (TME), and the selection of the most significant results of radiation-immuno-oncological investigations. We also identify novel therapeutic opportunities in primary and secondary brain tumors with the purpose of elucidating current knowledge and stimulating further research to improve tumor control and patients' survival.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
| | - Kathryn Beal
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Jonathan P. S. Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Paul Pagnini
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy;
- Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, 27100 Pavia, Italy;
| | - Claire I. Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Philip E. Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (B.C.); (S.C.P.); (P.E.S.)
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; (F.G.); (K.B.); (J.P.S.K.); (P.P.); (C.I.V.-B.)
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Gaudreault M, Chang D, Kron T, Siva S, Chander S, Hardcastle N, Yeo A. Development of an automated treatment planning approach for lattice radiation therapy. Med Phys 2024; 51:682-693. [PMID: 37797078 DOI: 10.1002/mp.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Lattice radiation therapy (LRT) alternates regions of high and low doses within the target. The heterogeneous dose distribution is delivered to a geometrical structure of vertices segmented inside the tumor. LRT is typically used to treat patients with large tumor volumes with cytoreduction intent. Due to the geometric complexity of the target volume and the required dose distribution, LRT treatment planning demands additional resources, which may limit clinical integration. PURPOSE We introduce a fully automated method to (1) generate an ordered lattice of vertices with various sizes and center-to-center distances and (2) perform dose optimization and calculation. We aim to report the dosimetry associated with these lattices to help clinical decision-making. METHODS Sarcoma cancer patients with tumor volume between 100 cm3 and 1500 cm3 who received radiotherapy treatment between 2010 and 2018 at our institution were considered for inclusion. Automated segmentation and dose optimization/calculation were performed by using the Eclipse Scripting Application Programming Interface (ESAPI, v16, Varian Medical Systems, Palo Alto, USA). Vertices were modeled by spheres segmented within the gross tumor volume (GTV) with 1 cm/1.5 cm/2 cm diameters (LRT-1 cm/1.5 cm/2 cm) and 2 to 5 cm center-to-center distance on square lattices alternating along the superior-inferior direction. Organs at risk were modeled by subtracting the GTV from the body structure (body-GTV). The prescription dose was that 50% of the vertice volume should receive at least 20 Gy in one fraction. The automated dose optimization included three stages. The vertices optimization objectives were refined during optimization according to their values at the end of the first and second stages. Lattices were classified according to a score based on the minimization of body-GTV max dose and the maximization of GTV dose uniformity (measured with the equivalent uniform dose [EUD]), GTV dose heterogeneity (measured with the GTV D90%/D10% ratio), and the number of patients with more than one vertex inserted in the GTV. Plan complexity was measured with the modulation complexity score (MCS). Correlations were assessed with the Spearman correlation coefficient (r) and its associated p-value. RESULTS Thirty-three patients with GTV volumes between 150 and 1350 cm3 (median GTV volume = 494 cm3 , IQR = 272-779 cm3 were included. The median time required for segmentation/planning was 1 min/21 min. The number of vertices was strongly correlated with GTV volume in each LRT lattice for each center-to-center distance (r > 0.85, p-values < 0.001 in each case). Lattices with center-to-center distance = 2.5 cm/3 cm/3.5 cm in LRT-1.5 cm and center-to-center distance = 4 cm in LRT-1 cm had the best scores. These lattices were characterized by high heterogeneity (median GTV D90%/D10% between 0.06 and 0.19). The generated plans were moderately complex (median MCS ranged between 0.19 and 0.40). CONCLUSIONS The automated LRT planning method allows for the efficacious generation of vertices arranged in an ordered lattice and the refinement of planning objectives during dose optimization, enabling the systematic evaluation of LRT dosimetry from various lattice geometries.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - David Chang
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, New South Wales, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarat Chander
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, New South Wales, Australia
| | - Adam Yeo
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Song CW, Terezakis S, Park WY, Paek SH, Kim MS, Cho LC, Griffin RJ. Preferential Tumor Vascular Damage Is the Common Antitumor Mechanism of High-Dose Hypofractionated Radiation Therapy: SABR, Spatially Fractionated Radiation Therapy, and FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 117:701-704. [PMID: 37196835 DOI: 10.1016/j.ijrobp.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Sun-Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - L Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
12
|
Sunnerberg J, Thomas WS, Petusseau A, Reed MS, Jack Hoopes P, Pogue BW. Review of optical reporters of radiation effects in vivo: tools to quantify improvements in radiation delivery technique. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:080901. [PMID: 37560327 PMCID: PMC10409499 DOI: 10.1117/1.jbo.28.8.080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Significance Radiation damage studies are used to optimize radiotherapy treatment techniques. Although biological indicators of damage are the best assays of effect, they are highly variable due to biological heterogeneity. The free radical radiochemistry can be assayed with optical reporters, allowing for high precision titration of techniques. Aim We examine the optical reporters of radiochemistry to highlight those with the best potential for translational use in vivo, as surrogates for biological damage assays, to inform on mechanisms. Approach A survey of the radical chemistry effects from reactive oxygen species (ROS) and oxygen itself was completed to link to DNA or biological damage. Optical reporters of ROS include fluorescent, phosphorescent, and bioluminescent molecules that have a variety of activation pathways, and each was reviewed for its in vivo translation potential. Results There are molecular reporters of ROS having potential to report within living systems, including derivatives of luminol, 2'7'-dichlorofluorescein diacetate, Amplex Red, and fluorescein. None have unique specificity to singular ROS species. Macromolecular engineered reporters unique to specific ROS are emerging. The ability to directly measure oxygen via reporters, such as Oxyphor and protoporphyrin IX, is an opportunity to quantify the consumption of oxygen during ROS generation, and this translates from in vitro to in vivo use. Emerging techniques, such as ion particle beams, spatial fractionation, and ultra-high dose rate FLASH radiotherapy, provide the motivation for these studies. Conclusions In vivo optical reporters of radiochemistry are quantitatively useful for comparing radiotherapy techniques, although their use comes at the cost of the unknown connection to the mechanisms of radiobiological damage. Still their lower measurement uncertainty, compared with biological response assay, makes them an invaluable tool. Linkage to DNA damage and biological damage is needed, and measures such as oxygen consumption serve as useful surrogate measures that translate to in vivo use.
Collapse
Affiliation(s)
- Jacob Sunnerberg
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - William S. Thomas
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Arthur Petusseau
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Matthew S. Reed
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - P. Jack Hoopes
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
13
|
Masilela TAM, Prezado Y. Monte Carlo study of the free radical yields in minibeam radiation therapy. Med Phys 2023; 50:5115-5134. [PMID: 37211907 DOI: 10.1002/mp.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Minibeam radiation therapy (MBRT) is a novel technique which has been shown to widen the therapeutic window through significant normal tissue sparing. Despite the heterogeneous dose distributions, tumor control is still ensured. Nevertheless the exact radiobiological mechanisms responsible for MBRT efficacy are not fully understood. PURPOSE Reactive oxygen species (ROS) resulting from water radiolysis were investigated given their implications not only on targeted DNA damage, but also for their role in the immune response and non-targeted cell signalling effects: two potential drivers of MBRT efficacy. METHODS Monte Carlo simulations were performed using TOPAS-nBio to carry out the irradiation of a water phantom with beams of protons (pMBRT), photons (xMBRT), 4 He ions (HeMBRT), and 12 C ions (CMBRT). Primary yields at the end of the chemical stage were calculated in spheres of 20 μm diameter, located in the peaks and valleys at various depths up to the Bragg peak. The chemical stage was limited to 1 ns to approximate biological scavenging, and the yield of · OH, H2 O2 , ande aq - ${\rm e}^{-}_{\rm aq}$ was recorded. RESULTS Beyond 10 mm, there were no substantial differences in the primary yields between peaks and valleys of the pMBRT and HeMBRT modalities. For xMBRT, there was a lower primary yield of the radical species · OH ande aq - ${\rm e}^{-}_{\rm aq}$ at all depths in the valleys compared to the peaks, and a higher primary yield of H2 O2 . Compared to the peaks, the valleys of the CMBRT modality were subject to a higher · OH ande aq - ${\rm e}^{-}_{\rm aq}$ yield, and lower H2 O2 yield. This difference between peaks and valleys became more severe in depth. Near the Bragg peak, the increase in the primary yield of the valleys over the peaks was 6% and 4% for · OH ande aq - ${\rm e}^{-}_{\rm aq}$ respectively, while there was a decrease in the yield of H2 O2 by 16%. Given the similar ROS primary yields in the peaks and valleys of pMBRT and HeMBRT, the level of indirect DNA damage is expected to be directly proportional to the peak to valley dose ratio (PVDR). The difference in the primary yields implicates a lower level of indirect DNA damage in the valleys compared to the peaks than what would be suggested by the PVDR for xMBRT, and a higher level for CMBRT. CONCLUSIONS These results highlight the notion that depending on the particle chosen, one can expect different levels of ROS in the peaks and valley that goes beyond what would be expected by the macroscopic PVDR. The combination of MBRT with heavier ions is shown to be particularly interesting as the primary yield in the valleys progressively diverges from the level observed in the peaks as the LET increases. While differences in the reported · OH yields of this work implicated the indirect DNA damage, H2 O2 yields particularly implicate non-targeted cell signalling effects, and therefore this work provides a point of reference for future simulations in which the distribution of this species at more biologically relevant timescales could be investigated.
Collapse
Affiliation(s)
- Thongchai A M Masilela
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| | - Yolanda Prezado
- Signalisation radiobiologie et cancer, Institut Curie, Université PSL, Orsay, France
- Signalisation radiobiologie et cancer, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Orsay, France
| |
Collapse
|
14
|
Halthore A, Fellows Z, Tran A, Deville C, Wright JL, Meyer J, Li H, Sheikh K. Treatment Planning of Bulky Tumors Using Pencil Beam Scanning Proton GRID Therapy. Int J Part Ther 2022; 9:40-49. [PMID: 36721485 PMCID: PMC9875826 DOI: 10.14338/ijpt-22-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare spatially fractionated radiation therapy (GRID) treatment planning techniques using proton pencil-beam-scanning (PBS) and photon therapy. Materials and Methods PBS and volumetric modulated arc therapy (VMAT) GRID plans were retrospectively generated for 5 patients with bulky tumors. GRID targets were arranged along the long axis of the gross tumor, spaced 2 and 3 cm apart, and treated with a prescription of 18 Gy. PBS plans used 2- to 3-beam multiple-field optimization with robustness evaluation. Dosimetric parameters including peak-to-edge ratio (PEDR), ratio of dose to 90% of the valley to dose to 10% of the peak VPDR(D90/D10), and volume of normal tissue receiving at least 5 Gy (V5) and 10 Gy (V10) were calculated. The peak-to-valley dose ratio (PVDR), VPDR(D90/D10), and organ-at-risk doses were prospectively assessed in 2 patients undergoing PBS-GRID with pretreatment quality assurance computed tomography (QACT) scans. Results PBS and VMAT GRID plans were generated for 5 patients with bulky tumors. Gross tumor volume values ranged from 826 to 1468 cm3. Peak-to-edge ratio for PBS was higher than for VMAT for both spacing scenarios (2-cm spacing, P = .02; 3-cm spacing, P = .01). VPDR(D90/D10) for PBS was higher than for VMAT (2-cm spacing, P = .004; 3-cm spacing, P = .002). Normal tissue V5 was lower for PBS than for VMAT (2-cm spacing, P = .03; 3-cm spacing, P = .02). Normal tissue mean dose was lower with PBS than with VMAT (2-cm spacing, P = .03; 3-cm spacing, P = .02). Two patients treated using PBS GRID and assessed with pretreatment QACT scans demonstrated robust PVDR, VPDR(D90/D10), and organs-at-risk doses. Conclusions The PEDR was significantly higher for PBS than VMAT plans, indicating lower target edge dose. Normal tissue mean dose was significantly lower with PBS than VMAT. PBS GRID may result in lower normal tissue dose compared with VMAT plans, allowing for further dose escalation in patients with bulky disease.
Collapse
Affiliation(s)
- Aditya Halthore
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
,Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Zachary Fellows
- Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Anh Tran
- Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
,Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Jean L. Wright
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
,Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Jeffrey Meyer
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
,Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
,Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC, USA
| |
Collapse
|
15
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
16
|
Compact and very high dose-rate plasma focus radiation sources for medical applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Fukunaga H, Kimura Y, Suzuki A, Kawabata Y, Yokoya A. Molecular Interactions of Normal and Irradiated Tubulins During Polymerization. Radiat Res 2022; 198:200-203. [PMID: 35604872 DOI: 10.1667/rade-21-00073.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Microtubules, one of the cytoskeletons, are highly dynamic structures that play a variety of roles in maintaining cell morphology, cell division and intracellular transport. Microtubules are composed of heterodimers of α- and β-tubulins, which are repeatedly polymerized and depolymerized. To investigate the radiation-induced impacts on the polymerization reaction of tubulins, we evaluated the molecular interactions between normal and irradiated tubulins. First, the polymerization reaction of the tubulins was measured after stepwise irradiation from 0 Gy to 1,000 Gy of X rays. The polymerization was inhibited in a dose-dependent manner. Next, the tubulins' polymerization reaction was then measured after the tubulin that was damaged from the exposure to 1,000 Gy of X rays was mixed with the normal tubulins. Our findings reveal that the radiation dose-dependent change in the degree of overall microtubule polymerization progression depends on the ratio of damaged tubulin. This result is biochemical evidence that non-DNA damage (in this case, cytoskeletal damage) from cytoplasmic radiation exposure may inhibit cell division, suggesting that some cytoskeletal damage may also affect the fate of the entire cell.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Kimura
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Ami Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Yuki Kawabata
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| |
Collapse
|
19
|
Rogers LJ, Harley JC, McKenzie DR, Suchowerska N. Radiation responses of cancer and normal cells to split dose fractions with uniform and grid fields: increasing the therapeutic ratio. Int J Radiat Biol 2022; 98:1424-1431. [PMID: 35323094 DOI: 10.1080/09553002.2022.2047826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Radiation treatment of cancer is usually delivered in a prescribed sequence of dose fractions within which the dependence of dose on time is determined by the treatment plan. New techniques, such as stereotactic body radiation therapy (SBRT) and image guided radiation therapy (IGRT) have been introduced with the motivation of improving therapeutic outcomes, with the consequence that the time dependence of the dose within a fraction is modified. Here, we test whether an increased toxicity to cancer cells arises when a radiation treatment fraction is delivered in two equal parts, allowing time for the expression of factors, for example, RONS and cytokines, in response to the first dose which may sensitize cells to the second dose. A medium time delay between 15 and 60 minutes is proposed to allow factors to be expressed before repair takes place. A grid field is used to enhance diffusion of the factors. MATERIALS AND METHODS The cell lines used in the study were two prostate cancers (LNCaP and DU 145), a normal prostate (PNT1A), a non-small cell lung cancer (NCI-H460), and a glioma (Hs 683). Uniform or spatially modulated grid fields, delivering the same mean dose, were used. The results for the clonogenic survival fractions were grouped into a 'short' delay (under 10 minutes) and a 'medium' delay (between 15 and 60 minutes). RESULTS The medium delay with a grid field yielded a significant increase in toxicity for the four cancer cell lines. The medium delay with a uniform field gave a significant increase in toxicity for the two prostate cancer cell lines. A highly significant increase was found in the therapeutic ratio, defined as the ratio of the survival of prostate normal to prostate cancer cells. CONCLUSIONS The findings show that the intra-fractional dose schedule with medium time delay offers an opportunity to increase the toxicity of radiation to cancer cells, relative to a single radiation delivery. For all cancer cell lines, a grid field gives a greater toxic effect than a uniform field. The split dose treatment offers an increase in cancer toxicity while preserving normal cells, improving the outcomes of a treatment.
Collapse
Affiliation(s)
- Linda Joanne Rogers
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,School of Physics, VectorLAB, University of Sydney, Sydney, Australia
| | - Juliette Cornelia Harley
- School of Physics, VectorLAB, University of Sydney, Sydney, Australia.,School of Physics, Applied and Plasma Physics, University of Sydney, Sydney, Australia
| | - David Robert McKenzie
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,School of Physics, VectorLAB, University of Sydney, Sydney, Australia.,School of Physics, Applied and Plasma Physics, University of Sydney, Sydney, Australia
| | - Natalka Suchowerska
- School of Physics, VectorLAB, University of Sydney, Sydney, Australia.,School of Physics, Applied and Plasma Physics, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Moghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and Treatment-Related Aspects of Spatially Fractionated Radiotherapy. Int J Mol Sci 2022; 23:3366. [PMID: 35328787 PMCID: PMC8954016 DOI: 10.3390/ijms23063366] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The continuously evolving field of radiotherapy aims to devise and implement techniques that allow for greater tumour control and better sparing of critical organs. Investigations into the complexity of tumour radiobiology confirmed the high heterogeneity of tumours as being responsible for the often poor treatment outcome. Hypoxic subvolumes, a subpopulation of cancer stem cells, as well as the inherent or acquired radioresistance define tumour aggressiveness and metastatic potential, which remain a therapeutic challenge. Non-conventional irradiation techniques, such as spatially fractionated radiotherapy, have been developed to tackle some of these challenges and to offer a high therapeutic index when treating radioresistant tumours. The goal of this article was to highlight the current knowledge on the molecular and radiobiological mechanisms behind spatially fractionated radiotherapy and to present the up-to-date preclinical and clinical evidence towards the therapeutic potential of this technique involving both photon and proton beams.
Collapse
Affiliation(s)
- Leyla Moghaddasi
- Department of Medical Physics, Austin Health, Ballarat, VIC 3350, Australia;
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
| | - Paul Reid
- Radiation Health, Environment Protection Authority, Adelaide, SA 5000, Australia;
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana G. Marcu
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
| |
Collapse
|
21
|
Schüler E, Acharya M, Montay-Gruel P, Loo BW, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Med Phys 2022; 49:2082-2095. [PMID: 34997969 PMCID: PMC9032195 DOI: 10.1002/mp.15442] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
In their seminal paper from 2014, Fauvadon et al. coined the term FLASH irradiation to describe ultra-high-dose rate irradiation with dose rates greater than 40 Gy/s, which results in delivery times of fractions of a second. The experiments presented in that paper were performed with a high-dose-per-pulse 4.5 MeV electron beam, and the results served as the basis for the modern-day field of FLASH radiation therapy (RT). In this article, we review the studies that have been published after those early experiments, demonstrating the robust effects of FLASH RT on normal tissue sparing in preclinical models. We also outline the various irradiation parameters that have been used. Although the robustness of the biological response has been established, the mechanisms behind the FLASH effect are currently under investigation in a number of laboratories. However, differences in the magnitude of the FLASH effect between experiments in different labs have been reported. Reasons for these differences even within the same animal model are currently unknown, but likely has to do with the marked differences in irradiation parameter settings used. Here, we show that these parameters are often not reported, which complicates large multistudy comparisons. For this reason, we propose a new standard for beam parameter reporting and discuss a systematic path to the clinical translation of FLASH RT.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030 USA
| | - Munjal Acharya
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Billy W. Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Peter G. Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
23
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
24
|
Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol 2021; 66. [PMID: 34666318 DOI: 10.1088/1361-6560/ac3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.
Collapse
Affiliation(s)
- Paul Cahoon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Valentina Giacometti
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Francis Casey
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.,Nottingham Radiotherapy Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Emily Russell
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Conor McGarry
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
25
|
Abstract
PURPOSE Laboratory and clinical research are essential for advancing radiation research; however, there is a growing awareness that conventional laboratory animal models and early-phase clinical studies in patients have not improved the low success rates and late-stage failures in new cancer therapy efforts. There are considerable costs and inefficiencies in moving preclinical research into effective cancer therapies for patients. Canine translational models of radiation research can fill an important niche between rodent and human studies, ultimately providing valuable, predictive, translational biological and clinical results for human cancer patients. Companion dogs naturally and spontaneously develop cancers over the course of their lifetime. Many canine tumor types share important similarities to human disease, molecularly and biologically, with a comparable clinical course. Dogs receive state-of-the-art medical care, which can include radiotherapy, experimental therapeutics, and novel technologies, offering an important opportunity for radiobiology and radiation oncology research. Notably, the National Cancer Institute has developed the Comparative Oncology Program to promote this area of increased research interest. CONCLUSION In this review, the benefits and limitations of performing translational radiation research in companion dogs will be presented, and current research utilizing the canine model will be highlighted, including studies across research areas focusing on common canine tumor types treated with radiotherapy, comparative normal tissue effects, radiation and immunology research, and alternative radiation therapy approaches involving canine cancer patients.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
26
|
Fukunaga H. Stem Cell Migration: A Possible Mechanism for the Tissue-Sparing Effect of Spatially Fractionated Radiation. Radiat Res 2021; 196:680-685. [PMID: 34496025 DOI: 10.1667/rade-21-00134.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/03/2022]
Abstract
Stem cell responses in tissues after exposure to radiation are of significance for maintaining tissue functions. From the point of view of stem cell characteristics, this article seeks to illustrate some contributions of microbeam research to spatially fractionated radiotherapy (SFRT), such as grid radiotherapy and microbeam radiotherapy. Although the tissue-sparing response after SFRT was first reported more than a century ago, current radiation dose-volume metrics are still unable to accurately predict such tissue-level changes in response to spatially fractionated radiation fields. However, microbeam approaches could contribute to uncovering the mechanisms of tissue response, significantly improving the outcomes of SFRT and reducing its adverse effects. Studies with microbeams have shown that the testicular tissue-sparing effect for maintaining spermatogenesis after exposure to spatially fractionated radiation depends on biological parameters, such as the radiation dose distribution at the microscale level for tissue-specific stem cells and the microenvironment, or niche. This indicates that stem cell survival, migration, and repopulation are involved in the tissue-level changes during or after SFRT. The illustration of microbeam applications in this article focuses on the stem cell migration as a possible mechanism of the tissue-sparing effect for preserving functionality.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, N12 W7 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Morris Z, Dohopolski M, Rahimi A, Timmerman R. Future Directions in the Use of SAbR for the Treatment of Oligometastatic Cancers. Semin Radiat Oncol 2021; 31:253-262. [PMID: 34090653 DOI: 10.1016/j.semradonc.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of local therapy as a sole therapy or part of a combined approach in treating metastatic cancer continues to evolve. The most obvious requirements for prudent implementation of local therapies like stereotactic ablative radiotherapy (SAbR) to become mainstream in treating oligometastases are (1) Clear guidance as to what particular patients might benefit, and (2) Confirmation of improvements in outcome after such treatments via clinical trials. These future directional requirements are non-negotiable. However, innovation and research offer many more opportunities to understand and improve therapy. Identifying candidates and personalizing their therapy can be afforded via proteomic, genomic and epigenomic characterization techniques. Such molecular profiling along with liquid biopsy opportunities will both help select best therapies and facilitate ongoing monitoring of response. Technologies both to find targets and help deliver less-toxic therapy continue to improve and will be available in the marketplace. These technologies include molecular-based imaging (eg, PET-PSMA), FLASH ultra-high dose rate platforms, Grid therapy, PULSAR adaptive dosing, and MRI/PET guided linear accelerators. Importantly, a treatment approach beyond oligometastastic could evolve including a rationale for using SAbR in the oligoprogressive, oligononresponsive, oligobulky and oligolethal settings as well as expansion beyond oligo- toward even plurimetastastic disease. In any case, lessons learned and experiences required by the implementation of using SAbR in oligometastatic cancer will be revisited.
Collapse
Affiliation(s)
- Zachary Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
28
|
Zhang J, Zhang Y, Mo F, Patel G, Butterworth K, Shao C, Prise KM. The Roles of HIF-1α in Radiosensitivity and Radiation-Induced Bystander Effects Under Hypoxia. Front Cell Dev Biol 2021; 9:637454. [PMID: 33869184 PMCID: PMC8044822 DOI: 10.3389/fcell.2021.637454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced bystander effects (RIBE) may have potential implications for radiotherapy, yet the radiobiological impact and underlying mechanisms in hypoxic tumor cells remain to be determined. Using two human tumor cell lines, hepatoma HepG2 cells and glioblastoma T98G cells, the present study found that under both normoxic and hypoxic conditions, increased micronucleus formation and decreased cell survival were observed in non-irradiated bystander cells which had been co-cultured with X-irradiated cells or treated with conditioned-medium harvested from X-irradiated cells. Although the radiosensitivity of hypoxic tumor cells was lower than that of aerobic cells, the yield of micronucleus induced in bystander cells under hypoxia was similar to that measured under normoxia indicating that RIBE is a more significant factor in overall radiation damage of hypoxic cells. When hypoxic cells were treated with dimethyl sulfoxide (DMSO), a scavenger of reactive oxygen species (ROS), or aminoguanidine (AG), an inhibitor of nitric oxide synthase (NOS), before and during irradiation, the bystander response was partly diminished. Furthermore, when only hypoxic bystander cells were pretreated with siRNA hypoxia-inducible factor-1α (HIF-1α), RIBE were decreased slightly but if irradiated cells were treated with siRNA HIF-1α, hypoxic RIBE decreased significantly. In addition, the expression of HIF-1α could be increased in association with other downstream effector molecules such as glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), and carbonic anhydrase (CA9) in irradiated hypoxic cells. However, the expression of HIF-1α expression in bystander cells was decreased by a conditioned medium from isogenic irradiated cells. The current results showed that under hypoxic conditions, irradiated HepG2 and T98G cells showed reduced radiosensitivity by increasing the expression of HIF-1α and induced a syngeneic bystander effect by decreasing the expression of HIF-1α and regulating its downstream target genes in both the irradiated or bystander cells.
Collapse
Affiliation(s)
- Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yuhong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Fang Mo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Gaurang Patel
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Karl Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Jackson SA, Prise KM. 125 years of BJR and radiological research: reflecting on the anniversary series in celebration of the world's oldest radiology journal. Br J Radiol 2021; 94:bjr20219001. [PMID: 33305997 DOI: 10.1259/bjr.20219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Simon A Jackson
- Peninsula Radiology Academy, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Kevin M Prise
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
30
|
Pakniyat F, Nedaie HA, Mozdarani H, Mahmoudzadeh A, Salimi M, Griffin RJ, Gholami S. Enhanced response of radioresistant carcinoma cell line to heterogeneous dose distribution of grid; the role of high-dose bystander effect. Int J Radiat Biol 2020; 96:1585-1596. [PMID: 33074047 DOI: 10.1080/09553002.2020.1834163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The classical dogma that restricted the radiation effect to the directly irradiated cells has been challenged by the bystander effect. This off-target phenomenon which was manifested in adjacent cells via signaling of fully exposed cells might be involved in high-dose Grid therapy as well. Here, an in-vitro study was performed to examine the possible extent of carcinoma cells response to the inhomogeneous dose distribution of Grid irradiation in the context of the bystander effect. MATERIALS AND METHODS Bystander effect was investigated in human carcinoma cell lines of HeLa and HN5 adjacent to those received high-dose Grid irradiation using 'medium transfer' and 'cell-to-cell contact' strategies. Based on the Grid peak-to-valley dose profile, medium transfer was exerted from 10 Gy uniformly exposed donors to 1.5 Gy uniformly irradiated recipients. Cell-contact bystander was evaluated after nonuniform dose distribution of 10 Gy Grid irradiation using cloning cylinders. GammaH2AX foci, micronucleus and clonogenic assays besides gene expression analysis were performed. RESULTS Various parameters (ɑ/β, D37, D50) extracted from survival curve which fitted to the Linear Quadratic model, verified more radioresistance of HN5. Survival fraction at 2 Gy (SF2) indicated as 0.42 ± 0.06 in HeLa and 0.5 ± 0.03 in HN5. The level of survival decrease, DNA damages and micronucleus of cells located in the Grid shielded areas (1.5 Gy cell-to-cell contact bystander cells) were significantly more than the values obtained from cells which were irradiated by merely uniform dose of 1.5 Gy. The gH2AX foci and micronuclei frequencies were enhanced in cell-contact bystander approximately more than 1.8 times. Relative expression of DNA damage repair pathway genes (Xrcc6 and H2afx) in bystander cells increased significantly. The most cell survival reduction (11.6 times) was revealed in the Grid bystander cells of radioresistant cell line (HN5). No statistically significant difference between 10 Gy uniform beam and Grid non-uniform beam was observed. CONCLUSIONS Various endpoints confirmed an augmented response of cells in the valley dose region of the Grid block significantly (compared with the cells irradiated by identical dose of uniform beam), suggesting the role of high-dose bystander effect which was more pronounced in resistant carcinoma cell lines. These findings could provide a partial explanation for the Grid beneficial response seen in a number of pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Pakniyat
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Ali Nedaie
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Radiation Oncology Research Center, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Aziz Mahmoudzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical genetics, Medical Biotechnology Institute, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somayeh Gholami
- Radiation Oncology Research Center, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|