1
|
Perera M, Assel M, Nalavenkata S, Khaleel S, Benfante N, Carlsson SV, Reuter VE, Laudone VP, Scardino PT, Touijer KA, Eastham JA, Vickers AJ, Fine SW, Ehdaie B. Quantification of Gleason Pattern 4 Metrics Identifies Pathologic Progression in Patients With Grade Group 2 Prostate Cancer on Active Surveillance. Clin Genitourin Cancer 2024; 22:102204. [PMID: 39260095 DOI: 10.1016/j.clgc.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND During active surveillance (AS) for Grade Group (GG) 2 prostate cancer, pathologic progression to GG3 on surveillance biopsy is a trigger for intervention. However, this ratio of GP3:GP4, may be obscured by increases of relatively indolent disease. We aimed to explore changes in GP4 quantity during AS and propose alternative definitions for progression based on GP4 changes. DESIGN, SETTING, AND PARTICIPANTS We assessed patients enrolled on AS between November 2014 and March 2020 with GG2 disease on diagnostic biopsy and subsequent surveillance biopsy approximately 1 year later. Outcome measures included change in overall %GP4 and total length GP4 (mm). RESULTS AND LIMITATIONS 61 patients met the inclusion criteria, the median change in total length of GP4 and %GP4 was -0.12 mm (IQR -0.31, 0.09) and -2.5% (IQR -8.6, 0.0), respectively. Excluding the 35 patients with no evidence of GP4 on surveillance biopsy, median change in total GP4 length and %GP4 was 0.19 mm (IQR -0.04, 0.67) and 1.2% (IQR -1.6, 6.6), respectively. Three patients progressed to GG3 disease on surveillance biopsy, one of whom had only a small increase in %GP4. Conversely, an additional 2 patients who did not meet the criterion for GG3 had a large increase (> 1 mm) in total GP4 length. CONCLUSIONS Presence of GG3 disease on surveillance biopsy as a trigger for treatment in men on AS is of questionable use alone; we suggest including other measures that do not depend on a ratio, such as an increase in total GP4 length.
Collapse
Affiliation(s)
- Marlon Perera
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Assel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sunny Nalavenkata
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sari Khaleel
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicole Benfante
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sigrid V Carlsson
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vincent P Laudone
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Peter T Scardino
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karim A Touijer
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James A Eastham
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew J Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Behfar Ehdaie
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
2
|
Englman C, Maffei D, Allen C, Kirkham A, Albertsen P, Kasivisvanathan V, Baroni RH, Briganti A, De Visschere P, Dickinson L, Gómez Rivas J, Haider MA, Kesch C, Loeb S, Macura KJ, Margolis D, Mitra AM, Padhani AR, Panebianco V, Pinto PA, Ploussard G, Puech P, Purysko AS, Radtke JP, Rannikko A, Rastinehad A, Renard-Penna R, Sanguedolce F, Schimmöller L, Schoots IG, Shariat SF, Schieda N, Tempany CM, Turkbey B, Valerio M, Villers A, Walz J, Barrett T, Giganti F, Moore CM. PRECISE Version 2: Updated Recommendations for Reporting Prostate Magnetic Resonance Imaging in Patients on Active Surveillance for Prostate Cancer. Eur Urol 2024; 86:240-255. [PMID: 38556436 DOI: 10.1016/j.eururo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVE The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations standardise the reporting of prostate magnetic resonance imaging (MRI) in patients on active surveillance (AS) for prostate cancer. An international consensus group recently updated these recommendations and identified the areas of uncertainty. METHODS A panel of 38 experts used the formal RAND/UCLA Appropriateness Method consensus methodology. Panellists scored 193 statements using a 1-9 agreement scale, where 9 means full agreement. A summary of agreement, uncertainty, or disagreement (derived from the group median score) and consensus (determined using the Interpercentile Range Adjusted for Symmetry method) was calculated for each statement and presented for discussion before individual rescoring. KEY FINDINGS AND LIMITATIONS Participants agreed that MRI scans must meet a minimum image quality standard (median 9) or be given a score of 'X' for insufficient quality. The current scan should be compared with both baseline and previous scans (median 9), with the PRECISE score being the maximum from any lesion (median 8). PRECISE 3 (stable MRI) was subdivided into 3-V (visible) and 3-NonV (nonvisible) disease (median 9). Prostate Imaging Reporting and Data System/Likert ≥3 lesions should be measured on T2-weighted imaging, using other sequences to aid in the identification (median 8), and whenever possible, reported pictorially (diagrams, screenshots, or contours; median 9). There was no consensus on how to measure tumour size. More research is needed to determine a significant size increase (median 9). PRECISE 5 was clarified as progression to stage ≥T3a (median 9). CONCLUSIONS AND CLINICAL IMPLICATIONS The updated PRECISE recommendations reflect expert consensus opinion on minimal standards and reporting criteria for prostate MRI in AS.
Collapse
Affiliation(s)
- Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Davide Maffei
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Kirkham
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Peter Albertsen
- Department of Surgery (Urology), UConn Health, Farmington, CT, USA
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Ronaldo Hueb Baroni
- Department of Radiology, Hospital Israelita Albert Einstein. Sao Paulo, Brazil
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Louise Dickinson
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Juan Gómez Rivas
- Department of Urology, Clinico San Carlos University Hospital, Madrid, Spain
| | - Masoom A Haider
- Joint Department of Medical Imaging, Sinai Health System, University of Toronto, Toronto, Canada
| | - Claudia Kesch
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs, New York, NY, USA
| | - Katarzyna J Macura
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Margolis
- Weill Cornell Medical College, Department of Radiology, New York, NY, USA
| | - Anita M Mitra
- Department of Cancer Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Rickmansworth Road, Middlesex, UK
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Philippe Puech
- Department of Radiology, University of Lille, Lille, France
| | - Andrei S Purysko
- Abdominal Imaging Section, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jan Philipp Radtke
- University Dusseldorf, Medical Faculty, Department of Urology, Dusseldorf, Germany
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Art Rastinehad
- Department of Urology, Lenox Hill Hospital, New York, NY, USA
| | - Raphaele Renard-Penna
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesco Sanguedolce
- Department of Urology, Autonoma University of Barcelona, Barcelona, Spain; Department of Medicine, Surgery and Pharmacy, Universitá degli studi di Sassari - Italy
| | - Lars Schimmöller
- Dusseldorf University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany; Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
| | - Nicola Schieda
- Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Clare M Tempany
- Department of Radiology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Valerio
- Department of Urology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Arnauld Villers
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Addenbrook''s Hospital, Cambridge, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK.
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Englman C, Barrett T, Moore CM, Giganti F. Active Surveillance for Prostate Cancer: Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol Clin North Am 2024; 62:69-92. [PMID: 37973246 DOI: 10.1016/j.rcl.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multiparametric magnetic resonance (MR) imaging has had an expanding role in active surveillance (AS) for prostate cancer. It can improve the accuracy of prostate biopsies, assist in patient selection, and help monitor cancer progression. The PRECISE recommendations standardize reporting of serial MR imaging scans during AS. We summarize the evidence on MR imaging-led AS and provide a clinical primer to help report using the PRECISE criteria. Some limitations to both serial imaging and the PRECISE recommendations must be considered as we move toward a more individualized risk-stratified approach to AS.
Collapse
Affiliation(s)
- Cameron Englman
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Department of Urology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK.
| |
Collapse
|
4
|
Sanmugalingam N, Sushentsev N, Lee KL, Caglic I, Englman C, Moore CM, Giganti F, Barrett T. The PRECISE Recommendations for Prostate MRI in Patients on Active Surveillance for Prostate Cancer: A Critical Review. AJR Am J Roentgenol 2023; 221:649-660. [PMID: 37341180 DOI: 10.2214/ajr.23.29518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were published in 2016 to standardize the reporting of MRI examinations performed to assess for disease progression in patients on active surveillance for prostate cancer. Although a limited number of studies have reported outcomes from use of PRECISE in clinical practice, the available studies have demonstrated PRECISE to have high pooled NPV but low pooled PPV for predicting progression. Our experience in using PRECISE in clinical practice at two teaching hospitals has highlighted issues with its application and areas requiring clarification. This Clinical Perspective critically appraises PRECISE on the basis of this experience, focusing on the system's key advantages and disadvantages and exploring potential changes to improve the system's utility. These changes include consideration of image quality when applying PRECISE scoring, incorporation of quantitative thresholds for disease progression, adoption of a PRECISE 3F sub-category for progression not qualifying as substantial, and comparisons with both the baseline and most recent prior examinations. Items requiring clarification include derivation of a patient-level score in patients with multiple lesions, intended application of PRECISE score 5 (i.e., if requiring development of disease that is no longer organ-confined), and categorization of new lesions in patients with prior MRI-invisible disease.
Collapse
Affiliation(s)
- Nimalan Sanmugalingam
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| |
Collapse
|
5
|
Vilanova JC, Catalá-Sventzetzky V, Hernández-Mancera J. MRI for detection, staging, and follow-up of prostate cancer: Synthesis of the PI-RADS v2.1, MET-RADS, PRECISE, and PI-RR guidelines. RADIOLOGIA 2023; 65:431-446. [PMID: 37758334 DOI: 10.1016/j.rxeng.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 10/03/2023]
Abstract
Prostate cancer is very common among men. Radiology, mainly through MRI, plays a key role in the different stages of prostate cancer: diagnosis, staging and treatment assessment. The correct management of MRI requires knowledge and proper use of the different guidelines developed for the acquisition, interpretation and reporting of MRI in diagnosis (PI-RADS guide), whole body staging (MET-RADS guide), active surveillance (PRECISE guide) and local recurrence (PI-RR guide) in prostate cancer. The objective of this article is to show an update and synthesis of the most relevant aspects of these MRI guidelines for an optimal use and thus providing a more effective management of prostate cancer.
Collapse
Affiliation(s)
- J C Vilanova
- Departamento Radiología, Clínica Girona, Institut de Diagnòstic per la Imatge (IDI), Hospital Dr. J. Trueta/Hospital Sta. Caterina, Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona, Girona, Spain.
| | | | | |
Collapse
|
6
|
Harder FN, Heming CAM, Haider MA. mpMRI Interpretation in Active Surveillance for Prostate Cancer-An overview of the PRECISE score. Abdom Radiol (NY) 2023; 48:2449-2455. [PMID: 37160473 DOI: 10.1007/s00261-023-03912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Active surveillance (AS) is now included in all major guidelines for patients with low-risk PCa and selected patients with intermediate-risk PCa. Several studies have highlighted the potential benefit of multiparametric magnetic resonance imaging (mpMRI) in AS and it has been adopted in some guidelines. However, uncertainty remains about whether serial mpMRI can help to safely reduce the number of required repeat biopsies under AS. In 2017, the European School of Oncology initiated the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) panel which proposed the PRECISE scoring system to assess the likelihood of radiological tumor progression on serial mpMRI. The PRECISE scoring system remains the only major system evaluated in multiple publications. In this review article, we discuss the current body of literature investigating the application of PRECISE as it is not as yet an established standard in mpMRI reporting. We delineate the strengths of PRECISE and its potential added value. Also, we underline potential weaknesses of the PRECISE scoring system, which might be tackled in future versions to further increase its value in AS.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Carolina A M Heming
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
- Radiology Department, Instituto Nacional do Cancer (INCa), Rio de Janeiro, Brazil
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
7
|
Sushentsev N, Rundo L, Abrego L, Li Z, Nazarenko T, Warren AY, Gnanapragasam VJ, Sala E, Zaikin A, Barrett T, Blyuss O. Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2023; 33:3792-3800. [PMID: 36749370 PMCID: PMC10182165 DOI: 10.1007/s00330-023-09438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. KEY POINTS: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, Italy
| | - Luis Abrego
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Zonglun Li
- Department of Mathematics, University College London, London, UK
| | - Tatiana Nazarenko
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Evis Sala
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alexey Zaikin
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Tristan Barrett
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Oleg Blyuss
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Center of Photonics, Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
8
|
Resonancia magnética en la detección, estadificación y seguimiento del cáncer de próstata: síntesis de las guías PI-RADS v2.1, MET-RADS, PRECISE y PI-RR. RADIOLOGIA 2023. [DOI: 10.1016/j.rx.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Sushentsev N, Caglic I, Rundo L, Kozlov V, Sala E, Gnanapragasam VJ, Barrett T. Serial changes in tumour measurements and apparent diffusion coefficients in prostate cancer patients on active surveillance with and without histopathological progression. Br J Radiol 2022; 95:20210842. [PMID: 34538077 PMCID: PMC8978242 DOI: 10.1259/bjr.20210842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To analyse serial changes in MRI-derived tumour measurements and apparent diffusion coefficient (ADC) values in prostate cancer (PCa) patients on active surveillance (AS) with and without histopathological disease progression. METHODS This study included AS patients with biopsy-proven PCa with a minimum of two consecutive MR examinations and at least one repeat targeted biopsy. Tumour volumes, largest axial two-dimensional (2D) surface areas, and maximum diameters were measured on T2 weighted images (T2WI). ADC values were derived from the whole lesions, 2D areas, and small-volume regions of interest (ROIs) where tumours were most conspicuous. Areas under the ROC curve (AUCs) were calculated for combinations of T2WI and ADC parameters with optimal specificity and sensitivity. RESULTS 60 patients (30 progressors and 30 non-progressors) were included. In progressors, T2WI-derived tumour volume, 2D surface area, and maximum tumour diameter had a median increase of +99.5%,+55.3%, and +21.7% compared to +29.2%,+8.1%, and +6.9% in non-progressors (p < 0.005 for all). Follow-up whole-volume and small-volume ROIs ADC values were significantly reduced in progressors (-11.7% and -9.5%) compared to non-progressors (-6.1% and -1.6%) (p < 0.05 for both). The combined AUC of a relative increase in maximum tumour diameter by 20% and reduction in small-volume ADC by 10% was 0.67. CONCLUSION AS patients show significant differences in tumour measurements and ADC values between those with and without histopathological disease progression. ADVANCES IN KNOWLEDGE This paper proposes specific clinical cut-offs for T2WI-derived maximum tumour diameter (+20%) and small-volume ADC (-10%) to predict histopathological PCa progression on AS and supplement subjective serial MRI assessment.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| | - Iztok Caglic
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| | | | - Vasily Kozlov
- Department of Public Health and Healthcare Organisation, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Tristan Barrett
- Department of Radiology, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Ota E, Mori N, Yamashita S, Mugikura S, Ito A, Takase K. Longitudinal evaluation of apparent diffusion coefficient values as a predictor of Prostate Cancer Research International Active Surveillance reclassification. Abdom Radiol (NY) 2022; 47:814-826. [PMID: 34882269 DOI: 10.1007/s00261-021-03372-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aimed to evaluate the effectiveness of apparent diffusion coefficient (ADC) parameters in distinguishing between Prostate Cancer Research International Active Surveillance (PRIAS) non-reclassification and reclassification groups during active surveillance (AS) of prostate cancer. METHODS We included 55 patients who fulfilled the PRIAS criteria and underwent ≥ 2 magnetic resonance imaging (MRI) including diffusion-weighted imaging with an interval of ≤ 3 years between baseline and second MRI. A mono-exponential fitting model was used to automatically create ADC maps with minimum b-values of 0 and maximum of 2000 s/mm2. For detectable lesions on ADC maps, the lesions were manually segmented on each slice of the ADC maps. For undetectable lesions, the corresponding normal-appearing zone of the lobe on each slice of ADC maps was segmented. The ADC data for each slice were summed to obtain the 25th, 50th, and 75th percentile ADC values of the histogram at baseline and second MRI. These ADC parameters at baseline and second MRI, and the changes of ADC parameters from baseline to second MRI were compared between PRIAS non-reclassification and reclassification groups. RESULTS The PRIAS reclassification group had significantly lower 25th, 50th, and 75th percentile ADC values at second MRI compared to the non-reclassification group. The non-reclassification group had significantly lower changes in ADC values in these percentiles compared to the reclassification group. CONCLUSION The ADC parameters at second MRI and the changes from baseline to second MRI may be effective distinguishing factors between PRIAS non-reclassification and reclassification groups.
Collapse
Affiliation(s)
- Eri Ota
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Shinichi Yamashita
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
- Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
11
|
Ferraris F, Yaber F, Smith AB, Barreiro D. The end of "very low risk" in localized prostate cancer? Prostate 2021; 81:615-617. [PMID: 34010453 DOI: 10.1002/pros.24168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023]
Affiliation(s)
| | - Fabian Yaber
- National University of Rosario and Sanatorio de la Mujer, Santa Fe, Argentina
| | - Angela B Smith
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Diego Barreiro
- Instituto de Investigaciones Médicas Dr. Alfredo Lanari, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models. Prostate Cancer Prostatic Dis 2021; 24:1028-1031. [PMID: 33958731 PMCID: PMC8616763 DOI: 10.1038/s41391-021-00373-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023]
|