1
|
Chappidi MR, Lin DW, Westphalen AC. Role of MRI in Active Surveillance of Prostate Cancer. Semin Ultrasound CT MR 2024:S0887-2171(24)00078-7. [PMID: 39608681 DOI: 10.1053/j.sult.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Magnetic resonance imaging (MRI) plays an important role in the management of patients with prostate cancer on active surveillance. In this review, we will explore the incorporation of MRI into active surveillance protocols, detailing its impact on clinical decision-making and patient management and discussing how it aligns with current guidelines and practice patterns. The role of MRI in this patient population continues to evolve over time, and we will discuss some of the recent advancements in the field and highlight potential areas for future research endeavors.
Collapse
Affiliation(s)
- Meera R Chappidi
- Department of Urology, University of Washington School of Medicine, Seattle, WA.
| | - Daniel W Lin
- Department of Urology, University of Washington School of Medicine, Seattle, WA.
| | - Antonio C Westphalen
- Department of Urology, University of Washington School of Medicine, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA; Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
2
|
Caglic I, Sushentsev N, Syer T, Lee KL, Barrett T. Biparametric MRI in prostate cancer during active surveillance: is it safe? Eur Radiol 2024; 34:6217-6226. [PMID: 38656709 PMCID: PMC11399179 DOI: 10.1007/s00330-024-10770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Active surveillance (AS) is the preferred option for patients presenting with low-intermediate-risk prostate cancer. MRI now plays a crucial role for baseline assessment and ongoing monitoring of AS. The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations aid radiological assessment of progression; however, current guidelines do not advise on MRI protocols nor on frequency. Biparametric (bp) imaging without contrast administration offers advantages such as reduced costs and increased throughput, with similar outcomes to multiparametric (mp) MRI shown in the biopsy naïve setting. In AS follow-up, the paradigm shifts from MRI lesion detection to assessment of progression, and patients have the further safety net of continuing clinical surveillance. As such, bpMRI may be appropriate in clinically stable patients on routine AS follow-up pathways; however, there is currently limited published evidence for this approach. It should be noted that mpMRI may be mandated in certain patients and potentially offers additional advantages, including improving image quality, new lesion detection, and staging accuracy. Recently developed AI solutions have enabled higher quality and faster scanning protocols, which may help mitigate against disadvantages of bpMRI. In this article, we explore the current role of MRI in AS and address the need for contrast-enhanced sequences. CLINICAL RELEVANCE STATEMENT: Active surveillance is the preferred plan for patients with lower-risk prostate cancer, and MRI plays a crucial role in patient selection and monitoring; however, current guidelines do not currently recommend how or when to perform MRI in follow-up. KEY POINTS: Noncontrast biparametric MRI has reduced costs and increased throughput and may be appropriate for monitoring stable patients. Multiparametric MRI may be mandated in certain patients, and contrast potentially offers additional advantages. AI solutions enable higher quality, faster scanning protocols, and could mitigate the disadvantages of biparametric imaging.
Collapse
Affiliation(s)
- Iztok Caglic
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nikita Sushentsev
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Tom Syer
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Kang-Lung Lee
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tristan Barrett
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Englman C, Maffei D, Allen C, Kirkham A, Albertsen P, Kasivisvanathan V, Baroni RH, Briganti A, De Visschere P, Dickinson L, Gómez Rivas J, Haider MA, Kesch C, Loeb S, Macura KJ, Margolis D, Mitra AM, Padhani AR, Panebianco V, Pinto PA, Ploussard G, Puech P, Purysko AS, Radtke JP, Rannikko A, Rastinehad A, Renard-Penna R, Sanguedolce F, Schimmöller L, Schoots IG, Shariat SF, Schieda N, Tempany CM, Turkbey B, Valerio M, Villers A, Walz J, Barrett T, Giganti F, Moore CM. PRECISE Version 2: Updated Recommendations for Reporting Prostate Magnetic Resonance Imaging in Patients on Active Surveillance for Prostate Cancer. Eur Urol 2024; 86:240-255. [PMID: 38556436 DOI: 10.1016/j.eururo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVE The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations standardise the reporting of prostate magnetic resonance imaging (MRI) in patients on active surveillance (AS) for prostate cancer. An international consensus group recently updated these recommendations and identified the areas of uncertainty. METHODS A panel of 38 experts used the formal RAND/UCLA Appropriateness Method consensus methodology. Panellists scored 193 statements using a 1-9 agreement scale, where 9 means full agreement. A summary of agreement, uncertainty, or disagreement (derived from the group median score) and consensus (determined using the Interpercentile Range Adjusted for Symmetry method) was calculated for each statement and presented for discussion before individual rescoring. KEY FINDINGS AND LIMITATIONS Participants agreed that MRI scans must meet a minimum image quality standard (median 9) or be given a score of 'X' for insufficient quality. The current scan should be compared with both baseline and previous scans (median 9), with the PRECISE score being the maximum from any lesion (median 8). PRECISE 3 (stable MRI) was subdivided into 3-V (visible) and 3-NonV (nonvisible) disease (median 9). Prostate Imaging Reporting and Data System/Likert ≥3 lesions should be measured on T2-weighted imaging, using other sequences to aid in the identification (median 8), and whenever possible, reported pictorially (diagrams, screenshots, or contours; median 9). There was no consensus on how to measure tumour size. More research is needed to determine a significant size increase (median 9). PRECISE 5 was clarified as progression to stage ≥T3a (median 9). CONCLUSIONS AND CLINICAL IMPLICATIONS The updated PRECISE recommendations reflect expert consensus opinion on minimal standards and reporting criteria for prostate MRI in AS.
Collapse
Affiliation(s)
- Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Davide Maffei
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Clare Allen
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Alex Kirkham
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Peter Albertsen
- Department of Surgery (Urology), UConn Health, Farmington, CT, USA
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Ronaldo Hueb Baroni
- Department of Radiology, Hospital Israelita Albert Einstein. Sao Paulo, Brazil
| | - Alberto Briganti
- Division of Experimental Oncology/Unit of Urology, URI; IRCCS Ospedale San Raffaele, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Louise Dickinson
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Juan Gómez Rivas
- Department of Urology, Clinico San Carlos University Hospital, Madrid, Spain
| | - Masoom A Haider
- Joint Department of Medical Imaging, Sinai Health System, University of Toronto, Toronto, Canada
| | - Claudia Kesch
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs, New York, NY, USA
| | - Katarzyna J Macura
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Margolis
- Weill Cornell Medical College, Department of Radiology, New York, NY, USA
| | - Anita M Mitra
- Department of Cancer Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Rickmansworth Road, Middlesex, UK
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Philippe Puech
- Department of Radiology, University of Lille, Lille, France
| | - Andrei S Purysko
- Abdominal Imaging Section, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jan Philipp Radtke
- University Dusseldorf, Medical Faculty, Department of Urology, Dusseldorf, Germany
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Art Rastinehad
- Department of Urology, Lenox Hill Hospital, New York, NY, USA
| | - Raphaele Renard-Penna
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesco Sanguedolce
- Department of Urology, Autonoma University of Barcelona, Barcelona, Spain; Department of Medicine, Surgery and Pharmacy, Universitá degli studi di Sassari - Italy
| | - Lars Schimmöller
- Dusseldorf University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany; Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
| | - Nicola Schieda
- Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Clare M Tempany
- Department of Radiology Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Valerio
- Department of Urology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Arnauld Villers
- Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Addenbrook''s Hospital, Cambridge, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK.
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Sanmugalingam N, Sushentsev N, Lee KL, Caglic I, Englman C, Moore CM, Giganti F, Barrett T. The PRECISE Recommendations for Prostate MRI in Patients on Active Surveillance for Prostate Cancer: A Critical Review. AJR Am J Roentgenol 2023; 221:649-660. [PMID: 37341180 DOI: 10.2214/ajr.23.29518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were published in 2016 to standardize the reporting of MRI examinations performed to assess for disease progression in patients on active surveillance for prostate cancer. Although a limited number of studies have reported outcomes from use of PRECISE in clinical practice, the available studies have demonstrated PRECISE to have high pooled NPV but low pooled PPV for predicting progression. Our experience in using PRECISE in clinical practice at two teaching hospitals has highlighted issues with its application and areas requiring clarification. This Clinical Perspective critically appraises PRECISE on the basis of this experience, focusing on the system's key advantages and disadvantages and exploring potential changes to improve the system's utility. These changes include consideration of image quality when applying PRECISE scoring, incorporation of quantitative thresholds for disease progression, adoption of a PRECISE 3F sub-category for progression not qualifying as substantial, and comparisons with both the baseline and most recent prior examinations. Items requiring clarification include derivation of a patient-level score in patients with multiple lesions, intended application of PRECISE score 5 (i.e., if requiring development of disease that is no longer organ-confined), and categorization of new lesions in patients with prior MRI-invisible disease.
Collapse
Affiliation(s)
- Nimalan Sanmugalingam
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| |
Collapse
|
5
|
Mori N, Mugikura S, Takase K. The role of magnetic resonance imaging in prostate cancer patients on active surveillance. Br J Radiol 2023; 96:20220140. [PMID: 35604720 PMCID: PMC10607394 DOI: 10.1259/bjr.20220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Seiryo 1-1, Sendai, Japan
| | | | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Seiryo 1-1, Sendai, Japan
| |
Collapse
|
6
|
Zhang KS, Neelsen CJO, Wennmann M, Glemser PA, Hielscher T, Weru V, Görtz M, Schütz V, Stenzinger A, Hohenfellner M, Schlemmer HP, Bonekamp D. Same-day repeatability and Between-Sequence reproducibility of Mean ADC in PI-RADS lesions. Eur J Radiol 2023; 165:110898. [PMID: 37331287 DOI: 10.1016/j.ejrad.2023.110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE This study aimed to assess repeatability after repositioning (inter-scan), intra-rater, inter-rater and inter-sequence variability of mean apparent diffusion coefficient (ADC) measurements in MRI-detected prostate lesions. METHOD Forty-three patients with suspicion for prostate cancer were included and received a clinical prostate bi-/multiparametric MRI examination with repeat scans of the T2-weighted and two DWI-weighted sequences (ssEPI and rsEPI). Two raters (R1 and R2) performed single-slice, 2D regions of interest (2D-ROIs) and 3D-segmentation-ROIs (3D-ROIs). Mean bias, corresponding limits of agreement (LoA), mean absolute difference, within-subject coefficient of variation (CoV) and repeatability/reproducibility coefficient (RC/RDC) were calculated. Bradley & Blackwood test was used for variance comparison. Linear mixed models (LMM) were used to account for multiple lesions per patient. RESULTS Inter-scan repeatability, intra-rater and inter-sequence reproducibility analysis of ADC showed no significant bias. 3D-ROIs demonstrated significantly less variability than 2D-ROIs (p < 0.01). Inter-rater comparison demonstrated small significant systematic bias of 57 × 10-6 mm2/s for 3D-ROIs (p < 0.001). Intra-rater RC, with the lowest variation, was 145 and 189 × 10-6 mm2/s for 3D- and 2D-ROIs, respectively. For 3D-ROIs of ssEPI, RCs and RDCs were 190-198 × 10-6 mm2/s for inter-scan, inter-rater and inter-sequence variation. No significant differences were found for inter-scan, inter-rater and inter-sequence variability. CONCLUSIONS In a single-scanner setting, single-slice ADC measurements showed considerable variation, which may be lowered using 3D-ROIs. For 3D-ROIs, we propose a cut-off of ∼ 200 × 10-6 mm2/s for differences introduced by repositioning, rater or sequence effects. The results suggest that follow-up measurements should be possible by different raters or sequences.
Collapse
Affiliation(s)
- Kevin Sun Zhang
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Markus Wennmann
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magdalena Görtz
- Department of Urology, University of Heidelberg Medical Center, Heidelberg, Germany; Junior clinical cooperation unit 'Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Schütz
- Department of Urology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Germany
| | - David Bonekamp
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Germany; Heidelberg University Medical School, Heidelberg, Germany.
| |
Collapse
|
7
|
Thulasi Seetha S, Garanzini E, Tenconi C, Marenghi C, Avuzzi B, Catanzaro M, Stagni S, Villa S, Chiorda BN, Badenchini F, Bertocchi E, Sanduleanu S, Pignoli E, Procopio G, Valdagni R, Rancati T, Nicolai N, Messina A. Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation. J Pers Med 2023; 13:1172. [PMID: 37511785 PMCID: PMC10381192 DOI: 10.3390/jpm13071172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Stability analysis remains a fundamental step in developing a successful imaging biomarker to personalize oncological strategies. This study proposes an in silico contour generation method for simulating segmentation variations to identify stable radiomic features. Ground-truth annotation provided for the whole prostate gland on the multi-parametric MRI sequences (T2w, ADC, and SUB-DCE) were perturbed to mimic segmentation differences observed among human annotators. In total, we generated 15 synthetic contours for a given image-segmentation pair. One thousand two hundred twenty-four unfiltered/filtered radiomic features were extracted applying Pyradiomics, followed by stability assessment using ICC(1,1). Stable features identified in the internal population were then compared with an external population to discover and report robust features. Finally, we also investigated the impact of a wide range of filtering strategies on the stability of features. The percentage of unfiltered (filtered) features that remained robust subjected to segmentation variations were T2w-36% (81%), ADC-36% (94%), and SUB-43% (93%). Our findings suggest that segmentation variations can significantly impact radiomic feature stability but can be mitigated by including pre-filtering strategies as part of the feature extraction pipeline.
Collapse
Affiliation(s)
- Sithin Thulasi Seetha
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.T.S.); (R.V.)
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Enrico Garanzini
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (E.G.); (A.M.)
| | - Chiara Tenconi
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Department of Oncology and Hematooncology, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Marenghi
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Barbara Avuzzi
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Mario Catanzaro
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Silvia Stagni
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Sergio Villa
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Barbara Noris Chiorda
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Fabio Badenchini
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Elena Bertocchi
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Sebastian Sanduleanu
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Emanuele Pignoli
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Giuseppe Procopio
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.T.S.); (R.V.)
- Department of Oncology and Hematooncology, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Nicola Nicolai
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Antonella Messina
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (E.G.); (A.M.)
| |
Collapse
|
8
|
Møller JM, Boesen L, Hansen AE, Kettles K, Løgager V. Quantification of cross-vendor variation in ADC measurements in vendor-specific prostate MRI-protocols. Eur J Radiol 2023; 165:110942. [PMID: 37364483 DOI: 10.1016/j.ejrad.2023.110942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The purpose of this study was to quantify the variability of Apparent Diffusion Coefficient (ADC) and test if there were statistically significant differences in ADC between MRI systems and sequences. METHOD With a two-chamber cylindrical ADC phantom with fixed ADC values (1,000 and 1,600x10-6 mm2/s) a single-shot (ss) Echo Planar Imaging (EPI), a multi-shot EPI, a reduced field of view DWI (zoom) and a Turbo Spin Echo DWI sequence were tested in six MRI systems from three vendors at 1.5 T and 3 T. Technical parameters were according to Prostate Imaging Reporting and Data System Version 2.1. ADC maps were calculated by vendor specific algorithms. Absolute and relative differences in ADC from the phantom-ADC were calculated and differences between sequences were tested. RESULTS At 3 T absolute differences from phantom given ADC (∼1,000 and ∼ 1,600x10-6 mm2/s) were -83 - 42x10-6 mm2/s (-8.3%-4.2%) and -48 - 15x10-6 mm2/s (-3%-0.9%), respectively and at 1.5 T absolute differences were -81 - 26x10-6 mm2/s (-2.6%-8.1%) and -74 - 67x10-6 mm2/s (-4.6%-4.2%), respectively. Significant statistical differences in ADC measurements were identified between vendors in all sequences except for ssEPI and zoom at 3 T in the 1,600x10-6 mm2/s phantom chamber. Significant differences were also identified between ADC measurements at 1.5 T and 3 T in some of the sequences and vendors, but not all. CONCLUSION The variation of ADC between different MRI systems and prostate specific DWI sequences is limited in this phantom study and without apparent clinical relevance. However, prospective multicenter studies of prostate cancer patients are needed for further investigation.
Collapse
Affiliation(s)
- Jakob M Møller
- Dep. of Radiology, Copenhagen University Hospital, Herlev-Gentofte, Denmark, Borgmester Ib Juuls vej 17, DK-2730 Herlev, Denmark.
| | - Lars Boesen
- Dep. of Urology, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Adam Espe Hansen
- Dep of radiology, Copenhagen University Hospital, Rigshospitalet and dep. of clinical medicine Copenhagen University, Copenhagen, Denmark
| | | | - Vibeke Løgager
- Dep. of Radiology, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| |
Collapse
|
9
|
Sushentsev N, Rundo L, Abrego L, Li Z, Nazarenko T, Warren AY, Gnanapragasam VJ, Sala E, Zaikin A, Barrett T, Blyuss O. Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2023; 33:3792-3800. [PMID: 36749370 PMCID: PMC10182165 DOI: 10.1007/s00330-023-09438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. KEY POINTS: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, Italy
| | - Luis Abrego
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Zonglun Li
- Department of Mathematics, University College London, London, UK
| | - Tatiana Nazarenko
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Evis Sala
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alexey Zaikin
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Tristan Barrett
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Oleg Blyuss
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Center of Photonics, Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
10
|
Fütterer JJ, Kim CK, Margolis DJ. Innovations in prostate cancer: introductory editorial. Br J Radiol 2022; 95:20229003. [PMID: 35179398 PMCID: PMC8978236 DOI: 10.1259/bjr.20229003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jurgen J Fütterer
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Chan Kyo Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Daniel J Margolis
- Department of Radiology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
11
|
Luzzago S, Piccinelli ML, Mistretta FA, Bianchi R, Cozzi G, Di Trapani E, Cioffi A, Catellani M, Fontana M, Jannello LMI, Botticelli FMG, Marvaso G, Alessi S, Pricolo P, Ferro M, Matei DV, Jereczek-Fossa BA, Fusco N, Petralia G, de Cobelli O, Musi G. Repeat MRI during active surveillance: natural history of prostatic lesions and upgrading rates. BJU Int 2021; 129:524-533. [PMID: 34687137 DOI: 10.1111/bju.15623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess upgrading rates in patients on active surveillance (AS) for prostate cancer (PCa) after serial multiparametric magnetic resonance imaging (mpMRI). METHODS We conducted a retrospective analysis of 558 patients. Five different criteria for mpMRI progression were used: 1) a Prostate Imaging Reporting and Data System (PI-RADS) score increase; 2) a lesion size increase; 3) an extraprostatic extension score increase; 4) overall mpMRI progression; and 5) the number of criteria met for mpMRI progression (0 vs 1 vs 2-3). In addition, two definitions of PCa upgrading were evaluated: 1) International Society of Urological Pathology Grade Group (ISUP GG) ≥2 with >10% of pattern 4 and 2) ISUP GG ≥ 3. Estimated annual percent changes methodology was used to show the temporal trends of mpMRI progression criteria. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of mpMRI progression criteria were also analysed. Multivariable logistic regression models tested PCa upgrading rates. RESULTS Lower rates over time for all mpMRI progression criteria were observed. The NPV of serial mpMRI scans ranged from 90.5% to 93.5% (ISUP GG≥2 with >10% of pattern 4 PCa upgrading) and from 98% to 99% (ISUP GG≥3 PCa upgrading), depending on the criteria used for mpMRI progression. A prostate-specific antigen density (PSAD) threshold of 0.15 ng/mL/mL was used to substratify those patients who would be able to skip a prostate biopsy. In multivariable logistic regression models assessing PCa upgrading rates, all five mpMRI progression criteria achieved independent predictor status. CONCLUSION During AS, approximately 27% of patients experience mpMRI progression at first repeat MRI. However, the rates of mpMRI progression decrease over time at subsequent mpMRI scans. Patients with stable mpMRI findings and with PSAD < 0.15 ng/mL/mL could safely skip surveillance biopsies. Conversely, patients who experience mpMRI progression should undergo a prostate biopsy.
Collapse
Affiliation(s)
- Stefano Luzzago
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Bianchi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Gabriele Cozzi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Ettore Di Trapani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Cioffi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Michele Catellani
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Matteo Fontana
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | - Letizia Maria Ippolita Jannello
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | | | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Ferro
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Deliu-Victor Matei
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Barbara A Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Pathology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gennaro Musi
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|