1
|
Zhong J, Hu Y, Xing Y, Wang L, Li J, Lu W, Shi X, Ding D, Ge X, Zhang H, Yao W. Deep learning image reconstruction for low-kiloelectron volt virtual monoenergetic images in abdominal dual-energy CT: medium strength provides higher lesion conspicuity. Acta Radiol 2024; 65:1133-1146. [PMID: 39033390 DOI: 10.1177/02841851241262765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined. PURPOSE To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI. MATERIAL AND METHODS The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity. RESULTS The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all P < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all P < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (P < 0.001) and lesion conspicuity (P = 0.010). CONCLUSION DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, PR China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, PR China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, UK
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Hou P, Liu N, Feng X, Chen Y, Wang H, Wang X, Liu J, Zhan P, Liu X, Shang B, Shen Z, Wang L, Gao J, Lyu P. A paradigm shift in oncology imaging: a prospective cross-sectional study to assess low-dose deep learning image reconstruction versus standard-dose iterative reconstruction for comprehensive lesion detection in dual-energy computed tomography. Quant Imaging Med Surg 2024; 14:6449-6465. [PMID: 39281146 PMCID: PMC11400683 DOI: 10.21037/qims-24-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024]
Abstract
Background Low-kiloelectron volt (keV) virtual monochromatic images (VMIs) from low-dose (LD) dual-energy computed tomography (DECT) can enhance lesion contrast but suffer from high image noise. Recently, a deep learning image reconstruction (DLIR) algorithm has been developed and shown significant potential in suppressing image noise and improving image quality. To date, the capacity of LD low-keV thoracic-abdominal-pelvic DECT with DLIR to detect various types of tumor lesions have not been assessed. Hence, this study aimed to evaluate the image quality and lesion detection capabilities of LD VMIs using DLIR with thoracic-abdominal-pelvic DECT versus standard-dose (SD) iterative reconstruction (IR) in oncology patients. Methods This prospective intraindividual study included 56 oncology patients who received a SD (13.86 mGy) and a consecutive LD (7.15 mGy) thoracic-abdominal-pelvic DECT from April 2022 to July 2023 at The First Affiliated hospital of Zhengzhou University. SD VMIs were reconstructed using IR at 50 keV (SD-IR50 keV), while LD VMIs were processed using DLIR at 50 keV (LD-DL50 keV) and 40 keV (LD-DL40 keV), respectively. Quantitative image parameters [computed tomography (CT) values, image noise, and contrast-to-noise ratios (CNRs)], qualitative metrics (image noise, vessel conspicuity, image contrast, artificial sensation, and overall image quality), and lesion CNRs and conspicuity were compared. The lesion detection rates in the SD-IR50 keV, LD-DL50 keV, and LD-DL40 keV VMIs were assessed according to lesion location (lung, liver, and lymph), type, and size. Repeated measures analysis of variance and the Friedman test were applied for comparing quantitative and qualitative measures, respectively. The Cochran Q test was used for comparing lesion detection rates. Results Compared to SD-IR50 keV VMIs, LD-DL50 keV VMIs showed similar CT values and image noise (P>0.05), similar (P>0.05) or higher(P<0.05) CNRs, similar (P>0.05) or superior (P<0.05) perceptual image quality, and similar (P>0.05) or higher (P<0.001) lesion CNR and conspicuity. LD-DL40 keV VMIs exhibited higher CT values (by 40.4-47.1%) and CNRs (by 21.8-39.8%) (P<0.001), equivalent image noise, similar (P>0.05) or superior (P<0.05) perceptual image quality except for artificial sensation, and similar (P>0.05) or higher (P<0.001) lesion CNRs (by 16.5-46.3%) and conspicuity. The VMIs of LD-DL50 keV and LD-DL40 keV were consistent with those of SD-IR50 keV in terms of lesion detection capability in pulmonary nodules [SD-IR50 keV vs. LD-DL50 keV vs. LD-DL40 keV: 88/88 (100.0%) vs. 88/88 (100.0%) vs. 88/88 (100.0%); P>0.99], for lymph nodes [125/126 (99.2%) vs. 123/126 (97.6%) vs. 124/126 (98.4%); P>0.05], and high-contrast liver lesions [12/12 (100.0%) vs. 12/12 (100.0%) vs. 12/12 (100.0%); P>0.05], but not for small liver lesions (≤0.5 cm) [63/65 (96.9%) vs. 43/65 (66.2%) vs. 51/65 (78.5%); P<0.05] or low-contrast liver lesions [198/200 (99.0%) vs. 174/200 (87.0%) vs. 183/200 (91.5%); P<0.05]. Conclusions VMIs at 40 keV with DLIR enables a 50% decrease in the radiation dose while largely maintaining diagnostic capabilities for multidetection of pulmonary nodules, lymph nodes, and liver lesions in oncology patients.
Collapse
Affiliation(s)
- Ping Hou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangnan Feng
- Department of Statistics and Data Science, School of Management, Fudan University, Shanghai, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopeng Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengchao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhimeng Shen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luotong Wang
- CT imaging Research Center, GE Healthcare China, Beijing, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zhong J, Wang L, Yan C, Xing Y, Hu Y, Ding D, Ge X, Li J, Lu W, Shi X, Yuan F, Yao W, Zhang H. Deep learning image reconstruction generates thinner slice iodine maps with improved image quality to increase diagnostic acceptance and lesion conspicuity: a prospective study on abdominal dual-energy CT. BMC Med Imaging 2024; 24:159. [PMID: 38926711 PMCID: PMC11201298 DOI: 10.1186/s12880-024-01334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To assess the improvement of image quality and diagnostic acceptance of thinner slice iodine maps enabled by deep learning image reconstruction (DLIR) in abdominal dual-energy CT (DECT). METHODS This study prospectively included 104 participants with 136 lesions. Four series of iodine maps were generated based on portal-venous scans of contrast-enhanced abdominal DECT: 5-mm and 1.25-mm using adaptive statistical iterative reconstruction-V (Asir-V) with 50% blending (AV-50), and 1.25-mm using DLIR with medium (DLIR-M), and high strength (DLIR-H). The iodine concentrations (IC) and their standard deviations of nine anatomical sites were measured, and the corresponding coefficient of variations (CV) were calculated. Noise-power-spectrum (NPS) and edge-rise-slope (ERS) were measured. Five radiologists rated image quality in terms of image noise, contrast, sharpness, texture, and small structure visibility, and evaluated overall diagnostic acceptability of images and lesion conspicuity. RESULTS The four reconstructions maintained the IC values unchanged in nine anatomical sites (all p > 0.999). Compared to 1.25-mm AV-50, 1.25-mm DLIR-M and DLIR-H significantly reduced CV values (all p < 0.001) and presented lower noise and noise peak (both p < 0.001). Compared to 5-mm AV-50, 1.25-mm images had higher ERS (all p < 0.001). The difference of the peak and average spatial frequency among the four reconstructions was relatively small but statistically significant (both p < 0.001). The 1.25-mm DLIR-M images were rated higher than the 5-mm and 1.25-mm AV-50 images for diagnostic acceptability and lesion conspicuity (all P < 0.001). CONCLUSIONS DLIR may facilitate the thinner slice thickness iodine maps in abdominal DECT for improvement of image quality, diagnostic acceptability, and lesion conspicuity.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Yan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:113-137. [PMID: 38476981 PMCID: PMC10927029 DOI: 10.1109/trpms.2023.3314131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
- Alexandre Bousse
- LaTIM, Inserm UMR 1101, Université de Bretagne Occidentale, 29238 Brest, France
| | | | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, DD1 4HN, UK
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, 60061, USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
5
|
Li J, Zhu J, Zou Y, Zhang G, Zhu P, Wang N, Xie P. Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation. Eur J Radiol 2024; 171:111301. [PMID: 38237522 DOI: 10.1016/j.ejrad.2024.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVES To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). METHODS This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. RESULTS The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). CONCLUSIONS Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.
Collapse
Affiliation(s)
- Jiao Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Junying Zhu
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Yixuan Zou
- United Imaging Healthcare, Shanghai 201800, China.
| | - Guozhi Zhang
- United Imaging Healthcare, Shanghai 201800, China.
| | - Pan Zhu
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Ning Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Peiyi Xie
- Department of Radiology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
6
|
Lyu P, Li Z, Chen Y, Wang H, Liu N, Liu J, Zhan P, Liu X, Shang B, Wang L, Gao J. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy. Eur Radiol 2024; 34:28-38. [PMID: 37532899 DOI: 10.1007/s00330-023-10033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pengchao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
7
|
Chu B, Gan L, Shen Y, Song J, Liu L, Li J, Liu B. A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results. J Digit Imaging 2023; 36:2347-2355. [PMID: 37580484 PMCID: PMC10584787 DOI: 10.1007/s10278-023-00893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
This study aimed to compare the performance of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in improving image quality and diagnostic performance using virtual monochromatic spectral images in abdominal dual-energy computed tomography (DECT). Sixty-two patients [mean age ± standard deviation (SD): 56 years ± 13; 30 men] who underwent abdominal DECT were prospectively included in this study. The 70-keV DECT images in the portal phase were reconstructed at 5-mm and 1.25-mm slice thicknesses with 40% ASIR-V (ASIR-V40%) and at 1.25-mm slice with deep learning image reconstruction at medium (DLIR-M) and high (DLIR-H) levels and then compared. Computed tomography (CT) attenuation, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the liver, spleen, erector spinae, and intramuscular fat. The lesions in each reconstruction group at 1.25-mm slice thickness were counted. The image quality and diagnostic confidence were subjectively evaluated by two radiologists using a 5-point scale. For the 1.25-mm images, DLIR-M and DLIR-H had lower SD, higher SNR and CNR, and better subjective image quality compared with ASIR-V40%; DLIR-H performed the best (all P values < 0.001). Furthermore, the 1.25-mm DLIR-H images had similar SD, SNR, and CNR values as the 5-mm ASIR-V40% images (all P > 0.05). Three image groups had similar lesion detection rates, but DLIR groups exhibited higher confidence in diagnosing lesions. Compared with ASIR-V40% at 70 keV, 70-keV DECT with DLIR-H further reduced image noise and improved image quality. Additionally, it improved diagnostic confidence while ensuring a consistent lesion detection rate of liver lesions.
Collapse
Affiliation(s)
- Bingqian Chu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China
| | - Lu Gan
- Department of Radiology, Huainan Oriental Guangji Hospital, Huainan 232101, People's Republic of China
| | - Yi Shen
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China
| | - Jian Song
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China
| | - Ling Liu
- CT Research Center, GE Healthcare China, Shanghai 210000, People's Republic of China
| | - Jianying Li
- CT Research Center, GE Healthcare China, Shanghai 210000, People's Republic of China
| | - Bin Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Heifei 230022, People's Republic of China.
| |
Collapse
|
8
|
Jensen CT, Wong VK, Wagner-Bartak NA, Liu X, Padmanabhan Nair Sobha R, Sun J, Likhari GS, Gupta S. Accuracy of liver metastasis detection and characterization: Dual-energy CT versus single-energy CT with deep learning reconstruction. Eur J Radiol 2023; 168:111121. [PMID: 37806195 DOI: 10.1016/j.ejrad.2023.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE To assess whether image quality differences between SECT (single-energy CT) and DECT (dual-energy CT 70 keV) with equivalent radiation doses result in altered detection and characterization accuracy of liver metastases when using deep learning image reconstruction (DLIR), and whether DECT spectral curve usage improves accuracy of indeterminate lesion characterization. METHODS In this prospective Health Insurance Portability and Accountability Act-compliant study (March through August 2022), adult men and non-pregnant adult women with biopsy-proven colorectal cancer and liver metastases underwent SECT (120 kVp) and a DECT (70 keV) portovenous abdominal CT scan using DLIR in the same breath-hold (Revolution CT ES; GE Healthcare). Participants were excluded if consent could not be obtained, if there were nonequivalent radiation doses between the two scans, or if the examination was cancelled/rescheduled. Three radiologists independently performed lesion detection and characterization during two separate sessions (SECT DLIRmedium and DECT DLIRhigh) as well as reported lesion confidence and overall image quality. Hounsfield units were measured. Spectral HU curves were provided for any lesions rated as indeterminate. McNemar's test was used to test the marginal homogeneity in terms of diagnostic sensitivity, accuracy and lesion detection. A generalized estimating equation method was used for categorical outcomes. RESULTS 30 participants (mean age, 58 years ± 11, 21 men) were evaluated. Mean CTDIvol was 34 mGy for both scans. 141 lesions (124 metastases, 17 benign) with a mean size of 0.8 cm ± 0.3 cm were identified. High scores for image quality (scores of 4 or 5) were not significantly different between DECT (N = 71 out of 90 total scores from the three readers) and SECT (N = 62) (OR, 2.01; 95% CI:0.89, 4.57; P = 0.093). Equivalent image noise to SECT DLIRmed (HU SD 10 ± 2) was obtained with DECT DLIRhigh (HU SD 10 ± 3) (P = 1). There was no significant difference in lesion detection between DECT and SECT (140/141 lesions) (99.3%; 95% CI:96.1%, 100%).The mean lesion confidence scores by each reader were 4.2 ± 1.3, 3.9 ± 1.0, and 4.8 ± 0.8 for SECT and 4.1 ± 1.4, 4.0 ± 1.0, and 4.7 ± 0.8 for DECT (odds ratio [OR], 0.83; 95% CI: 0.62, 1.11; P = 0.21). Small lesion (≤5mm) characterization accuracy on SECT and DECT was 89.1% (95% CI:76.4%, 96.4%; 41/46) and 84.8% (71.1%, 93.7%; 39/46), respectively (P = 0.41). Use of spectral HU lesion curves resulted in 34 correct changes in characterizations and no mischaracterizations. CONCLUSION DECT required a higher strength of DLIR to obtain equivalent noise compared to SECT DLIR. At equivalent radiation doses and image noise, there was no significant difference in subjective image quality or observer lesion performance between DECT (70 keV) and SECT. However, DECT spectral HU curves of indeterminate lesions improved characterization.
Collapse
Affiliation(s)
- Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA.
| | - Vincenzo K Wong
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Nicolaus A Wagner-Bartak
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Xinming Liu
- Department of Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Renjith Padmanabhan Nair Sobha
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Gauruv S Likhari
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| | - Shiva Gupta
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX 77030-4009, USA
| |
Collapse
|
9
|
Shehata MA, Saad AM, Kamel S, Stanietzky N, Roman-Colon AM, Morani AC, Elsayes KM, Jensen CT. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY) 2023; 48:2724-2756. [PMID: 37280374 DOI: 10.1007/s00261-023-03966-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To perform a systematic literature review and meta-analysis of the two most common commercially available deep-learning algorithms for CT. METHODS We used PubMed, Scopus, Embase, and Web of Science to conduct systematic searches for studies assessing the most common commercially available deep-learning CT reconstruction algorithms: True Fidelity (TF) and Advanced intelligent Clear-IQ Engine (AiCE) in the abdomen of human participants since only these two algorithms currently have adequate published data for robust systematic analysis. RESULTS Forty-four articles fulfilled inclusion criteria. 32 studies evaluated TF and 12 studies assessed AiCE. DLR algorithms produced images with significantly less noise (22-57.3% less than IR) but preserved a desirable noise texture with increased contrast-to-noise ratios and improved lesion detectability on conventional CT. These improvements with DLR were similarly noted in dual-energy CT which was only assessed for a single vendor. Reported radiation reduction potential was 35.1-78.5%. Nine studies assessed observer performance with the two dedicated liver lesion studies being performed on the same vendor reconstruction (TF). These two studies indicate preserved low contrast liver lesion detection (> 5 mm) at CTDIvol 6.8 mGy (BMI 23.5 kg/m2) to 12.2 mGy (BMI 29 kg/m2). If smaller lesion detection and improved lesion characterization is needed, a CTDIvol of 13.6-34.9 mGy is needed in a normal weight to obese population. Mild signal loss and blurring have been reported at high DLR reconstruction strengths. CONCLUSION Deep learning reconstructions significantly improve image quality in CT of the abdomen. Assessment of other dose levels and clinical indications is needed. Careful choice of radiation dose levels is necessary, particularly for small liver lesion assessment.
Collapse
Affiliation(s)
- Mostafa A Shehata
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Ajaykumar C Morani
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA.
| |
Collapse
|
10
|
Zhong J, Wang L, Shen H, Li J, Lu W, Shi X, Xing Y, Hu Y, Ge X, Ding D, Yan F, Du L, Yao W, Zhang H. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers. Eur Radiol 2023; 33:5331-5343. [PMID: 36976337 DOI: 10.1007/s00330-023-09556-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES To evaluate image quality, diagnostic acceptability, and lesion conspicuity in abdominal dual-energy CT (DECT) using deep learning image reconstruction (DLIR) compared to those using adaptive statistical iterative reconstruction-V (Asir-V) at 50% blending (AV-50), and to identify potential factors impacting lesion conspicuity. METHODS The portal-venous phase scans in abdominal DECT of 47 participants with 84 lesions were prospectively included. The raw data were reconstructed to virtual monoenergetic image (VMI) at 50 keV using filtered back-projection (FBP), AV-50, and DLIR at low (DLIR-L), medium (DLIR-M), and high strength (DLIR-H). A noise power spectrum (NPS) was generated. CT number and standard deviation values of eight anatomical sites were measured. Signal-to-noise (SNR), and contrast-to-noise ratio (CNR) values were calculated. Five radiologists assessed image quality in terms of image contrast, image noise, image sharpness, artificial sensation, and diagnostic acceptability, and evaluated the lesion conspicuity. RESULTS DLIR further reduced image noise (p < 0.001) compared to AV-50 while better preserved the average NPS frequency (p < 0.001). DLIR maintained CT number values (p > 0.99) and improved SNR and CNR values compared to AV-50 (p < 0.001). DLIR-H and DLIR-M showed higher ratings in all image quality analyses than AV-50 (p < 0.001). DLIR-H provided significantly better lesion conspicuity than AV-50 and DLIR-M regardless of lesion size, relative CT attenuation to surrounding tissue, or clinical purpose (p < 0.05). CONCLUSIONS DLIR-H could be safely recommended for routine low-keV VMI reconstruction in daily contrast-enhanced abdominal DECT to improve image quality, diagnostic acceptability, and lesion conspicuity. KEY POINTS • DLIR is superior to AV-50 in noise reduction, with less shifts of the average spatial frequency of NPS towards low frequency, and larger improvements of NPS noise, noise peak, SNR, and CNR values. • DLIR-M and DLIR-H generate better image quality in terms of image contrast, noise, sharpness, artificial sensation, and diagnostic acceptability than AV-50, while DLIR-H provides better lesion conspicuity than AV-50 and DLIR-M. • DLIR-H could be safely recommended as a new standard for routine low-keV VMI reconstruction in contrast-enhanced abdominal DECT to provide better lesion conspicuity and better image quality than the standard AV-50.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Sartoretti T, McDermott M, Mergen V, Euler A, Schmidt B, Jost G, Wildberger JE, Alkadhi H. Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality. Br J Radiol 2023; 96:20220466. [PMID: 36633005 PMCID: PMC9975359 DOI: 10.1259/bjr.20220466] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To assess the impact of low kilo-electronvolt (keV) virtual monoenergetic image (VMI) energies and iterative reconstruction on image quality of clinical photon-counting detector coronary CT angiography (CCTA). METHODS CCTA with PCD-CT (prospective ECG-triggering, 120 kVp, automatic tube current modulation) was performed in a high-end cardiovascular phantom with dynamic flow, pulsatile heart motion, and including different calcified plaques with various stenosis grades and in 10 consecutive patients. VMI at 40,50,60 and 70 keV were reconstructed without (QIR-off) and with all quantum iterative reconstruction (QIR) levels (QIR-1 to 4). In the phantom, noise power spectrum, vessel attenuation, contrast-to-noise-ratio (CNR), and vessel sharpness were measured. Two readers graded stenoses in the phantom and graded overall image quality, subjective noise, vessel sharpness, vascular contrast, and coronary artery plaque delineation on 5-point Likert scales in patients. RESULTS In the phantom, noise texture was only slightly affected by keV and QIR while noise increased by 69% from 70 keV QIR-4 to 40 keV QIR-off. Reconstructions at 40 keV QIR-4 exhibited the highest CNR (46.1 ± 1.8), vessel sharpness (425 ± 42 ∆HU/mm), and vessel attenuation (1098 ± 14 HU). Stenosis measurements were not affected by keV or QIR level (p > 0.12) with an average error of 3%/6% for reader 1/reader 2, respectively. In patients, across all subjective categories and both readers, 40 keV QIR-3 and QIR-4 images received the best scores (p < 0.001). CONCLUSION Forty keV VMI with QIR-4 significantly improved image quality of CCTA with PCD-CT. ADVANCES IN KNOWLEDGE PCD-CT at 40 keV and QIR-4 improves image quality of CCTA.
Collapse
Affiliation(s)
| | | | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Jiang C, Jin D, Liu Z, Zhang Y, Ni M, Yuan H. Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance. Insights Imaging 2022; 13:182. [DOI: 10.1186/s13244-022-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Objectives
To evaluate image quality and diagnostic performance of carotid dual-energy computed tomography angiography (DECTA) using deep learning image reconstruction (DLIR) compared with images using adaptive statistical iterative reconstruction-Veo (ASIR-V).
Methods
Carotid DECTA datasets of 28 consecutive patients were reconstructed at 50 keV using DLIR at low, medium, and high levels (DLIR-L, DLIR-M, and DLIR-H) and 80% ASIR-V algorithms. Mean attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at different levels of arteries were measured and calculated. Image quality for noise and texture, depiction of arteries, and diagnostic performance toward carotid plaques were assessed subjectively by two radiologists. Quantitative and qualitative parameters were compared between the ASIR-V, DLIR-L, DLIR-M, and DLIR-H groups.
Results
The image noise at aorta and common carotid artery, SNR, and CNR at all level arteries of DLIR-H images were significantly higher than those of ASIR-V images (p = 0.000–0.040). The quantitative analysis of DLIR-L and DLIR-M showed comparable denoise capability with ASIR-V. The overall image quality (p = 0.000) and image noise (p = 0.000–0.014) were significantly better in the DLIR-M and DLIR-H images. The image texture was improved by DLR at all level compared to ASIR-V images (p = 0.000–0.008). Depictions of head and neck arteries and diagnostic performance were comparable between four groups (p > 0.05).
Conclusions
Compared with 80% ASIR-V, we recommend DLIR-H for clinical carotid DECTA reconstruction, which can significantly improve the image quality of carotid DECTA at 50 keV but maintain a desirable diagnostic performance and arterial depiction.
Collapse
|