1
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
2
|
Barozzi C, Zacchini F, Asghar S, Montanaro L. Ribosomal RNA Pseudouridylation: Will Newly Available Methods Finally Define the Contribution of This Modification to Human Ribosome Plasticity? Front Genet 2022; 13:920987. [PMID: 35719370 PMCID: PMC9198423 DOI: 10.3389/fgene.2022.920987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
In human rRNA, at least 104 specific uridine residues are modified to pseudouridine. Many of these pseudouridylation sites are located within functionally important ribosomal domains and can influence ribosomal functional features. Until recently, available methods failed to reliably quantify the level of modification at each specific rRNA site. Therefore, information obtained so far only partially explained the degree of regulation of pseudouridylation in different physiological and pathological conditions. In this focused review, we provide a summary of the methods that are now available for the study of rRNA pseudouridylation, discussing the perspectives that newly developed approaches are offering.
Collapse
Affiliation(s)
- Chiara Barozzi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Federico Zacchini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Sidra Asghar
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Lorenzo Montanaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
3
|
PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2. NPJ Genom Med 2022; 7:19. [PMID: 35288589 PMCID: PMC8921233 DOI: 10.1038/s41525-022-00292-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Current somatic mutation callers are biased against repetitive regions, preventing the identification of potential driver alterations in these loci. We developed a mutation caller for repetitive regions, and applied it to study repetitive non protein-coding genes in more than 2200 whole-genome cases. We identified a recurrent mutation at position c.28 in the gene encoding the snRNA U2. This mutation is present in B-cell derived tumors, as well as in prostate and pancreatic cancer, suggesting U2 c.28 constitutes a driver candidate associated with worse prognosis. We showed that the GRCh37 reference genome is incomplete, lacking the U2 cluster in chromosome 17, preventing the identification of mutations in this gene. Furthermore, the 5′-flanking region of WDR74, previously described as frequently mutated in cancer, constitutes a functional copy of U2. These data reinforce the relevance of non-coding mutations in cancer, and highlight current challenges of cancer genomic research in characterizing mutations affecting repetitive genes.
Collapse
|
4
|
Deryusheva S, Talross GJS, Gall JG. SnoRNA guide activities: real and ambiguous. RNA (NEW YORK, N.Y.) 2021; 27:1363-1373. [PMID: 34385348 PMCID: PMC8522698 DOI: 10.1261/rna.078916.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified post-transcriptionally. Pseudouridylation and 2'-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-Ψ609, despite some noncanonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells, a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, post-transcriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Calvo Sánchez J, Köhn M. Small but Mighty-The Emerging Role of snoRNAs in Hematological Malignancies. Noncoding RNA 2021; 7:68. [PMID: 34842767 PMCID: PMC8629011 DOI: 10.3390/ncrna7040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained interest among the scientific community, especially in the clinical context. The main molecular role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the development of new sequencing techniques and sophisticated analysis pipelines, new members of the snoRNA family were identified and global expression patterns in disease backgrounds could be determined. We will herein shed light on the current research progress in snoRNA biology and their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However, research is only starting to reveal how snoRNAs might influence cellular functions and the connected disease hallmarks in hematological malignancies.
Collapse
Affiliation(s)
| | - Marcel Köhn
- Junior Research Group ‘RBPs and ncRNAs in Human Diseases’, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Saale, Germany;
| |
Collapse
|
6
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Genes Dev 2021; 35:1123-1141. [PMID: 34301768 PMCID: PMC8336889 DOI: 10.1101/gad.348660.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
In this study, Bizarro et al. sought to understand the function and subcellular site of snRNA modification, and found that Cajal body (CB) localization of the protein Nopp140 is essential for concentration of small Cajal body-specific ribonucleoproteins (scaRNPs) in nuclear condensate and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
Affiliation(s)
| | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Varun Gupta
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felix G M Ernst
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Joseph G Gall
- Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - U Thomas Meier
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
7
|
Beneventi G, Munita R, Cao Thi Ngoc P, Madej M, Cieśla M, Muthukumar S, Krogh N, Nielsen H, Swaminathan V, Bellodi C. The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer 2021; 3:zcab026. [PMID: 34316713 PMCID: PMC8271217 DOI: 10.1093/narcan/zcab026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023] Open
Abstract
Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell survival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.
Collapse
Affiliation(s)
- Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| |
Collapse
|
8
|
Morais P, Adachi H, Yu YT. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021; 12:652129. [PMID: 33737950 PMCID: PMC7960923 DOI: 10.3389/fgene.2021.652129] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are critical components of the spliceosome that catalyze the splicing of pre-mRNA. snRNAs are each complexed with many proteins to form RNA-protein complexes, termed as small nuclear ribonucleoproteins (snRNPs), in the cell nucleus. snRNPs participate in pre-mRNA splicing by recognizing the critical sequence elements present in the introns, thereby forming active spliceosomes. The recognition is achieved primarily by base-pairing interactions (or nucleotide-nucleotide contact) between snRNAs and pre-mRNA. Notably, snRNAs are extensively modified with different RNA modifications, which confer unique properties to the RNAs. Here, we review the current knowledge of the mechanisms and functions of snRNA modifications and their biological relevance in the splicing process.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
10
|
Yamaki Y, Nobe Y, Koike M, Yamauchi Y, Hirota K, Takahashi N, Nakayama H, Isobe T, Taoka M. Direct Determination of Pseudouridine in RNA by Mass Spectrometry Coupled with Stable Isotope Labeling. Anal Chem 2020; 92:11349-11356. [PMID: 32662983 DOI: 10.1021/acs.analchem.0c02122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pseudouridine (Ψ) is the only "mass-silent" nucleoside produced by post-transcriptional RNA modification. We developed a mass spectrometry (MS)-based technique coupled with in vivo deuterium (D) labeling of uridines for direct determination of Ψs in cellular RNA and applied it to the comprehensive analysis of post-transcriptional modifications in human ribosomal RNAs. The method utilizes human TK6/mouse FM3A cells deficient in uridine monophosphate synthase using a CRISPR-Cas9 technique to turn off de novo uridine synthesis and fully labels uridines with D at uracil positions 5 and 6 by cultivating the cells in a medium containing uridine-5,6-D2. The pseudouridylation reaction in those cells results in the exchange of the D at the C5 of uracil with hydrogen from solvent, which produces a -1 Da mass shift, thus allowing MS-based determination of RNA Ψs. We present here the experimental details of this method and show that it allows the identification of all Ψs in human major nuclear and nucleolar RNAs, including several previously unknown Ψs. Because the method allows direct determination of Ψs at the femtomole level of RNA, it will serve as a useful tool for structure/function studies of a wide variety of noncoding RNAs.
Collapse
Affiliation(s)
- Yuka Yamaki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masami Koike
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Biotechnology, Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Logan MK, McLaurin DM, Hebert MD. Synergistic interactions between Cajal bodies and the miRNA processing machinery. Mol Biol Cell 2020; 31:1561-1569. [PMID: 32432989 PMCID: PMC7521794 DOI: 10.1091/mbc.e20-02-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cajal bodies (CBs) are subnuclear domains involved in the formation of ribonucleoproteins (RNPs) including small nuclear RNPs (snRNPs). CBs associate with specific gene loci, which impacts expression and provides a platform for the biogenesis of the nascent transcripts emanating from these genes. Here we report that CBs can associate with the C19MC microRNA (miRNA) gene cluster, which suggests a role for CBs in the biogenesis of animal miRNAs. The machinery involved in the formation of miRNAs includes the Drosha/DGCR8 complex, which processes primary-miRNA to precursor miRNA. Further processing of precursor miRNA by Dicer and other components generates mature miRNA. To test if CBs influence the expression and formation of miRNAs, we examined two representative miRNAs (miR-520 h and let-7a) in conditions that disrupt CBs. CB disruption correlates with alterations in the level of primary and mature miRNA and the let-7a mRNA target, HMGA2. We have also found that the processing of some small CB-specific RNAs (scaRNAs) is directly mediated by the Drosha/DGCR8 complex. ScaRNAs form scaRNPs, which play an important role in snRNP formation. Collectively, our results demonstrate that CBs and the miRNA processing machinery functionally interact and together contribute to the biogenesis of miRNAs and snRNPs.
Collapse
Affiliation(s)
- Madelyn K Logan
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| | - Douglas M McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| | - Michael D Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
12
|
Nostramo RT, Hopper AK. Beyond rRNA and snRNA: tRNA as a 2'-O-methylation target for nucleolar and Cajal body box C/D RNPs. Genes Dev 2020; 33:739-740. [PMID: 31262844 PMCID: PMC6601515 DOI: 10.1101/gad.328443.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Outlook discusses Vitali and Kiss's finding that uncovers a new role for SNORD97 and SCARNA97 in tRF biogenesis, which modulates a diverse set of cellular functions in human health and disease. Box C/D small nucleolar RNAs (snoRNAs) and small Cajal body (CB) RNAs (scaRNAs) form ribonucleoprotein (RNP) complexes to mediate 2′-O-methylation of rRNAs and small nuclear RNAs (snRNAs), respectively. The site of methylation is determined by antisense elements in the box C/D RNAs that are complementary to sequences in target RNAs. However, numerous box C/D RNAs in mammalian cells lack antisense elements to rRNAs or snRNAs; thus, their targets remain unknown. In this issue of Genes & Development, Vitali and Kiss (pp. 741–746) demonstrate that “orphan” nucleolar box C/D snoRNA SNORD97 and CB box C/D scaRNA SCARNA97 contain antisense elements that target the wobble cytidine at position 34 of human elongator tRNAMet(CAT) for 2′-O-methylation (C34m). C34m is jointly mediated by SNORD97 and SCARNA97 despite their apparently different intranuclear locations. Furthermore, the investigators demonstrate that C34m prohibits site-specific cleavage of tRNAMet (CAT) into tRNA fragments (tRFs) by the stress-responsive endoribonuclease angiogenin, thereby uncovering a role for SNORD97 and SCARNA97 in the biogenesis of tRFs, which modulate a diverse set of cellular functions in human health and disease.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Deryusheva S, Talhouarne GJS, Gall JG. "Lost and Found": snoRNA Annotation in the Xenopus Genome and Implications for Evolutionary Studies. Mol Biol Evol 2020; 37:149-166. [PMID: 31553476 PMCID: PMC6984369 DOI: 10.1093/molbev/msz209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) function primarily as guide RNAs for posttranscriptional modification of rRNAs and spliceosomal snRNAs, both of which are functionally important and evolutionarily conserved molecules. It is commonly believed that snoRNAs and the modifications they mediate are highly conserved across species. However, most relevant data on snoRNA annotation and RNA modification are limited to studies on human and yeast. Here, we used RNA-sequencing data from the giant oocyte nucleus of the frog Xenopus tropicalis to annotate a nearly complete set of snoRNAs. We compared the frog data with snoRNA sets from human and other vertebrate genomes, including mammals, birds, reptiles, and fish. We identified many Xenopus-specific (or nonhuman) snoRNAs and Xenopus-specific domains in snoRNAs from conserved RNA families. We predicted that some of these nonhuman snoRNAs and domains mediate modifications at unexpected positions in rRNAs and snRNAs. These modifications were mapped as predicted when RNA modification assays were applied to RNA from nine vertebrate species: frogs X. tropicalis and X. laevis, newt Notophthalmus viridescens, axolotl Ambystoma mexicanum, whiptail lizard Aspidoscelis neomexicana, zebrafish Danio rerio, chicken, mouse, and human. This analysis revealed that only a subset of RNA modifications is evolutionarily conserved and that modification patterns may vary even between closely related species. We speculate that each functional domain in snoRNAs (half of an snoRNA) may evolve independently and shuffle between different snoRNAs.
Collapse
Affiliation(s)
| | | | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| |
Collapse
|
14
|
Identification of U11snRNA as an endogenous agonist of TLR7-mediated immune pathogenesis. Proc Natl Acad Sci U S A 2019; 116:23653-23661. [PMID: 31694883 PMCID: PMC6876158 DOI: 10.1073/pnas.1915326116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) is central to host defense against infections. On the other hand, these receptors are also activated by immunogenic damage-associated molecular patterns (DAMPs), typically released from dying cells, and the activation can evoke chronic inflammatory or autoimmune disorders. One of the best known receptors involved in the immune pathogenesis is Toll-like receptor 7 (TLR7), which recognizes RNA with single-stranded structure. However, the causative DAMP RNA(s) in the pathogenesis has yet to be identified. Here, we first developed a chemical compound, termed KN69, that suppresses autoimmunity in several established mouse models. A subsequent search for KN69-binding partners led to the identification of U11 small nuclear RNA (U11snRNA) as a candidate DAMP RNA involved in TLR7-induced autoimmunity. We then showed that U11snRNA robustly activated the TLR7 pathway in vitro and induced arthritis disease in vivo. We also found a correlation between high serum level of U11snRNA and autoimmune diseases in human subjects and established mouse models. Finally, by revealing the structural basis for U11snRNA's ability to activate TLR7, we developed more potent TLR7 agonists and TLR7 antagonists, which may offer new therapeutic approaches for autoimmunity or other immune-driven diseases. Thus, our study has revealed a hitherto unknown immune function of U11snRNA, providing insight into TLR7-mediated autoimmunity and its potential for further therapeutic applications.
Collapse
|
15
|
Deryusheva S, Gall JG. Small, Smaller, Smallest: Minimal Structural Requirements for a Fully Functional Box C/D Modification Guide RNA. Biomolecules 2019; 9:E457. [PMID: 31500270 PMCID: PMC6770171 DOI: 10.3390/biom9090457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023] Open
Abstract
Site-specific 2'-O-ribose methylation is an abundant post-transcriptional modification mediated by small non-coding nuclear RNAs known as box C/D modification guide RNAs. The minimal structural requirements for these guide RNAs to function in higher eukaryotes are still unclear. To address this question, we generated a series of mutant variants of Drosophila box C/D scaRNA:MeU2-C28 and tested their modification guide activities in the Xenopus oocyte system. Our data suggest that box C/D guide RNA function requires either a terminal or an internal consensus kink-turn structure. We identified the minimal functional box C/D guide RNA. It consists of a single-domain molecule with (i) a terminal stem with a consensus kink-turn domain, (ii) one box C and box D connected by a 14-nucleotide antisense element and (iii) a one-nucleotide spacer between the box C and the antisense element. In this single domain RNA, the sequence of the spacer is more important than its length. We suggest that the secondary structure of box C/D RNAs, essential for guide RNA function, is more complex than generally supposed. At the same time, the expression of functional extremely short single-domain box C/D RNAs is possible in higher eukaryotes.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D. The Epitranscriptome in Translation Regulation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032623. [PMID: 30037968 DOI: 10.1101/cshperspect.a032623] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular proteome reflects the total outcome of many regulatory mechanisms that affect the metabolism of messenger RNA (mRNA) along its pathway from synthesis to degradation. Accumulating evidence in recent years has uncovered the roles of a growing number of mRNA modifications in every step along this pathway, shaping translational output. mRNA modifications affect the translation machinery directly, by influencing translation initiation, elongation and termination, or by altering mRNA levels and subcellular localization. Features of modification-related translational control are described, charting a new and complex layer of translational regulation.
Collapse
Affiliation(s)
- Eyal Peer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Sharon Moshitch-Moshkovitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Gideon Rechavi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Dan Dominissini
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| |
Collapse
|
17
|
Vitali P, Kiss T. Cooperative 2'-O-methylation of the wobble cytidine of human elongator tRNA Met(CAT) by a nucleolar and a Cajal body-specific box C/D RNP. Genes Dev 2019; 33:741-746. [PMID: 31171702 PMCID: PMC6601510 DOI: 10.1101/gad.326363.119] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Site-specific 2'-O-ribose methylation of mammalian rRNAs and RNA polymerase II-synthesized spliceosomal small nuclear RNAs (snRNAs) is mediated by small nucleolar and small Cajal body (CB)-specific box C/D ribonucleoprotein particles (RNPs) in the nucleolus and the nucleoplasmic CBs, respectively. Here, we demonstrate that 2'-O-methylation of the C34 wobble cytidine of human elongator tRNAMet(CAT) is achieved by collaboration of a nucleolar and a CB-specific box C/D RNP carrying the SNORD97 and SCARNA97 box C/D 2'-O-methylation guide RNAs. Methylation of C34 prevents site-specific cleavage of tRNAMet(CAT) by the stress-induced endoribonuclease angiogenin, implicating box C/D guide RNPs in controlling stress-responsive production of putative regulatory tRNA fragments.
Collapse
Affiliation(s)
- Patrice Vitali
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, Centre National de la Recherche Scientifique, Centre de Biologie Intégrative, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, Centre National de la Recherche Scientifique, Centre de Biologie Intégrative, Université Paul Sabatier, 31062 Toulouse Cedex 9, France.,Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| |
Collapse
|
18
|
Bohnsack MT, Sloan KE. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function. Biol Chem 2019; 399:1265-1276. [PMID: 29908124 DOI: 10.1515/hsz-2018-0205] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/28/2018] [Indexed: 01/27/2023]
Abstract
Modifications in cellular RNAs have emerged as key regulators of all aspects of gene expression, including pre-mRNA splicing. During spliceosome assembly and function, the small nuclear RNAs (snRNAs) form numerous dynamic RNA-RNA and RNA-protein interactions, which are required for spliceosome assembly, correct positioning of the spliceosome on substrate pre-mRNAs and catalysis. The human snRNAs contain several base methylations as well as a myriad of pseudouridines and 2'-O-methylated nucleotides, which are largely introduced by small Cajal body-specific ribonucleoproteins (scaRNPs). Modified nucleotides typically cluster in functionally important regions of the snRNAs, suggesting that their presence could optimise the interactions of snRNAs with each other or with pre-mRNAs, or may affect the binding of spliceosomal proteins. snRNA modifications appear to play important roles in snRNP biogenesis and spliceosome assembly, and have also been proposed to influence the efficiency and fidelity of pre-mRNA splicing. Interestingly, alterations in the modification status of snRNAs have recently been observed in different cellular conditions, implying that some snRNA modifications are dynamic and raising the possibility that these modifications may fine-tune the spliceosome for particular functions. Here, we review the current knowledge on the snRNA modification machinery and discuss the timing, functions and dynamics of modifications in snRNAs.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
19
|
Izumikawa K, Nobe Y, Ishikawa H, Yamauchi Y, Taoka M, Sato K, Nakayama H, Simpson RJ, Isobe T, Takahashi N. TDP-43 regulates site-specific 2'-O-methylation of U1 and U2 snRNAs via controlling the Cajal body localization of a subset of C/D scaRNAs. Nucleic Acids Res 2019; 47:2487-2505. [PMID: 30759234 PMCID: PMC6412121 DOI: 10.1093/nar/gkz086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Melbourne Victoria 3086, Australia
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| |
Collapse
|
20
|
Deryusheva S, Gall JG. Orchestrated positioning of post-transcriptional modifications at the branch point recognition region of U2 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:30-42. [PMID: 28974555 PMCID: PMC5733568 DOI: 10.1261/rna.063842.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
The branch point recognition region of spliceosomal snRNA U2 is heavily modified post-transcriptionally in most eukaryotic species. We focused on this region to learn how nearby positions may interfere with each other when targeted for modification. Using an in vivo yeast Saccharomyces cerevisiae cell system, we tested the modification activity of several guide RNAs from human, mouse, the frog Xenopus tropicalis, the fruit fly Drosophila melanogaster, and the worm Caenorhabditis elegans We experimentally verified predictions for vertebrate U2 modification guide RNAs SCARNA4 and SCARNA15, and identified a C. elegans ortholog of SCARNA15. We observed crosstalk between sites in the heavily modified regions, such that modification at one site may inhibit modification at nearby sites. This is true for the branch point recognition region of U2 snRNA, the 5' loop of U5 snRNA, and certain regions of rRNAs, when tested either in yeast or in HeLa cells. The position preceding a uridine targeted for isomerization by a box H/ACA guide RNA is the most sensitive for noncanonical base-pairing and modification (either pseudouridylation or 2'-O-methylation). Based on these findings, we propose that modification must occur stepwise starting with the most vulnerable positions and ending with the most inhibiting modifications. We discuss possible strategies that cells use to reach complete modification in heavily modified regions.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
22
|
Deryusheva S, Gall JG. Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p-independent activities in yeasts and higher eukaryotes. RNA (NEW YORK, N.Y.) 2017; 23:1060-1067. [PMID: 28432181 PMCID: PMC5473140 DOI: 10.1261/rna.061226.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 05/05/2023]
Abstract
The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved post-transcriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast Saccharomyces cerevisiae and mouse. Furthermore, in S. cerevisiae, Pus1p is the only pseudouridine synthase for this position. Using an in vivo yeast cell system, we tested enzymatic activity of Pus1p from the fission yeast Schizosaccharomyces pombe, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the frog Xenopus tropicalis We demonstrated that Pus1p from C. elegans has no enzymatic activity on U2 snRNA when expressed in yeast cells, whereas in similar experiments, position 44 in yeast U2 snRNA (equivalent to position 43 in vertebrates) is a genuine substrate for Pus1p from S. cerevisiae, S. pombe, Drosophila, Xenopus, and mouse. However, when we analyzed U2 snRNAs from Pus1 knockout mice and the pus1Δ S. pombe strain, we could not detect any changes in their modification patterns when compared to wild-type U2 snRNAs. In S. pombe, we found a novel box H/ACA RNA encoded downstream from the RPC10 gene and experimentally verified its guide RNA activity for positioning Ψ43 and Ψ44 in U2 snRNA. In vertebrates, we showed that SCARNA8 (also known as U92 scaRNA) is a guide for U2-Ψ43 in addition to its previously established targets U2-Ψ34/Ψ44.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
23
|
Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, Dominissini D, He C. Nm-seq maps 2'-O-methylation sites in human mRNA with base precision. Nat Methods 2017; 14:695-698. [PMID: 28504680 DOI: 10.1038/nmeth.4294] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/18/2017] [Indexed: 12/30/2022]
Abstract
The ribose of RNA nucleotides can be 2'-O-methylated (Nm). Despite advances in high-throughput detection, the inert chemical nature of Nm still limits sensitivity and precludes mapping in mRNA. We leveraged the differential reactivity of 2'-O-methylated and 2'-hydroxylated nucleosides to periodate oxidation to develop Nm-seq, a sensitive method for transcriptome-wide mapping of Nm with base precision. Nm-seq uncovered thousands of Nm sites in human mRNA with features suggesting functional roles.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA
| | - Sharon Moshitch-Moshkovitz
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Dali Han
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA
| | - Nitzan Kol
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ninette Amariglio
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Dominissini
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Abstract
Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates. Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of noncoding RNAs.
Collapse
Affiliation(s)
- U Thomas Meier
- a Albert Einstein College of Medicine , Department of Anatomy and Structural Biology , Bronx , NY , USA
| |
Collapse
|
25
|
Hyjek M, Wojciechowska N, Rudzka M, Kołowerzo-Lubnau A, Smoliński DJ. Spatial regulation of cytoplasmic snRNP assembly at the cellular level. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7019-30. [PMID: 26320237 PMCID: PMC4765780 DOI: 10.1093/jxb/erv399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.
Collapse
Affiliation(s)
- Malwina Hyjek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Natalia Wojciechowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magda Rudzka
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| |
Collapse
|
26
|
Adachi H, Yu YT. Insight into the mechanisms and functions of spliceosomal snRNA pseudouridylation. World J Biol Chem 2014; 5:398-408. [PMID: 25426264 PMCID: PMC4243145 DOI: 10.4331/wjbc.v5.i4.398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Pseudouridines (Ψs) are the most abundant and highly conserved modified nucleotides found in various stable RNAs of all organisms. Most Ψs are clustered in regions that are functionally important for pre-mRNA splicing. Ψ has an extra hydrogen bond donor that endows RNA molecules with distinct properties that contribute significantly to RNA-mediated cellular processes. Experimental data indicate that spliceosomal snRNA pseudouridylation can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Recent work has also demonstrated that pseudouridylation can be induced at novel positions under stress conditions, suggesting a regulatory role for Ψ.
Collapse
|
27
|
Lee MS, Lin YS, Deng YF, Hsu WT, Shen CC, Cheng YH, Huang YT, Li C. Modulation of alternative splicing by expression of small nuclear ribonucleoprotein polypeptide N. FEBS J 2014; 281:5194-207. [PMID: 25238490 DOI: 10.1111/febs.13059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/22/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023]
Abstract
Alternative splicing of pre-mRNA, catalyzed by small nuclear ribonucleoproteins (snRNPs), plays an important role in proteome complexity and the modulation of cellular functions. snRNP polypeptide N (SmN), is tissue-specifically expressed, where it replaces snRNP polypeptide B (SmB)/B' in the Sm core assembly of snRNPs. Recent studies have demonstrated that perturbation of snRNPs leads to alternative splicing, but whether SmN modulates functions of the splicing machinery remains unclear. In this study, we found that ectopic expression of SmN increased utilization of the proximal 5' splice site on an adenovirus early gene 1A reporter. To evaluate the molecular mechanisms underlying SmN-dependent alternative splicing, we generated a HeLa cell line with an inducible expression system for SmN. Upon SmN induction, SmB/B' expression decreased dramatically, despite only small changes in the level and splicing pattern of SNRPB mRNA. In addition, SmN was incorporated into the U2 snRNP but not into the U1 snRNP after induction. Sedimentation analysis revealed a decrease in the level of mature U2 snRNP. This result suggests that SmN incorporation into the Sm core may impede processing, decreasing the level of functional U2 snRNP. We also found that the inclusion frequencies of alternatively spliced exons in the bridging integrator 1 and exocyst complex component 7 (EXOC7) genes were modulated by SmN expression. An enhanced GFP-EXOC7 reporter was used to confirm that SmN increases the inclusion frequency of EXOC7 exon 7. Taken together, our findings indicate that SmN expression reduces the level of mature U2 snRNP, leading to alternative splicing.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Marnef A, Richard P, Pinzón N, Kiss T. Targeting vertebrate intron-encoded box C/D 2'-O-methylation guide RNAs into the Cajal body. Nucleic Acids Res 2014; 42:6616-29. [PMID: 24753405 PMCID: PMC4041459 DOI: 10.1093/nar/gku287] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/03/2023] Open
Abstract
Post-transcriptional pseudouridylation and 2'-O-methylation of splicesomal small nuclear ribonucleic acids (snRNAs) is mediated by box H/ACA and box C/D small Cajal body (CB)-specific ribonucleoproteins (scaRNPs), respectively. The WD-repeat protein 79 (WDR79) has been proposed to interact with both classes of modification scaRNPs and target them into the CB. The box H/ACA scaRNAs carry the common CAB box motif (consensus, ugAG) that is required for both WDR79 binding and CB-specific accumulation. Thus far, no cis-acting CB-localization element has been reported for vertebrate box C/D scaRNAs. In this study, systematic mutational analysis of the human U90 and another newly identified box C/D scaRNA, mgU2-47, demonstrated that the CB-specific accumulation of vertebrate intron-encoded box C/D scaRNAs relies on GU- or UG-dominated dinucleotide repeat sequences which are predicted to form the terminal stem-loop of the RNA apical hairpin. While the loop nucleotides are unimportant, the adjacent terminal helix that is composed mostly of consecutive G.U and U.G wobble base-pairs is essential for CB-specific localization of box C/D scaRNAs. Co-immunoprecipitation experiments confirmed that the newly identified CB localization element, called the G.U/U.G wobble stem, is crucial for in vivo association of box C/D scaRNPs with WDR79.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Patrica Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Natalia Pinzón
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
29
|
Cauchi RJ. Gem depletion: amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 2014; 20:574-81. [PMID: 24645792 DOI: 10.1111/cns.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| |
Collapse
|
30
|
Deryusheva S, Gall JG. Novel small Cajal-body-specific RNAs identified in Drosophila: probing guide RNA function. RNA (NEW YORK, N.Y.) 2013; 19:1802-14. [PMID: 24149844 PMCID: PMC3884663 DOI: 10.1261/rna.042028.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 05/05/2023]
Abstract
The spliceosomal small nuclear RNAs (snRNAs) are modified post-transcriptionally by introduction of pseudouridines and 2'-O-methyl modifications, which are mediated by box H/ACA and box C/D guide RNAs, respectively. Because of their concentration in the nuclear Cajal body (CB), these guide RNAs are known as small CB-specific (sca) RNAs. In the cell, scaRNAs are associated with the WD-repeat protein WDR79. We used coimmunoprecipitation with WDR79 to recover seven new scaRNAs from Drosophila cell lysates. We demonstrated concentration of these new scaRNAs in the CB by in situ hybridization, and we verified experimentally that they can modify their putative target RNAs. Surprisingly, one of the new scaRNAs targets U6 snRNA, whose modification is generally assumed to occur in the nucleolus, not in the CB. Two other scaRNAs have dual guide functions, one for an snRNA and one for 28S rRNA. Again, the modification of 28S rRNA is assumed to take place in the nucleolus. These findings suggest that canonical scaRNAs may have functions in addition to their established role in modifying U1, U2, U4, and U5 snRNAs. We discuss the likelihood that processing by scaRNAs is not limited to the CB.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
31
|
Mazières J, Catherinne C, Delfour O, Gouin S, Rouquette I, Delisle MB, Prévot G, Escamilla R, Didier A, Persing DH, Bates M, Michot B. Alternative processing of the U2 small nuclear RNA produces a 19-22nt fragment with relevance for the detection of non-small cell lung cancer in human serum. PLoS One 2013; 8:e60134. [PMID: 23527303 PMCID: PMC3603938 DOI: 10.1371/journal.pone.0060134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022] Open
Abstract
RNU2 exists in two functional forms (RNU2-1 and RNU2-2) distinguishable by the presence of a unique 4-bases motif. Detailed investigation of datasets obtained from deep sequencing of five human lung primary tumors revealed that both forms express at a high rate a 19-22nt fragment (miR-U2-1 and -2) from its 3' region and contains the 4-bases motif. Deep sequencing of independent pools of serum samples from healthy donors and lung cancer patients revealed that miR-U2-1 and -2 are pervasively processed in lung tissue by means of endonucleolytic cleavages and stably exported to the blood. Then, microarrays hybridization experiments of matched normal/tumor samples revealed a significant over-expression of miR-U2-1 in 14 of 18 lung primary tumors. Subsequently, qRT-PCR of miR-U2-1 using serum from 62 lung cancer patients and 96 various controls demonstrated that its expression levels identify lung cancer patients with 79% sensitivity and 80% specificity. miR-U2-1 expression correlated with the presence or absence of lung cancer in patients with chronic obstructive pulmonary disease (COPD), other diseases of the lung - not cancer, and in healthy controls. These data suggest that RNU2-1 is a new bi-functional ncRNA that produces a 19-22nt fragment which may be useful in detecting lung cancer non-invasively in high risk patients.
Collapse
Affiliation(s)
- Julien Mazières
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | | | | | - Sandrine Gouin
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Isabelle Rouquette
- Service d'anatomie pathologique, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | | | - Grégoire Prévot
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Roger Escamilla
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Alain Didier
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | | | - Mike Bates
- Cepheid USA, Sunnyvale, California, United States of America
| | | |
Collapse
|
32
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|