1
|
Schöllkopf S, Rathjen S, Graglia M, Was N, Morrison E, Weingärtner A, Bethge L, Hauptmann J, Wikström Lindholm M. The beauty of symmetry: siRNA phosphorodithioate modifications reduce stereocomplexity, ease analysis, and can improve in vivo potency. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102336. [PMID: 39391764 PMCID: PMC11465064 DOI: 10.1016/j.omtn.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Phosphorothioates (PSs) can be essential in stabilizing therapeutic oligonucleotides against enzymatic degradation. However, unless synthesis is performed with stereodefined amidites, each PS introduces a chemically undefined stereocenter, resulting in 2 n unique molecules in the final product and affecting downstream analytics and purification. Replacing the second non-bridging oxygen with sulfur results in phosphorodithioate (PS2) linkages, thereby removing the stereocenter. We describe synthesis and analytical data for N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) with PS2 in the GalNAc cluster and at the siRNA termini. All siRNA conjugates with PS2 internucleotide linkages were produced with good yield and showed improved analytical properties. PS2 in the GalNAc cluster had no, or only minor, effect on in vitro and in vivo activity. Except for the 5'-antisense position, PS2 modifications were well tolerated at the siRNA termini, and a single PS2 internucleotide linkage gave similar or improved stabilization and in vitro activity as the two PSs typically used for end stabilization. Surprisingly, several of the PS2-containing siRNA conjugates resulted in increased in vivo activity and duration of action compared to the same siRNA sequence stabilized with PS linkages, suggesting PS2 linkages as interesting options for siRNA strand design with a reduced number of undefined stereocenters.
Collapse
Affiliation(s)
- Sophie Schöllkopf
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Stefan Rathjen
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Micaela Graglia
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Nina Was
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Eliot Morrison
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Adrien Weingärtner
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | - Judith Hauptmann
- Silence Therapeutics GmbH, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | | |
Collapse
|
2
|
Fang A, Yuan Y, Sui B, Wang Z, Zhang Y, Zhou M, Chen H, Fu ZF, Zhao L. Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1. mBio 2023; 14:e0086723. [PMID: 37222520 PMCID: PMC10470528 DOI: 10.1128/mbio.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-κB and IRF3-mediated IFN-I production by targeting the 3' untranslated region (3' UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy. IMPORTANCE The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3' UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-κB. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.
Collapse
Affiliation(s)
- An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokuen Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
He F, Ni N, Wang H, Zeng Z, Zhao P, Shi D, Xia Y, Chen C, Hu D, Qin K, Wagstaff W, Qin D, Hendren-Santiago B, Ho S, Haydon R, Luu H, Reid R, Shen L, Gan H, Fan J, He TC. OUHP: an optimized universal hairpin primer system for cost-effective and high-throughput RT-qPCR-based quantification of microRNA (miRNA) expression. Nucleic Acids Res 2022; 50:e22. [PMID: 34850128 PMCID: PMC8887422 DOI: 10.1093/nar/gkab1153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.
Collapse
Affiliation(s)
- Fang He
- Departments of Nephrology, Gastroenterology, Laboratory Diagnostic Medicine, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Departments of Nephrology, Gastroenterology, Laboratory Diagnostic Medicine, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Departments of Nephrology, Gastroenterology, Laboratory Diagnostic Medicine, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hua Gan
- Departments of Nephrology, Gastroenterology, Laboratory Diagnostic Medicine, and Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wang Y, Chen J, Wang X, Wang K. miR-140-3p inhibits bladder cancer cell proliferation and invasion by targeting FOXQ1. Aging (Albany NY) 2020; 12:20366-20379. [PMID: 33098639 PMCID: PMC7655201 DOI: 10.18632/aging.103828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Upregulation of the forkhead box protein Q1 (FOXQ1) promotes bladder cancer (BCa) cell growth and metastasis. Factors affecting FOXQ1 expression at the post-transcriptional level have not yet been identified. We performed cell proliferation, cell invasion, and tumorigenesis experiments to characterize the relationship between FOXQ1 and miR-140-3p. We found that FOXQ1 was significantly upregulated and miR-140-3p was significantly downregulated in BCa tissues. We also identified an inverse correlation between miR-140-3p and FOXQ1 expression in BCa tissues. Overexpression of miR-140-3p reduced FOXQ1 expression, suppressing BCa cell proliferation and invasion. A luciferase assay confirmed that miR-140-3p bound to the 3’-UTR of FOXQ1 mRNA and decreased its expression. In addition, we used a mouse xenograft model to demonstrate that miR-140-3p suppressed tumor cell growth in vivo. Our findings suggest that miR-140-3p suppresses BCa cell proliferation and invasion by directly decreasing FOXQ1 expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
5
|
Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101367. [PMID: 33076374 PMCID: PMC7650716 DOI: 10.3390/plants9101367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.
Collapse
|
6
|
Cho H, Jung YH, Cho HB, Kim HT, Kim KS. Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Clin Chim Acta 2020; 511:149-153. [PMID: 33058837 PMCID: PMC7550048 DOI: 10.1016/j.cca.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUNDS The coronavirus disease 2019 (COVID-19) pandemic is still ongoing. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) is regarded as a gold-standard method for the diagnosis of COVID-19. However, unexpected contamination of synthesized positive control samples included in COVID-19 test kits have increased the inconclusiveness of disease interpretation. Therefore, it is important to establish new methods for the preparation of reliable positive controls that are not affected by contamination for the accurate for diagnosis of COVID-19, but it still remains a challenge. METHODS A new approach for producing synthetic positive controls using synthetic positive template (SPT) oligonucleotides was designed. SPT oligonucleotides contain probe binding and virus-irrelevant regions were used as templates for real-time PCR to evaluate the expression level of SARS-CoV-2 genes (RdRP, E, and N). The limit of detection (LOD) for individual SARS-CoV-2 genes by Ct values with different concentrations of SPT templates and genomic RNAs from SARS-CoV-2 infected samples was determined. RESULTS LODs with SPT templates were >10-15 (atto) M for RdRP, 10-12 (femto) to 10-13 (100 atto) M for E gene, and 10-12 to 10-14 (10 atto) M for N gene, respectively. Real-time RT-PCR assay using serially diluted genomic RNAs prepared from SARS-CoV-2 virus infected cultures showed that picogram quantities of RNAs is resulted in the LOD. The sensitivity of RdRP and E genes based on Ct values was less than that of N gene with this platform. CONCLUSION This method significantly reduces the risk of false-positive reactions resulting from contamination in the synthesis procedures of positive control materials. Therefore, this approach could be integrated into the currrently available COVID-19 test kits and will provide a general method for preparing positive controls in the diagnosis of emerging RNA virus infections.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Young Hwan Jung
- Department of Bio-Nanomaterials, Bio Campus of Korea Polytechnic, Chungnam 32943, Republic of Korea
| | - Hong Bum Cho
- Department of Chemical and Biotechnology, Seokyeong University, Seoul 02173, Republic of Korea
| | - Hee-Tae Kim
- Diaprobe Co.Ltd, Seokyeong University, Seoul 02173, Republic of Korea.
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Ang YS, Lai PS, Yung LYL. Design of Split Proximity Circuit as a Plug-and-Play Translator for Point Mutation Discrimination. Anal Chem 2020; 92:11164-11170. [PMID: 32605366 DOI: 10.1021/acs.analchem.0c01379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Point mutations are a common form of genetic variation and have been identified as important disease biomarkers. Conventional methods for analyzing point mutations, e.g., polymerase chain reaction (PCR), are based on differences in thermal stability of the DNA duplex, which require extensive optimization of the reaction condition and nontrivial design of sequence-selective primers. This motivated the design of molecular translators to convert molecular inputs into generic output sequences, which allows for the target recognition and signal generation regions to be designed independently. In this work, we propose a translator design based on the concept of split proximity circuit (SPC) to achieve both high sequence selectivity and assay robustness using a universal reaction condition, i.e., room temperature and constant ionic concentration. We discussed the design aspects of the SPC recognition regions and demonstrated its plug-and-play capability to discriminate different point mutations for both DNA (seven G6PD mutations) and RNA (let-7 microRNA family members) targets while retaining the same signal generation region. Despite its simple design and nonstringent assay condition requirements, the SPC retained good analytical performance to detect subnanomolar target concentration within a reasonable time of an hour.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
8
|
Liu K, Tong H, Li T, Wang X, Chen Y. Research progress in molecular biology related quantitative methods of MicroRNA. Am J Transl Res 2020; 12:3198-3211. [PMID: 32774694 PMCID: PMC7407681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs of 18-25 nucleotides in length that are widely distributed in eukaryotes and are produced by DNA transcription. As regulators of post-transcriptional gene expression, it plays an important role in the physiological processes of cells. As some miRNAs in the body are abnormally expressed at different and earlier stages of diseases, this phenomenon suggests that accurate, sensitive and specifical detection of them can be helpful for early and differential diagnosis. To expound the technological progress of miRNA detection, we reviewed all the related articles in PubMed database published before May 6, 2019, with the following keywords: "miRNA", "real-time fluorescent quantitative PCR", "electrochemical detection", "next-generation sequencing", "digital PCR technology". Original articles and reviews on the topics were selected. The present methods established for quantitative detection of miRNAs mainly relies on various probe design and labeling techniques, and the improvement of the sensitivity and specificity of detection is often through combination of microarray chips, real-time fluorescent quantitative PCR, high-throughput sequencing and other techniques. This paper combines the existing microRNA detection methods to provide a reference for researchers to choose the best detection method.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Hua Tong
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, The affiliated Brain Hospital Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Xiangdong Wang
- Department of Laboratory Diagnosis, Nanjing Brain Hospital affiliated to Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
9
|
Castellanos-Rizaldos E, Brown CR, Dennin S, Kim J, Gupta S, Najarian D, Gu Y, Aluri K, Enders J, Brown K, Xu Y. RT-qPCR Methods to Support Pharmacokinetics and Drug Mechanism of Action to Advance Development of RNAi Therapeutics. Nucleic Acid Ther 2020; 30:133-142. [PMID: 32202961 DOI: 10.1089/nat.2019.0840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to develop a reverse transcription quantitative polymerase chain reaction (RT-qPCR) method for the accurate quantification of chemically modified small interfering RNA (siRNA) including but not restricted to thermally destabilizing modifications such as glycol nucleic acid (GNA). RT-qPCR was found to be superior to mass spectrometry-based siRNA detection in terms of sensitivity and throughput. However, mass spectrometry is still the preferred method when specific metabolite detection is required and is also insensitive to siRNA chemical modifications such as GNA. The RT-qPCR approach can be optimized to take chemical modifications into account and works robustly in different matrices without optimization, unlike mass spectrometry. RT-qPCR and mass spectrometry both have their strengths and weaknesses for the detection of siRNA and must be used appropriately depending on the questions at hand. Considerations such as desired throughput, assay sensitivity, and metabolite identification must be weighed when choosing which methodology to apply.
Collapse
Affiliation(s)
| | | | - Sean Dennin
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Joohwan Kim
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Diana Najarian
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Yongli Gu
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Krishna Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Jennifer Enders
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Kirk Brown
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Yuanxin Xu
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
11
|
Hanpanich O, Oyanagi T, Shimada N, Maruyama A. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials 2019; 225:119535. [PMID: 31614289 DOI: 10.1016/j.biomaterials.2019.119535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
Multi-component nucleic acid enzymes (MNAzymes) are allosteric deoxyribozymes that are activated upon binding of a specific nucleic acid effector. MNAzyme activity is limited due to an insufficient assembly of the MNAzyme and its turnover. In this work, we describe the successful improvement of MNAzyme reactivity and selectivity by addition of cationic copolymers, which exhibit nucleic acid chaperone-like activity. The copolymer allowed a 210-fold increase in signal activity and a 95-fold increase in the signal-to-background selectivity of MNAzymes constructed for microRNA (miRNA) detection. The selectivity of the MNAzyme for homologous miRNAs was demonstrated in a multiplex format in which isothermal reactions of two different MNAzymes were performed. In addition, the copolymer permitted miRNA detections even in the presence of a ribonuclease which is ubiquitous in environments, indicating the protective effect of the copolymer against ribonucleases.
Collapse
Affiliation(s)
- Orakan Hanpanich
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Tomoya Oyanagi
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan.
| |
Collapse
|
12
|
Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE. qPCR-based methods for expression analysis of miRNAs. Biotechniques 2019; 67:192-199. [PMID: 31560239 DOI: 10.2144/btn-2019-0065] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several approaches for miRNA expression analysis have been developed in recent years. In this article, we provide an updated and comprehensive review of available qPCR-based methods for miRNA expression analysis and discuss their advantages and disadvantages. Existing techniques involve the use of stem-loop reverse transcriptase-PCR, polyadenylation of RNAs, ligation of adapters or RT with complex primers, using universal or miRNA-specific qPCR primers and/or probes. Many of these methods are oriented towards the expression analysis of mature miRNAs and few are designed for the study of pre-miRNAs and pri-miRNAs. We also discuss findings from articles that compare results from existing methods. Finally, we suggest key points for the improvement of available techniques and for the future development of additional methods.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis J Castro-Vega
- INSERM, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Yan F, Zheng Y, Jia W, Hou S, Xiao R. MAMDA: Inferring microRNA-Disease associations with manifold alignment. Comput Biol Med 2019; 110:156-163. [DOI: 10.1016/j.compbiomed.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023]
|
14
|
Angart PA, Adu-Berchie K, Carlson RJ, Vocelle DB, Chan C, Walton SP. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs. Methods Mol Biol 2019; 1974:41-56. [PMID: 31098994 DOI: 10.1007/978-1-4939-9220-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In RNA interference (RNAi), silencing is achieved through the interaction of double-stranded small interfering RNAs (siRNAs) with essential RNAi pathway proteins, including Argonaute 2 (Ago2). Based on these interactions, one strand of the siRNA is loaded into Ago2 forming the active RNA-induced silencing complex (RISC). Optimal siRNAs maximize RISC activity against the intended target and minimize off-target silencing. To achieve the desired activity and specificity, selection of the appropriate siRNA strand for loading into Ago2 is essential. Here, we provide a protocol to quantify the relative loading of individual siRNA strands into Ago2, one factor in determining the capacity of a siRNA to achieve silencing activity and target specificity.
Collapse
Affiliation(s)
- Phillip A Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Office of Biotechnology Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kwasi Adu-Berchie
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rebecca J Carlson
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Daniel B Vocelle
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - S Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Poddar S, Loh PS, Ooi ZH, Osman F, Eul J, Patzel V. RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:41-56. [PMID: 29858076 PMCID: PMC5849863 DOI: 10.1016/j.omtn.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/20/2023]
Abstract
Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3′ exon replacement (3’ER), 5′ exon replacement (5’ER) correlated with the thermodynamic stability of the tsRNA 3′ end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy.
Collapse
Affiliation(s)
- Sushmita Poddar
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Pei She Loh
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Zi Hao Ooi
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Farhana Osman
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Joachim Eul
- INEIDFO GmbH, Weserstrasse 23, 12045 Berlin, Germany
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 5, 5 Science Drive 2, Singapore 117597, Singapore; Department of Medicine, Division of Infectious Diseases, University of Cambridge, Addenbrooke's Hospital, Level 5, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
16
|
Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Sci Rep 2017; 7:11396. [PMID: 28900270 PMCID: PMC5595994 DOI: 10.1038/s41598-017-11895-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
Expression profiling of multiple microRNAs (miRNAs) generally provides valuable information for understanding various biological processes. Thus, it is necessary to develop a sensitive and accurate miRNA assay suitable for multiplexing. Isothermal exponential amplification reaction (EXPAR) has received significant interest as an miRNA analysis method because of high amplification efficiency. However, EXPAR cannot be used for a broader range of applications owing to limitations such as complexity of probe design and lack of proper detection method for multiplex analysis. Here, we developed a sensitive and accurate multiplex miRNA profiling method using modified isothermal EXPAR combined with high-resolution capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). To increase target miRNA specificity, a stem-loop probe was introduced instead of a linear probe in isothermal EXPAR to allow specific amplification of multiple miRNAs with minimal background signals. CE-SSCP, a conformation-dependent separation method, was used for detection. Since CE-SSCP eliminates the need for probes to have different lengths, easier designing of probes with uniform amplification efficiency was possible. Eight small RNAs comprising six miRNAs involved in Caenorhabditis elegans development and two controls were analyzed. The expression patterns obtained using our method were concordant with those reported in previous studies, thereby supporting the proposed method’s robustness and utility.
Collapse
|
17
|
Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression. Mol Ther 2016; 24:1581-91. [PMID: 27357627 DOI: 10.1038/mt.2016.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.
Collapse
|
18
|
van der Meer DJ, Williams GA. Performing body fluid identification with microRNAs using capillary electrophoresis. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Yu H, Jiang X, Tan KT, Hang L, Patzel V. Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression. Nucleic Acids Res 2015; 43:e120. [PMID: 26068470 PMCID: PMC4605290 DOI: 10.1093/nar/gkv583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.
Collapse
Affiliation(s)
- Han Yu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Xiaoou Jiang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Kar Tong Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Liting Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Volker Patzel
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| |
Collapse
|
20
|
Tosar JP, Gámbaro F, Sanguinetti J, Bonilla B, Witwer KW, Cayota A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res 2015; 43:5601-16. [PMID: 25940616 PMCID: PMC4477662 DOI: 10.1093/nar/gkv432] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023] Open
Abstract
Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19-60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5' tRNA halves and 5' RNA Y4-derived fragments of 31-33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Fabiana Gámbaro
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julia Sanguinetti
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Braulio Bonilla
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Department of Medicine, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
21
|
Zhang C, Zhao Y, Wang Y, Wu H, Fang X, Chen H. Deep RNA sequencing reveals that microRNAs play a key role in lactation in rats. J Nutr 2014; 144:1142-9. [PMID: 24899157 DOI: 10.3945/jn.114.192575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Understanding the regulatory contribution of maternal physiology to difficulties with lactation is beneficial to both mother and infant. MicroRNAs (miRNAs), a type of noncoding RNA, may be involved in the regulation of mammary gland development and function. In the present study, a deep RNA sequencing (RNA-seq) technique was used to compare the expression profile of miRNAs and mRNAs of 2 pooled RNA samples from day 1 and day 7 postpartum (n = 1/d) rat (Rattus norvegicus) mammary glands to identify key miRNAs and their target genes that may control the rate-limiting steps of lactation. A total of 395 and 400 known miRNAs were identified in days 1 and 7 postpartum rat mammary samples, respectively. Compared with day 1 postpartum, 27 miRNAs were differentially expressed at day 7 postpartum. The expression differences between lactation periods were further analyzed by real-time quantitative polymerase chain reaction (qPCR) (n = 5). The ΔΔCt values of rno-miR-30, rno-miR-1, rno-miR-145-3p, rno-miR-142, rno-miR-7a-5p, rno-miR-3571, rno-miR-224-5p, rno-miR-362-5p, rno-miR-342-3p, rno-miR-322-3p, rno-miR-18a-5p, and rno-miR-202-5p between the 2 libraries varied from 0.64 to 9.44; the ΔΔCt values of rno-miR-133, rno-miR-190a-5p, rno-miR-27a-5p, rno-miR-451-5p, rno-miR-3120, rno-miR-23a-5p, rno-miR-20a-3p, rno-miR-92a-1-5p, and rno-miR-134-5p between the 2 libraries varied from -1.02 to -4.37 (P < 0.05). The intersection of the expressed mRNA genes from RNA-seq and putative target genes of differentially expressed miRNAs, termed mammary gland target genes (MTGs), was analyzed. The results indicated that 1259 MTGs overlapped between the 2 gene sets. The expression of 14 randomly selected genes of the MTGs was further confirmed by real-time qPCR (R(2) = 0.86, P < 0.01). The downregulated MTGs were enriched for the pathways involved in lipid biosynthesis. This gene cluster included 24 lipid metabolic process-related genes, which were putative targets of 10 differentially expressed miRNAs. These results will be helpful in discovering the biologic underpinnings of poor lactation performance in women attempting to breastfeed.
Collapse
Affiliation(s)
- ChunLei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - YuLong Zhao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - YanHong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hui Wu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - XingTang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 2014; 15:587. [PMID: 25015185 PMCID: PMC4108790 DOI: 10.1186/1471-2164-15-587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/27/2014] [Indexed: 12/20/2022] Open
Abstract
Background Tissue regeneration in the lungs is gaining increasing interest as a potential influenza management strategy. In this study, we explored the role of microRNAs, short non-coding RNAs involved in post-transcriptional regulation, during pulmonary regeneration after influenza infection. Results We profiled miRNA and mRNA expression levels following lung injury and tissue regeneration using a murine influenza pneumonia model. BALB/c mice were infected with a sub-lethal dose of influenza A/PR/8(H1N1) virus, and their lungs were harvested at 7 and 15 days post-infection to evaluate the expression of ~300 miRNAs along with ~36,000 genes using microarrays. A global network was constructed between differentially expressed miRNAs and their potential target genes with particular focus on the pulmonary repair and regeneration processes to elucidate the regulatory role of miRNAs in the lung repair pathways. The miRNA arrays revealed a global down-regulation of miRNAs. TargetScan analyses also revealed specific miRNAs highly involved in targeting relevant gene functions in repair such as miR-290 and miR-505 at 7 dpi; and let-7, miR-21 and miR-30 at 15 dpi. Conclusion The significantly differentially regulated miRNAs are implicated in the activation or suppression of cellular proliferation and stem cell maintenance, which are required during the repair of the damaged lungs. These findings provide opportunities in the development of novel repair strategies in influenza-induced pulmonary injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-587) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Yuan Z, Zhou Y, Gao S, Cheng Y, Li Z. Homogeneous and sensitive detection of microRNA with ligase chain reaction and lambda exonuclease-assisted cationic conjugated polymer biosensing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6181-6185. [PMID: 24773186 DOI: 10.1021/am500883q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple and homogeneous microRNA assay is developed by integration of ligase chain reaction (LCR) and lambda exonuclease-assisted cationic conjugated polymer (CCP) biosensing. LCR is utilized for exponential amplification of microRNA, and lambda exonuclease is introduced to degrade excess fluorescein-labeled probes in LCR for eliminating background signal. After addition of CCP, efficient fluorescence resonance energy transfer from CCP to fluorescein in LCR products occurs. The method is sensitive enough to detect 0.1 fM target microRNA and specific to discriminate one-base difference of microRNAs, which paves a new way for homogeneous microRNA detection and molecular diagnosis.
Collapse
Affiliation(s)
- Zheng Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | | | | | | | | |
Collapse
|