1
|
Cihan M, Schmauck G, Sprang M, Andrade-Navarro MA. Unveiling cell-type-specific microRNA networks through alternative polyadenylation in glioblastoma. BMC Biol 2025; 23:15. [PMID: 39838429 PMCID: PMC11752630 DOI: 10.1186/s12915-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation. RESULTS Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM. A significant finding was the disconnection between differential APA events and gene expression alterations, indicating that APA operates as an independent regulatory mechanism. We also highlighted the specific genes in neoplastic cells and OPCs that lose microRNA-binding sites due to APA, which are crucial for maintaining stem cell characteristics and DNA repair, respectively. The constructed networks of microRNA-transcription factor-target genes provide insights into the cellular mechanisms influencing cancer cell survival and therapeutic resistance. CONCLUSIONS This study elucidates the APA-driven regulatory framework within GBM, spotlighting its influence on cell state transitions and microRNA network dynamics. Our comprehensive analysis using single-cell RNA sequencing data to investigate the microRNA-binding sites altered by APA profiles offers a robust foundation for future research, presenting a novel approach to understanding and potentially targeting the complex molecular interplay in GBM.
Collapse
Affiliation(s)
- Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Greta Schmauck
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
2
|
Zhang H, Cai W, Miao Y, Gu Y, Zhou X, Kaneda H, Wang L. Long Non-Coding RNA LINC01116 Promotes the Proliferation of Lung Adenocarcinoma by Targeting miR-9-5p/CCNE1 Axis. J Cell Mol Med 2024; 28:e70270. [PMID: 39648148 PMCID: PMC11625508 DOI: 10.1111/jcmm.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Long non-coding RNA (lncRNA) LINC01116 is crucial in promoting cell proliferation, invasion and migration in solid tumours, including lung adenocarcinoma (LUAD). LINC01116 acts as a competing endogenous RNAs (ceRNA) that binds competitively to microRNAs and plays a critical role in tumour migration and invasion. However, other mechanisms of action besides the ceRNA theory have been rarely reported and remain to be elucidated further. The differences in RNA and protein levels in cells and tissues were assessed through real-time quantitative PCR and Western blot analysis. In vitro functional assays and in vivo xenograft models were used to analyse the function of LINC01116 in LUAD. Thus, the molecular correlation between miR-9-5p and CCNE1 was investigated through direct and indirect mechanism experiments. LINC01116, miR-9-5p and CCNE1 were upregulated in LUAD cell lines and tissues and were associated with a poor prognosis in patients. LINC01116 depletion inhibited proliferation but facilitated cell apoptosis. AGO2-RNA binding protein immunoprecipitation (AGO2-RIP) experiments confirmed that AGO2 binds to LINC01116 and miR-9-5p, indicating that LINC01116 interacts with miR-9-5p. The overexpression of miR-9-5p and CCNE1 effectively counteracts the biological effects of LINC01116 knockdown on reduced proliferation and cell cycle arrest in LUAD cells. The downregulation of miR-9-5p significantly reduces the CCNE1 level in A549 cells, and the upregulation of LINC01116 counteracts the downregulation of miR-9-5p effect, restoring the expression level of CCNE1. Our data demonstrated that LINC01116 regulates the expression of CCNE1 by positively regulating miR-9-5p, thereby affecting cell cycle, proliferation and participating in the development of LUAD.
Collapse
Affiliation(s)
- Hui Zhang
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Wenwen Cai
- Sanmen County People's HospitalTaizhouChina
| | - Yiyan Miao
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Yihang Gu
- Department of GeriatricsThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| | - Xiaorong Zhou
- Department of Immunology, School of MedicineNantong UniversityNantongChina
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Lan Wang
- Department of Respiratory and Critical Care MedicineThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| |
Collapse
|
3
|
Vishnubalaji R, Shaath H, Al-Alwan M, Abdelalim EM, Alajez NM. Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Semin Cancer Biol 2022; 87:1-16. [PMID: 36354097 DOI: 10.1016/j.semcancer.2022.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
4
|
Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis. Sci Rep 2022; 12:20135. [PMID: 36418345 PMCID: PMC9684445 DOI: 10.1038/s41598-022-24347-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis of breast cancer (BC), as the most common cancer among women, increases the survival rate and effectiveness of treatment. MicroRNAs (miRNAs) control various cell behaviors, and their dysregulation is widely involved in pathophysiological processes such as BC development and progress. In this study, we aimed to identify potential miRNA biomarkers for early diagnosis of BC. We also proposed a consensus-based strategy to analyze the miRNA expression data to gain a deeper insight into the regulatory roles of miRNAs in BC initiation. Two microarray datasets (GSE106817 and GSE113486) were analyzed to explore the differentially expressed miRNAs (DEMs) in serum of BC patients and healthy controls. Utilizing multiple bioinformatics tools, six serum-based miRNA biomarkers (miR-92a-3p, miR-23b-3p, miR-191-5p, miR-141-3p, miR-590-5p and miR-190a-5p) were identified for BC diagnosis. We applied our consensus and integration approach to construct a comprehensive BC-specific miRNA-TF co-regulatory network. Using different combination of these miRNA biomarkers, two novel diagnostic models, consisting of miR-92a-3p, miR-23b-3p, miR-191-5p (model 1) and miR-92a-3p, miR-23b-3p, miR-141-3p, and miR-590-5p (model 2), were obtained from bioinformatics analysis. Validation analysis was carried out for the considered models on two microarray datasets (GSE73002 and GSE41922). The model based on similar network topology features, comprising miR-92a-3p, miR-23b-3p and miR-191-5p was the most promising model in the diagnosis of BC patients from healthy controls with 0.89 sensitivity, 0.96 specificity and area under the curve (AUC) of 0.98. These findings elucidate the regulatory mechanisms underlying BC and represent novel biomarkers for early BC diagnosis.
Collapse
|
5
|
Qing J, Song W, Tian L, Samuel SB, Li Y. Potential Small Molecules for Therapy of Lupus Nephritis Based on Genetic Effect and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2259164. [PMID: 35502341 PMCID: PMC9056222 DOI: 10.1155/2022/2259164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Lupus nephritis (LN) is the most common and significant complication of systemic lupus erythematosus (SLE) due to its poor prognosis and mortality rates in SLE patients. There is a critical need for new drugs as the pathogenesis of LN remains to be elucidated and immunosuppressive therapy comes with many deficiencies. In this study, 23 hub genes (IFI6, PLSCR1, XAF1, IFI16, IFI44, MX1, IFI44L, IFIT3, IFIT2, IFI27, DDX58, EIF2AK2, IFITM1, RTP4, IFITM3, TRIM22, PARP12, IFIH1, OAS1, HERC6, RSAD2, DDX60, and MX2) were identified through bioinformatics and network analysis and are closely related to interferon production and function. Interestingly, immune cell infiltration analysis and correlation analysis demonstrate a positive correlation between the expression of 23 hub genes and monocyte infiltration in glomeruli and M2 macrophage infiltration in the tubulointerstitium of LN patients. Additionally, the CTD database, DsigDB database, and DREIMT database were used to explore the bridging role of genes in chemicals and LN as well as the potential influence of these chemicals on immune cells. After comparison and discussion, six small molecules (Acetohexamide, Suloctidil, Terfenadine, Prochlorperazine, Mefloquine, and Triprolidine) were selected for their potential ability in treating lupus nephritis.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lingling Tian
- Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030000, China
| | - Sonia Biju Samuel
- Department of Medicine, Albany Medical Center. 43 New Scotland Ave, Albany, New York 12208, USA
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| |
Collapse
|
6
|
Yoshioka H, Li A, Suzuki A, Ramakrishnan SS, Zhao Z, Iwata J. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice. Hum Mol Genet 2021; 30:1881-1893. [PMID: 34104955 PMCID: PMC8444451 DOI: 10.1093/hmg/ddab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice. Notably, we found that miR-27b, miR-133b, miR-205, miR-376b and miR-376c were involved in the regulation of CL-associated gene expression in both humans and mice. Among the candidate miRNAs, the overexpression of miR-27b, miR-133b and miR-205, but not miR-376b and miR-376c, significantly inhibited cell proliferation through suppression of CL-associated genes (miR-27b suppressed PAX9 and RARA; miR-133b suppressed FGFR1, PAX7, and SUMO1; and miR-205 suppressed PAX9 and RARA) in cultured human and mouse lip mesenchymal cells. Taken together, our results suggest that elevated expression of miR-27b, miR-133b and miR-205 may play a crucial role in CL through the suppression of genes associated with CL.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
7
|
Jin T, Nguyen ND, Talos F, Wang D. ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages. Bioinformatics 2021; 37:1115-1124. [PMID: 33305308 PMCID: PMC8150141 DOI: 10.1093/bioinformatics/btaa935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Gene expression and regulation, a key molecular mechanism driving human disease development, remains elusive, especially at early stages. Integrating the increasing amount of population-level genomic data and understanding gene regulatory mechanisms in disease development are still challenging. Machine learning has emerged to solve this, but many machine learning methods were typically limited to building an accurate prediction model as a 'black box', barely providing biological and clinical interpretability from the box. RESULTS To address these challenges, we developed an interpretable and scalable machine learning model, ECMarker, to predict gene expression biomarkers for disease phenotypes and simultaneously reveal underlying regulatory mechanisms. Particularly, ECMarker is built on the integration of semi- and discriminative-restricted Boltzmann machines, a neural network model for classification allowing lateral connections at the input gene layer. This interpretable model is scalable without needing any prior feature selection and enables directly modeling and prioritizing genes and revealing potential gene networks (from lateral connections) for the phenotypes. With application to the gene expression data of non-small-cell lung cancer patients, we found that ECMarker not only achieved a relatively high accuracy for predicting cancer stages but also identified the biomarker genes and gene networks implying the regulatory mechanisms in the lung cancer development. In addition, ECMarker demonstrates clinical interpretability as its prioritized biomarker genes can predict survival rates of early lung cancer patients (P-value < 0.005). Finally, we identified a number of drugs currently in clinical use for late stages or other cancers with effects on these early lung cancer biomarkers, suggesting potential novel candidates on early cancer medicine. AVAILABILITYAND IMPLEMENTATION ECMarker is open source as a general-purpose tool at https://github.com/daifengwanglab/ECMarker. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Nam D Nguyen
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Flaminia Talos
- Departments of Pathology and Urology, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin – Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Guo Q, Yan J, Song T, Zhong C, Kuang J, Mo Y, Tan J, Li D, Sui Z, Cai K, Zhang J. microRNA-130b-3p Contained in MSC-Derived EVs Promotes Lung Cancer Progression by Regulating the FOXO3/NFE2L2/TXNRD1 Axis. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:132-146. [PMID: 33575477 PMCID: PMC7851484 DOI: 10.1016/j.omto.2020.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to explore the molecular mechanism by which mesenchymal stem cells (MSCs) mediate lung cancer progression. Extracellular vesicles (EVs) were isolated from transfected or untransfected MSCs, and were co-cultured with lung cancer cells with/without microRNA-130b-3p (miR-130b-3p) inhibitor, mimic, overexpression plasmids of FOXO3/NFE2L2, or shRNAs. CCK-8 assay, colony formation, transwell assay, and flow cytometry were carried out to determine the biological functioning of lung cancer cells. Furthermore, FOXO3, Keap1, NFE2L2, and TXNRD1 expression was determined by qRT-PCR and western blot analysis. A tumor xenograft mouse model was used to determine role of EVs-miR-130b-3p and its target FOXO3 in lung cancer progression in vivo. miR-130b-3p was highly expressed in lung cancer tissues and MSC-derived EVs. Moreover, the MSC-derived EVs transferred miR-130b-3p to lung cancer cells to promote cell proliferation, migration, and invasion while repress cell apoptosis. miR-130b-3p directly targeted FOXO3, and FOXO3 elevated Keap1 expression to downregulate NFE2L2, thus inhibiting TXNRD1. FOXO3 overexpression or silencing of NFE2L2 or TXNRD1 diminished lung cancer cell proliferation, invasion, and migration but enhanced apoptosis. EV-delivered miR-130b-3p or FOXO3 silencing promoted lung cancer progression in vivo. In summary, MSC-derived EVs with upregulated miR-130b-3p suppressed FOXO3 to block the NFE2L2/TXNRD1 pathway, thus playing an oncogenic role in lung cancer progression.
Collapse
Affiliation(s)
- Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China.,Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jun Yan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Tieniu Song
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Chenghua Zhong
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Zesen Sui
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, P.R. China
| |
Collapse
|
9
|
Li A, Mallik S, Luo H, Jia P, Lee DF, Zhao Z. H19, a Long Non-coding RNA, Mediates Transcription Factors and Target Genes through Interference of MicroRNAs in Pan-Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:180-191. [PMID: 32585626 PMCID: PMC7321791 DOI: 10.1016/j.omtn.2020.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/17/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (lncRNAs) have recently been found to be important in gene regulation. lncRNA H19 has been reported to play an oncogenic role in many human cancers. Its specific regulatory role is still elusive. In this study, we developed a novel analytic approach by integrating the synergistic regulation among lncRNAs (e.g., H19), transcription factors (TFs), target genes, and microRNAs (miRNAs) and then applied it to the pan-cancer expression datasets from The Cancer Genome Atlas (TCGA). Using linear regression models, we identified 88 H19-TF-gene co-regulatory triplets, in which 93% of the TF-gene pairs were related to cancer, indicating that our approach was effective to identify disease-related lncRNA-TF-gene co-regulation mechanisms. lncRNAs can function as miRNA sponges. Our further experiments found that H19 might regulate SP1-TGFBR2 through let-7b and miR-200b, ETS1-TGFBR2 through miR-29a and miR-200b, and STAT3-KLF11 through miR-17 in breast cancer cell lines. Our work suggests that miRNA-mediated lncRNA-TF-gene co-regulation is complicated yet important in cancer.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haidan Luo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
10
|
Li A, Jia P, Mallik S, Fei R, Yoshioka H, Suzuki A, Iwata J, Zhao Z. Critical microRNAs and regulatory motifs in cleft palate identified by a conserved miRNA-TF-gene network approach in humans and mice. Brief Bioinform 2020; 21:1465-1478. [PMID: 31589286 PMCID: PMC7412957 DOI: 10.1093/bib/bbz082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cleft palate (CP) is the second most common congenital birth defect. The etiology of CP is complicated, with involvement of various genetic and environmental factors. To investigate the gene regulatory mechanisms, we designed a powerful regulatory analytical approach to identify the conserved regulatory networks in humans and mice, from which we identified critical microRNAs (miRNAs), target genes and regulatory motifs (miRNA-TF-gene) related to CP. Using our manually curated genes and miRNAs with evidence in CP in humans and mice, we constructed miRNA and transcription factor (TF) co-regulation networks for both humans and mice. A consensus regulatory loop (miR17/miR20a-FOXE1-PDGFRA) and eight miRNAs (miR-140, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-451a and miR-92a) were discovered in both humans and mice. The role of miR-140, which had the strongest association with CP, was investigated in both human and mouse palate cells. The overexpression of miR-140-5p, but not miR-140-3p, significantly inhibited cell proliferation. We further examined whether miR-140 overexpression could suppress the expression of its predicted target genes (BMP2, FGF9, PAX9 and PDGFRA). Our results indicated that miR-140-5p overexpression suppressed the expression of BMP2 and FGF9 in cultured human palate cells and Fgf9 and Pdgfra in cultured mouse palate cells. In summary, our conserved miRNA-TF-gene regulatory network approach is effective in detecting consensus miRNAs, motifs, and regulatory mechanisms in human and mouse CP.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rong Fei
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
11
|
Intrinsic limitations in mainstream methods of identifying network motifs in biology. BMC Bioinformatics 2020; 21:165. [PMID: 32349657 PMCID: PMC7191746 DOI: 10.1186/s12859-020-3441-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background Network motifs are connectivity structures that occur with significantly higher frequency than chance, and are thought to play important roles in complex biological networks, for example in gene regulation, interactomes, and metabolomes. Network motifs may also become pivotal in the rational design and engineering of complex biological systems underpinning the field of synthetic biology. Distinguishing true motifs from arbitrary substructures, however, remains a challenge. Results Here we demonstrate both theoretically and empirically that implicit assumptions present in mainstream methods for motif identification do not necessarily hold, with the ramification that motif studies using these mainstream methods are less able to effectively differentiate between spurious results and events of true statistical significance than is often presented. We show that these difficulties cannot be overcome without revising the methods of statistical analysis used to identify motifs. Conclusions Present-day methods for the discovery of network motifs, and, indeed, even the methods for defining what they are, are critically reliant on a set of incorrect assumptions, casting a doubt on the scientific validity of motif-driven discoveries. The implications of these findings are therefore far-reaching across diverse areas of biology.
Collapse
|
12
|
Kucuksayan H, Akgun S, Ozes ON, Alikanoglu AS, Yildiz M, Dal E, Akca H. TGF-β-SMAD-miR-520e axis regulates NSCLC metastasis through a TGFBR2-mediated negative-feedback loop. Carcinogenesis 2020; 40:695-705. [PMID: 30475986 DOI: 10.1093/carcin/bgy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) pathway plays crucial roles during the carcinogenesis and metastasis. TGF-β receptor 2 (TGFBR2) is a key molecule for the regulation of TGF-β pathway and frequently downregulated or lost in several cancer types including non-small cell lung cancer (NSCLC), and TGF-β pathway is often regulated by negative-feedback mechanisms, but little is known about the mechanism of TGFBR2 downregulation in NSCLC. Here, we found that the expression of miR-520e is upregulated in metastatic tumor tissues compared with non-metastatic ones, and its expression is inversely correlated with that of TGFBR2 in clinical samples. We also discovered that TGF-β dramatically increased the expression of miR-520e, which targeted and downregulated TGFBR2, and the suppression of miR-520e significantly impaired TGF-β-induced TGFBR2 downregulation. Chromatin immunoprecipitation-PCR experiments further showed that miR-520e is transcriptionally induced by SMAD2/3 in response to TGF-β. Our findings reveal a novel negative-feedback mechanism in TGF-β signaling and the expression level of miR-520e could be a predictive biomarker for NSCLC metastasis.
Collapse
Affiliation(s)
- Hakan Kucuksayan
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Sakir Akgun
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | | | | | - Mustafa Yildiz
- Medical Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Egemen Dal
- Faculty of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Hakan Akca
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| |
Collapse
|
13
|
Mitra R, Adams CM, Jiang W, Greenawalt E, Eischen CM. Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat Commun 2020; 11:968. [PMID: 32080184 PMCID: PMC7033124 DOI: 10.1038/s41467-020-14713-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, both 5p and 3p miRNA strands are being recognized as functional instead of only one, leaving many miRNA strands uninvestigated. To determine whether both miRNA strands, which have different mRNA-targeting sequences, cooperate to regulate pathways/functions across cancer types, we evaluate genomic, epigenetic, and molecular profiles of >5200 patient samples from 14 different cancers, and RNA interference and CRISPR screens in 290 cancer cell lines. We identify concordantly dysregulated miRNA 5p/3p pairs that coordinately modulate oncogenic pathways and/or cell survival/growth across cancers. Down-regulation of both strands of miR-30a and miR-145 recurrently increased cell cycle pathway genes and significantly reduced patient survival in multiple cancers. Forced expression of all four strands show cooperativity, reducing cell cycle pathways and inhibiting lung cancer cell proliferation and migration. Therefore, we identify miRNA whose 5p/3p strands function together to regulate core tumorigenic processes/pathways and reveal a previously unknown pan-cancer miRNA signature with patient prognostic power. 5p and 3p miRNA strands have different mRNA-targeting sequences and may both functionally impact gene expression in cancer. Here, the authors undertake a pan-cancer analysis that indicates 5p/3p miRNA strands function together to regulate tumorigenic processes.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Evan Greenawalt
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Qin G, Mallik S, Mitra R, Li A, Jia P, Eischen CM, Zhao Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Sci Rep 2020; 10:852. [PMID: 31965022 PMCID: PMC6972857 DOI: 10.1038/s41598-020-57834-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed that feed-forward loops (FFLs) as regulatory motifs have synergistic roles in cellular systems and their disruption may cause diseases including cancer. FFLs may include two regulators such as transcription factors (TFs) and microRNAs (miRNAs). In this study, we extensively investigated TF and miRNA regulation pairs, their FFLs, and TF-miRNA mediated regulatory networks in two major types of testicular germ cell tumors (TGCT): seminoma (SE) and non-seminoma (NSE). Specifically, we identified differentially expressed mRNA genes and miRNAs in 103 tumors using the transcriptomic data from The Cancer Genome Atlas. Next, we determined significantly correlated TF-gene/miRNA and miRNA-gene/TF pairs with regulation direction. Subsequently, we determined 288 and 664 dysregulated TF-miRNA-gene FFLs in SE and NSE, respectively. By constructing dysregulated FFL networks, we found that many hub nodes (12 out of 30 for SE and 8 out of 32 for NSE) in the top ranked FFLs could predict subtype-classification (Random Forest classifier, average accuracy ≥90%). These hub molecules were validated by an independent dataset. Our network analysis pinpointed several SE-specific dysregulated miRNAs (miR-200c-3p, miR-25-3p, and miR-302a-3p) and genes (EPHA2, JUN, KLF4, PLXDC2, RND3, SPI1, and TIMP3) and NSE-specific dysregulated miRNAs (miR-367-3p, miR-519d-3p, and miR-96-5p) and genes (NR2F1 and NR2F2). This study is the first systematic investigation of TF and miRNA regulation and their co-regulation in two major TGCT subtypes.
Collapse
Affiliation(s)
- Guimin Qin
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
16
|
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47:7753-7766. [PMID: 31340025 PMCID: PMC6735922 DOI: 10.1093/nar/gkz638] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Sydney Medical School, The University of Sydney, 2006 Camperdown, Australia
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
17
|
Liang AL, Du SL, Zhang B, Zhang J, Ma X, Wu CY, Liu YJ. Screening miRNAs associated with resistance gemcitabine from exosomes in A549 lung cancer cells. Cancer Manag Res 2019; 11:6311-6321. [PMID: 31372037 PMCID: PMC6626902 DOI: 10.2147/cmar.s209149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To establish a gemcitabine-resistant lung adenocarcinoma cell line, A549/G+, and to screen the differences of miRNA expression in exosomes from A549 and A549/G+ cells. Methods A549 cells were exposed in gemcitabine until they were resistant to gemcitabine, and extracted exosomes from A549 and A549/G+. The RNAs from exosomes were subjected to miRNA expression microarray experiments. Results After 39 weeks of continuous induction, we induced drug resistance in A549 cells. The resistance index was 6. Via GeneChip miRNA 4.0 analysis, there were 446 differential miRNAs between A549 and A549/G+. Target gene prediction and pathway analysis discovered the microRNAs in the intersections may participate in drug resistance. Conclusion These differential miRNAs help to do in-depth research to elucidate the mechanism of resistance to gemcitabine in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Shen-Lin Du
- Department of Blood Transfusion, Dongguan Tung Wah Hospital, Dongguan, Guangdong 523210, People's Republic of China
| | - Bin Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Jing Zhang
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Xuan Ma
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Cui-Yun Wu
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
18
|
Zhou W, Wang X, Yin D, Xue L, Ma Z, Wang Z, Zhang Q, Zhao Z, Wang H, Sun Y, Yang Y. Effect of miR-140-5p on the regulation of proliferation and apoptosis in NSCLC and its underlying mechanism. Exp Ther Med 2019; 18:1350-1356. [PMID: 31363375 DOI: 10.3892/etm.2019.7701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer accounting for ~80% of lung cancer cases. According to novel research, numerous microRNAs (miRs) have been suggested to function as important regulators of cancer. In addition, the expression of miR-140-5p is decreased in patients with NSCLC. Therefore, it is important to further elucidate the role of miR-140-5p in NSCLC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used in order to investigate the expression of miR-140-5p in NSCLC tissues and matched normal tissues and to determine miR-140-5p levels following transfection with mimics into A549 lung cancer cells. Targetscan software was used to predict the oncogene target of miR-140-5p. This analysis revealed that YES proto-oncogene 1 (YES1) includes a target site for miR-140-5p binding. The results revealed that YES1 is a potential target gene of miR-140-5p, and this was further confirmed by the results of luciferase reporter assays, which demonstrated that miR-140-5p directly targeted the predicted binding site in the 3'-untranslated region of YES1. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were performed to determine the levels of cell viability and apoptosis. Western blot assays was performed to investigate the expression levels of YES1 and proteins associated with apoptosis in A549 cells following transfection. The results revealed that miR-140-5p expression was significantly downregulated in NSCLC tissues compared with matched normal tissues. The expression of miR-140-5p was significantly increased following transfection with miR-140-5p mimics. The results of CCK-8 and flow cytometry assays indicated that miR-140-5p inhibited proliferation and induced apoptosis of tumor cells. Western blot analysis and RT-qPCR revealed that YES1 and B-cell lymphoma 2 (Bcl-2) mRNA and protein expression levels were markedly decreased in A549 cells, while Bcl-2 associated X (Bax) and caspase-3 expression levels increased significantly following transfection with miR-140-5p mimics compared with the negative control group. In conclusion, miR-140-5p may induce apoptosis in A549 cells by targeting YES1 and regulating the expression of apoptosis-associated proteins Bcl-2, Bax and caspase-3.
Collapse
Affiliation(s)
- Wenwen Zhou
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Xiaoyu Wang
- Foundation and Clinic of Malignant Tumor, Postgraduate College, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Duanduan Yin
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Lei Xue
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Zhongfeng Ma
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Zhenzhen Wang
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Qianyi Zhang
- Division of Pharmacy, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Zishu Zhao
- Foundation and Clinic of Malignant Tumor, Postgraduate College, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Haixia Wang
- Foundation and Clinic of Malignant Tumor, Postgraduate College, Hebei Medical University, Shijiazhuang, Hebei 051117, P.R. China
| | - Yan Sun
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Yanhong Yang
- Department of Oncology, Qinhuangdao First People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
19
|
Li A, Qin G, Suzuki A, Gajera M, Iwata J, Jia P, Zhao Z. Network-based identification of critical regulators as putative drivers of human cleft lip. BMC Med Genomics 2019; 12:16. [PMID: 30704473 PMCID: PMC6357351 DOI: 10.1186/s12920-018-0458-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cleft lip (CL) is one of the most common congenital birth defects with complex etiology. While genome-wide association studies (GWAS) have made significant advances in our understanding of mutations and their related genes with potential involvement in the etiology of CL, it remains unknown how these genes are functionally regulated and interact with each other in lip development. Currently, identifying the disease-causing genes in human CL is urgently needed. So far, the causative CL genes have been largely undiscovered, making it challenging to design experiments to validate the functional influence of the mutations identified from large genomic studies such as CL GWAS. RESULTS Transcription factors (TFs) and microRNAs (miRNAs) are two important regulators in cellular system. In this study, we aimed to investigate the genetic interactions among TFs, miRNAs and the CL genes curated from the previous studies. We constructed miRNA-TF co-regulatory networks, from which the critical regulators as putative drivers in CL were examined. Based on the constructed networks, we identified ten critical hub genes with prior evidence in CL. Furthermore, the analysis of partitioned regulatory modules highlighted a number of biological processes involved in the pathology of CL, including a novel pathway "Signaling pathway regulating pluripotency of stem cells". Our subnetwork analysis pinpointed two candidate miRNAs, hsa-mir-27b and hsa-mir-497, activating the Wnt pathway that was associated with CL. Our results were supported by an independent gene expression dataset in CL. CONCLUSIONS This study represents the first regulatory network analysis of CL genes. Our work presents a global view of the CL regulatory network and a novel approach on investigating critical miRNAs, TFs and genes via combinatory regulatory networks in craniofacial development. The top genes and miRNAs will be important candidates for future experimental validation of their functions in CL.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA
| | - Guimin Qin
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.,School of Software, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Mona Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Fort RS, Mathó C, Oliveira-Rizzo C, Garat B, Sotelo-Silveira JR, Duhagon MA. An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol 2018; 7:10. [PMID: 29744254 PMCID: PMC5930504 DOI: 10.1186/s40164-018-0102-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a major health problem worldwide due to its high incidence morbidity and mortality. There is currently a need of improved biomarkers, capable to distinguish mild versus aggressive forms of the disease, and thus guide therapeutic decisions. Although miRNAs deregulated in cancer represent exciting candidates as biomarkers, its scientific literature is frequently fragmented in dispersed studies. This problem is aggravated for miRNAs belonging to miRNA gene clusters with shared target genes. The miRNA cluster composed by hsa-mir-130b and hsa-mir-301b precursors was recently involved in prostate cancer pathogenesis, yet different studies assigned it opposite effects on the disease. We sought to elucidate the role of the human miR-130b/301b miRNA cluster in prostate cancer through a comprehensive data analysis of most published clinical cohorts. We interrogated methylomes, transcriptomes and patient clinical data, unifying previous reports and adding original analysis using the largest available cohort (TCGA-PRAD). We found that hsa-miR-130b-3p and hsa-miR-301b-3p are upregulated in neoplastic vs normal prostate tissue, as well as in metastatic vs primary sites. However, this increase in expression is not due to a decrease of the global DNA methylation of the genes in prostate tissues, as the promoter of the gene remains lowly methylated in normal and neoplastic tissue. A comparison of the levels of human miR-130b/301b and all the clinical variables reported for the major available cohorts, yielded positive correlations with malignance, specifically significant for T-stage, residual tumor status and primary therapy outcome. The assessment of the correlations between the hsa-miR-130b-3p and hsa-miR-301b-3p and candidate target genes in clinical samples, supports their repression of tumor suppressor genes in prostate cancer. Altogether, these results favor an oncogenic role of miR-130b/301b cluster in prostate cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Mathó
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- 3Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,4Depto. de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Farina NH, Zingiryan A, Vrolijk MA, Perrapato SD, Ades S, Stein GS, Lian JB, Landry CC. Nanoparticle-based targeted cancer strategies for non-invasive prostate cancer intervention. J Cell Physiol 2018; 233:6408-6417. [PMID: 29663383 DOI: 10.1002/jcp.26593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/07/2023]
Abstract
Prostate cancer is screened by testing circulating levels of the prostate-specific antigen (PSA) biomarker, monitoring changes over time, or a digital rectal exam. Abnormal results often lead to prostate biopsy. Prostate cancer positive patients are stratified into very low-risk, low-risk, intermediate-risk, and high-risk, based on clinical classification parameters, to assess therapy options. However, there remains a gap in our knowledge and a compelling need for improved risk stratification to inform clinical decisions and reduce both over-diagnosis and over-treatment. Further, current strategies for clinical intervention do not distinguish clinically aggressive prostate cancer from indolent disease. This mini-review takes advantage of a large number of functionally characterized microRNAs (miRNA), epigenetic regulators of prostate cancer, that define prostate cancer cell activity, tumor stage, and circulate as biomarkers to monitor disease progression. Nanoparticles provide an effective platform for targeted delivery of miRNA inhibitors or mimics specifically to prostate tumor cells to inhibit cancer progression. Several prostate-specific transmembrane proteins expressed at elevated levels in prostate tumors are under investigation for targeting therapeutic agents to prostate cancer cells. Given that prostate cancer progresses slowly, circulating miRNAs can be monitored to identify tumor progression in indolent disease, allowing identification of miRNAs for nanoparticle intervention before the crucial point of transition to aggressive disease. Here, we describe clinically significant and non-invasive intervention nanoparticle strategies being used in clinical trials for drug and nucleic acid delivery. The advantages of mesoporous silica-based nanoparticles and a number of candidate miRNAs for inhibition of prostate cancer are discussed.
Collapse
Affiliation(s)
- Nicholas H Farina
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Areg Zingiryan
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael A Vrolijk
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| | - Scott D Perrapato
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Surgery, Division of Urology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Steven Ades
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medicine, Division of Hematology and Oncology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher C Landry
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
22
|
Li DY, Chen WJ, Shang J, Chen G, Li SK. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA. Oncol Lett 2018; 15:9487-9497. [PMID: 29805671 DOI: 10.3892/ol.2018.8476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Dong-Yao Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Jie Chen
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
23
|
Li D, Yang W, Zhang J, Yang JY, Guan R, Yang MQ. Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma. Genes (Basel) 2018; 9:E12. [PMID: 29303984 PMCID: PMC5793165 DOI: 10.3390/genes9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed carcinoma and is the leading cause of cancer death. Although significant progress has been made towards its understanding and treatment, unraveling the complexities of lung cancer is still hampered by a lack of comprehensive knowledge on the mechanisms underlying the disease. High-throughput and multidimensional genomic data have shed new light on cancer biology. In this study, we developed a network-based approach integrating somatic mutations, the transcriptome, DNA methylation, and protein-DNA interactions to reveal the key regulators in lung adenocarcinoma (LUAD). By combining Bayesian network analysis with tissue-specific transcription factor (TF) and targeted gene interactions, we inferred 15 disease-related core regulatory networks in co-expression gene modules associated with LUAD. Through target gene set enrichment analysis, we identified a set of key TFs, including known cancer genes that potentially regulate the disease networks. These TFs were significantly enriched in multiple cancer-related pathways. Specifically, our results suggest that hepatitis viruses may contribute to lung carcinogenesis, highlighting the need for further investigations into the roles that viruses play in treating lung cancer. Additionally, 13 putative regulatory long non-coding RNAs (lncRNAs), including three that are known to be associated with lung cancer, and nine novel lncRNAs were revealed by our study. These lncRNAs and their target genes exhibited high interaction potentials and demonstrated significant expression correlations between normal lung and LUAD tissues. We further extended our study to include 16 solid-tissue tumor types and determined that the majority of these lncRNAs have putative regulatory roles in multiple cancers, with a few showing lung-cancer specific regulations. Our study provides a comprehensive investigation of transcription factor and lncRNA regulation in the context of LUAD regulatory networks and yields new insights into the regulatory mechanisms underlying LUAD. The novel key regulatory elements discovered by our research offer new targets for rational drug design and accompanying therapeutic strategies.
Collapse
Affiliation(s)
- Dan Li
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - William Yang
- School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | - Jialing Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | - Jack Y Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Renchu Guan
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Mary Qu Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| |
Collapse
|
24
|
Yang S, Sui J, Liang G. Diagnosis value of aberrantly expressed microRNA profiles in lung squamous cell carcinoma: a study based on the Cancer Genome Atlas. PeerJ 2017; 5:e4101. [PMID: 29204322 PMCID: PMC5712466 DOI: 10.7717/peerj.4101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background Lung cancer is considered as one of the most frequent and deadly cancers with high mortality all around the world. It is critical to find new biomarkers for early diagnosis of lung cancer, especially lung squamous cell carcinoma (LUSC). The Cancer Genome Atlas (TCGA) is a database which provides both cancer and clinical information. This study is a comprehensive analysis of a novel diagnostic biomarker for LUSC, based on TCGA. Methods and Results The present study investigated LUSC-specific key microRNAs (miRNAs) from large-scale samples in TCGA. According to exclusion criteria and inclusion criteria, the expression profiles of miRNAs with related clinical information of 332 LUSC patients were obtained. Most aberrantly expressed miRNAs were identified between tumor and normal samples. Forty-two LUSC-specific intersection miRNAs (fold change >2, p < 0.05) were obtained by an integrative computational method, among them six miRNAs were found to be aberrantly expressed concerning characteristics of patients (gender, lymphatic metastasis, patient outcome assessment) through Student t-test. Five miRNAs correlated with overall survival (log-rank p < 0.05) were obtained through the univariate Cox proportional hazards regression model and Mantel–Haenszel test. Then, five miRNAs were randomly selected to validate the expression in 47 LUSC patient tissues using quantitative real-time polymerase chain reaction. The results showed that the test findings were consistent with the TCGA findings. Also, the diagnostic value of the specific key miRNAs was determined by areas under receiver operating characteristic curves. Finally, 577 interaction mRNAs as the targets of 42 LUSC-specific intersection miRNAs were selected for further bioinformatics analysis. Conclusion This study indicates that this novel microRNA expression signature may be a useful biomarker of the diagnosis for LUSC patients, based on bioinformatics analysis.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Mitra R, Chen X, Greenawalt EJ, Maulik U, Jiang W, Zhao Z, Eischen CM. Decoding critical long non-coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat Commun 2017; 8:1604. [PMID: 29150601 PMCID: PMC5693921 DOI: 10.1038/s41467-017-01781-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNA (lncRNA) are emerging as contributors to malignancies. Little is understood about the contribution of lncRNA to epithelial-to-mesenchymal transition (EMT), which correlates with metastasis. Ovarian cancer is usually diagnosed after metastasis. Here we report an integrated analysis of >700 ovarian cancer molecular profiles, including genomic data sets, from four patient cohorts identifying lncRNA DNM3OS, MEG3, and MIAT overexpression and their reproducible gene regulation in ovarian cancer EMT. Genome-wide mapping shows 73% of MEG3-regulated EMT-linked pathway genes contain MEG3 binding sites. DNM3OS overexpression, but not MEG3 or MIAT, significantly correlates to worse overall patient survival. DNM3OS knockdown results in altered EMT-linked genes/pathways, mesenchymal-to-epithelial transition, and reduced cell migration and invasion. Proteotranscriptomic characterization further supports the DNM3OS and ovarian cancer EMT connection. TWIST1 overexpression and DNM3OS amplification provides an explanation for increased DNM3OS levels. Therefore, our results elucidate lncRNA that regulate EMT and demonstrate DNM3OS specifically contributes to EMT in ovarian cancer.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xi Chen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Evan J Greenawalt
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Jadavpur, 700032, India
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
26
|
Li DY, Chen WJ, Luo L, Wang YK, Shang J, Zhang Y, Chen G, Li SK. Prospective lncRNA-miRNA-mRNA regulatory network of long non-coding RNA LINC00968 in non-small cell lung cancer A549 cells: A miRNA microarray and bioinformatics investigation. Int J Mol Med 2017; 40:1895-1906. [PMID: 29039552 DOI: 10.3892/ijmm.2017.3187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/05/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence suggests that the dysregulation of long non-coding RNAs (lncRNAs) serves vital roles in the incidence and progression of lung cancer. However, the molecular mechanisms of LINC00968, a recently identified lncRNA, remain unknown. The objective of present study was to investigate the role of a prospective lncRNA-miRNA‑mRNA network regulated by LINC00968 in non-small cell lung cancer cells. Following the transfection of lentiviruses carrying LINC00968 into A549 cells, the microRNA (miRNA) expression profile of the cells in response to the overexpression of LINC00968 was detected using an miRNA microarray. Five differentially expressed miRNAs (DEMs) with LINC00968 overexpression were obtained, including miR-9-3p, miR‑22-5p, miR-668-3p, miR‑3675-3p and miR-4536-3p. Five target prediction algorithms and three target validation algorithms were used to obtain 1,888 prospective target genes of the five DEMs. The result of Gene Ontology analysis suggested that these five DEMs were involved in complex cellular pathways, which included intracellular transport, organelle lumen and nucleotide binding. Furthermore, analysis of Kyoto Encyclopedia of Genes and Genomes pathways indicated that the five DEMs were important regulators in the adherens junction and focal adhesion. An lncRNA-miRNA-mRNA regulatory network and a protein-protein interaction network were then constructed. Eventually, a prospective lncRNA‑miRNA-mRNA regulatory network of LINC00968, three miRNAs (miR-9, miR-22 and miR-4536) and two genes (polo-like kinase 1 and exportin-1) was obtained following validation in the Cancer Genome Atlas database. These results may provide novel insights to support future research into lncRNA in lung cancer.
Collapse
Affiliation(s)
- Dong-Yao Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Jie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Luo
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yong-Kun Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Wang H, Luo J, Liu C, Niu H, Wang J, Liu Q, Zhao Z, Xu H, Ding Y, Sun J, Zhang Q. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer. BMC Bioinformatics 2017; 18:388. [PMID: 28865443 PMCID: PMC5581471 DOI: 10.1186/s12859-017-1796-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies worldwide with poor prognosis. Studies have showed that abnormal microRNA (miRNA) expression can affect CRC pathogenesis and development through targeting critical genes in cellular system. However, it is unclear about which miRNAs play central roles in CRC’s pathogenesis and how they interact with transcription factors (TFs) to regulate the cancer-related genes. Results To address this issue, we systematically explored the major regulation motifs, namely feed-forward loops (FFLs), that consist of miRNAs, TFs and CRC-related genes through the construction of a miRNA-TF regulatory network in CRC. First, we compiled CRC-related miRNAs, CRC-related genes, and human TFs from multiple data sources. Second, we identified 13,123 3-node FFLs including 25 miRNA-FFLs, 13,005 TF-FFLs and 93 composite-FFLs, and merged the 3-node FFLs to construct a CRC-related regulatory network. The network consists of three types of regulatory subnetworks (SNWs): miRNA-SNW, TF-SNW, and composite-SNW. To enhance the accuracy of the network, the results were filtered by using The Cancer Genome Atlas (TCGA) expression data in CRC, whereby we generated a core regulatory network consisting of 58 significant FFLs. We then applied a hub identification strategy to the significant FFLs and found 5 significant components, including two miRNAs (hsa-miR-25 and hsa-miR-31), two genes (ADAMTSL3 and AXIN1) and one TF (BRCA1). The follow up prognosis analysis indicated all of the 5 significant components having good prediction of overall survival of CRC patients. Conclusions In summary, we generated a CRC-specific miRNA-TF regulatory network, which is helpful to understand the complex CRC regulatory mechanisms and guide clinical treatment. The discovered 5 regulators might have critical roles in CRC pathogenesis and warrant future investigation. Electronic supplementary material The online version of this article (10.1186/s12859-017-1796-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiamao Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huilin Niu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zhongming Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingchun Sun
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Qingling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Hou L, Luo P, Ma Y, Jia C, Yu F, Lv Z, Wu C, Fu D. MicroRNA-125a-3p downregulation correlates with tumorigenesis and poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2017; 14:4441-4448. [PMID: 29085440 PMCID: PMC5649526 DOI: 10.3892/ol.2017.6809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/20/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR)-125a-3p is derived from the 3'-end of pre-miR-125a, which is associated with several types of cancer, such as gastric and prostate cancer, and glioma. The aim of the present study was to identify the prognostic significance of miR-125a-3p expression levels in patients with NSCLC. The gene expression omnibus database was used to analyze miR-125a-3p expression in NSCLC in silico, and 148 NSCLC samples and 30 adjacent normal lung tissue specimens were analyzed for the expression of miR-125a-3p by qPCR. The results showed that the expression levels of miR-125a-3p in the adjacent normal tissues was higher than the expression level in the NSCLC tissues. There were several clinical parameters demonstrated to be associated with miR-125a-3p expression, such as lymph node metastasis, tumor node metastasis classification of malignant tumor stage and tumor diameter. Furthermore, high expression levels of miR-125a-3p with chemotherapy prolonged the overall survival rate and disease free survival rate compared with untreated patients with low expression of miR-125a-3p. Thus, miR-125a-3p is a significant prognostic biomarker for patients with NSCLC, from which a novel therapeutic strategy to combat NSCLC may be derived.
Collapse
Affiliation(s)
- Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Pei Luo
- Veterinary Faculty, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China.,Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
29
|
Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell lung cancer resection. Cell Oncol (Dordr) 2017. [PMID: 28634901 DOI: 10.1007/s13402-017-0334-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The majority of non-small cell lung cancer (NSCLC) patients presents with an advanced-stage disease and, consequently, exhibits a poor overall survival rate. We aimed to assess changes in plasma miR-9, miR-16, miR-205 and miR-486 levels and their potential as biomarkers for the diagnosis and monitoring of NSCLC patients. METHODS Plasma was collected from 50 healthy donors and from NSCLC patients before surgery (n = 61), 1 month after surgery (n = 37) and 1 year after surgery (n = 14). microRNA levels were quantified using qRT-PCR. RESULTS We found in NSCLC patients before treatment, both with squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), significantly higher plasma miR-16 and miR-486 levels than in healthy individuals. Pre-treatment miR-205 concentrations were found to be significantly higher in SQCC than in ADC patients, and only SQCC patients presented significantly higher circulating miR-205 levels than healthy donors. SQCC plasma miR-9 levels were not different from normal control levels, but in ADC they were found to be significantly decreased. A combination of plasma miR-16, miR-205 and miR-486 measurements was found to discriminate NSCLC patients from healthy persons, with a specificity of 95% and a sensitivity of 80%. Following tumor resection, we found that the miR-9 and miR-205 levels significantly decreased, even below the normal level, whereas the increased miR-486 level persisted up to one year after surgery, and the miR-16 level decreased to normal. After tumor resection, none of the miR levels tested was found to relate to recurrence. CONCLUSIONS Our data indicate that miR-9, miR-16, miR-205 and miR-486 may serve as NSCLC biomarkers. The observed cancer-related pre- and post-operative changes in their plasma levels may not only reflect the presence of a primary cancer, but also of a systemic response to cancer.
Collapse
|
30
|
Luo P, Yang Q, Cong LL, Wang XF, Li YS, Zhong XM, Xie RT, Jia CY, Yang HQ, Li WP, Cong XL, Xia Q, Fu D, Zeng QH, Ma YS. Identification of miR‑124a as a novel diagnostic and prognostic biomarker in non‑small cell lung cancer for chemotherapy. Mol Med Rep 2017; 16:238-246. [PMID: 28534972 PMCID: PMC5482144 DOI: 10.3892/mmr.2017.6595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/20/2017] [Indexed: 01/18/2023] Open
Abstract
Previous studies have suggested that dysregulation of microRNA (miR) −124a is associated with various types of human cancer. However, there are few studies reporting the level of miR-124a expression in non-small cell lung cancer (NSCLC). The present study investigated the association between miR-124a and NSCLC by analyzing the differential expression of miR-124a in NSCLC using the GEO database, as well as subsequently performing reverse transcription-quantitative polymerase chain reaction analysis on 160 NSCLC biopsies, 32 of which were paired with adjacent normal tissues. The results indicated that mir-124a expression levels were decreased in NSCLC tumor biopsies compared with adjacent normal tissues. The overall survival (OS) in patients with a high expression of miR-124a was prolonged relative to patients with low expression of miR-124a. The expression levels of miR-124a were associated with clinical characteristics, including lymph-node metastasis, tumor differentiation, tumor node metastasis (TNM) stage and diameter. Frequently, lymph-node metastasis, TNM stage, diameter and lack of chemotherapy have been associated with a worse prognosis in patients. In addition, the present study identified that high expression of miR-124awith chemotherapy may increase OS. In conclusion, the current study demonstrated that miR-124a was downregulated in NSCLC, and miR-124a was a potential prognostic tumor biomarker response to chemotherapy.
Collapse
Affiliation(s)
- Pei Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Le-Le Cong
- Department of Neurology, China Japan Union Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central‑South University, Changsha, Hunan 410008, P.R. China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Ru-Ting Xie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui-Qiong Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Wen-Ping Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xian-Ling Cong
- Tissue Bank, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qing Xia
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qing-Hua Zeng
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
31
|
Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 2016; 796:190-206. [PMID: 27916556 DOI: 10.1016/j.ejphar.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a large family of small and highly conserved non-coding RNAs, regulate gene expression through translational repression or mRNA degradation. Aberrant expression of miRNAs underlies a spectrum of diseases including organ fibrosis. Recent evidence suggests that miRNAs contribute to organ fibrosis through mediating epithelial-mesenchymal transition (EMT). Alleviation of EMT has been proposed as a promising strategy against fibrotic diseases given the key role of EMT in fibrosis. miRNAs impact the expression of specific ligands, receptors, and signaling pathways, thus modulating EMT and consequently influencing fibrosis. This review summarizes the current knowledge concerning how miRNAs regulate EMT and highlights the specific roles that miRNAs-regulated EMT plays in fibrotic diseases as diverse as pulmonary fibrosis, hepatic fibrosis, renal fibrosis and cardiac fibrosis. It is desirable that a more comprehensive understanding of the functions of miRNAs-regulated EMT will facilitate the development of novel diagnostic and therapeutic strategies for various debilitating organ fibrosis.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
32
|
Liu S, Mitra R, Zhao MM, Fan W, Eischen CM, Yin F, Zhao Z. The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development. Mol Cancer Ther 2016; 15:2977-2986. [PMID: 27784795 DOI: 10.1158/1535-7163.mct-16-0320] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023]
Abstract
Long noncoding RNA (lncRNA) may contribute to the initiation and progression of tumor. In this study, we first systematically compared lncRNA and mRNA expression between glioblastoma and paired normal brain tissues using microarray data. We found 27 lncRNA and 82 mRNA significantly upregulated in glioblastoma, as well as 198 lncRNA and 285 mRNA significantly downregulated in glioblastoma. We identified 138 coexpressed lncRNA-mRNA pairs from these differentially expressed lncRNA and genes. Subsequent pathway analysis of the lncRNA-paired genes indicated that EphrinB-EPHB, p75-mediated signaling, TNFα/NF-κB, and ErbB2/ErbB3 signaling pathways might be altered in glioblastoma. Specifically, lncRNA RAMP2-AS1 had significant decrease of expression in glioblastoma tissues and showed coexpressional relationship with NOTCH3, an important tumor promoter in many neoplastic diseases. Our follow up experiment indicated that (i) an overexpression of RAMP2-AS1 reduced glioblastoma cell proliferation in vitro and also reduced glioblastoma xenograft tumors in vivo; (ii) NOTCH3 and RAMP2-AS1 coexpression rescued the inhibitory action of RAMP2-AS1 in glioblastoma cells; and (iii) RNA pull-down assay revealed a direct interaction of RAMP2-AS1 with DHC10, which may consequently inhibit, as we hypothesize, the expression of NOTCH3 and its downstream signaling molecule HES1 in glioblastoma. Taken together, our data revealed that lncRNA expression profile in glioblastoma tissue was significantly altered; and RAMP2-AS1 might play a tumor suppressive role in glioblastoma through an indirect inhibition of NOTCH3 Our results provided some insights into understanding the key roles of lncRNA-mRNA coregulation in human glioblastoma and the mechanisms responsible for glioblastoma progression and pathogenesis. Mol Cancer Ther; 15(12); 2977-86. ©2016 AACR.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery, Navy General Hospital, PLA. Beijing, 100048, China
| | - Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Ming-Ming Zhao
- Department of Neurosurgery, Navy General Hospital, PLA. Beijing, 100048, China
| | - Wenhong Fan
- Department of Recombinant Drugs, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Feng Yin
- Department of Neurosurgery, Navy General Hospital, PLA. Beijing, 100048, China
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Center for Precision Health, School of Biomedical University, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
33
|
Wang W, Zhang Y, Zhu B, Duan T, Xu Q, Wang R, Lu L, Jiao Z. Plasma microRNA expression profiles in Chinese patients with rheumatoid arthritis. Oncotarget 2016; 6:42557-68. [PMID: 26637811 PMCID: PMC4767452 DOI: 10.18632/oncotarget.6449] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/21/2015] [Indexed: 12/31/2022] Open
Abstract
The outstanding characteristics of circulatory microRNAs (miRNAs) attract much attention in research on disease biomarkers and disease pathogenesis. This study aimed to identify the expression profiles of plasma miRNAs in patients with rheumatoid arthritis (RA). Thirty-three miRNAs were screened using an miRNA array, of which 9 miRNAs were validated as differentially expressed in the plasma of RA patients compared with healthy controls (HCs). miRNA-4634 (miR-4634), miR-181d and miR-4764-5p expression levels were increased, whereas miR-342-3p, miR-3926, miR-3925-3p, miR-122-3p, miR-9-5p and miR-219-2-3p expression levels were decreased in RA patients. The areas under the curve (AUCs) were generated to estimate the sensitivity and specificity of each miRNA or the panel of all 9 miRNAs as biomarkers for RA. AUCs for 9 individual miRNAs ranged from 0.6254 to 0.818; however, the AUC for the panel of 9 miRNAs reached 0.964. Levels of miR-122-3p, miR-3925-3p, miR-342-3p and miR-4764-5p expression showed significant differences between RA and other control groups. miR-4764-5p, miR-4634, miR-9-5p and miR-219-2-3p exhibited significant correlations with either plasma cytokine and chemokine levels or clinical features. In conclusion, this study identified 9-plasma miRNAs signature in Chinese patients with RA which may serve as noninvasive biomarkers for the diagnosis of RA.
Collapse
Affiliation(s)
- Wenhong Wang
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pathogenic Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yingying Zhang
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Zhu
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tanghai Duan
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiugui Xu
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rui Wang
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Zhijun Jiao
- Zhenjiang Key Laboratory of Medical Immunology, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Tian J, Hu L, Li X, Geng J, Dai M, Bai X. MicroRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:105. [PMID: 27364335 PMCID: PMC4929777 DOI: 10.1186/s13046-016-0382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Background The prognosis of non-small-cell lung cancer (NSCLC) is poor yet mechanistic understanding and therapeutic options remain limited. We investigated the biological and clinical significance of microRNA-130b and its relationship with apoptosis in NSCLC. Methods The level of microRNA-130b in relationship with the expression of PPARγ, VEGF-A, BCL-2 and apoptosis were analyzed in 91 lung cancer patient samples using immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay on tissue microarrays. Gain and loss-of-function studies were performed to investigate the effects of microRNA-130b, peroxisome proliferator-activated receptor γ (PPARγ) or vascular endothelial growth factor-A (VEGF-A) on biological functions of lung cancer cells using in vitro and in vivo approaches. Results MicroRNA-130b up-regulation conferred unfavorable prognosis of lung cancer patients. Notably, microRNA-130b targeted PPARγ and inhibiting microRNA-130b markedly repressed proliferation, invasion and metastasis of lung cancer cells, leading to increased apoptosis. MicroRNA-130b-dependent biologic effects were due to suppression of PPARγ that in turn activated BCL-2, the key mediator of anti-apoptosis. Administration of microRNA-130b mimic to mouse xenografts promoted tumor growth. In vitro and in vivo, miR-130b enrichment associated with down-regulation of PPARγ, up-regulation of VEGF-A and BCL-2, and decreased apoptosis. Conclusions The present study demonstrates that microRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. Targeting microRNA-130b might have remarkable therapeutic potential for lung cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0382-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianwei Tian
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liping Hu
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiao Li
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Dai
- Health Management Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Bai
- State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
35
|
Liu X, Luo Z, Peng H, Jiang H, Xu L. Prognostic role of miR-9 expression in various human malignant neoplasms: a meta-analysis. Onco Targets Ther 2016; 9:3039-47. [PMID: 27284255 PMCID: PMC4883817 DOI: 10.2147/ott.s98923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Emerging evidence has shown that aberrant microRNA expression has the potential to be used for predicting survival and treatment response of malignant neoplasms. In recent years, the role of miR-9 had been investigated in various types of cancers, and it was found that the results were inconsistent and inconclusive. Hence, in this study, a meta-analysis was conducted to assess the prognostic value of miR-9 in various types of tumors. Eligible studies were identified through a systematic search in PubMed and EMBASE and then were assessed by further quality evaluation. Pooled hazard ratios (HRs) with 95% confidence intervals for overall survival (OS) were calculated to investigate the association between miR-9 expression and cancer prognosis. The pooled results of eight published studies showed that elevated miR-9 was a predictor of poor survival of various carcinomas, with pooled HR of 3.04 (95% confidence interval: 1.96–4.73) for OS. Subgroup analysis on the basis of tumor type, sample size, and HR estimate also showed that high levels of miR-9 were also significantly correlated with OS. In addition, when the subgroup analyses were grouped by follow-up time, it was found that the elevated expression of miR-9 was associated with a lower long-term survival when the follow-up time was >60 months, but there was no correlation between the outcomes and those patients whose follow-up time was <60 months. Funnel plots and Egger’s tests revealed that there was no obvious publication bias risk in the meta-analysis. In conclusion, our results demonstrated that higher expression level of miR-9 significantly predicted worse OS in various carcinomas and that miR-9 may act as a novel biomarker in the prognosis of malignant neoplasms.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziyan Luo
- Division of Birth Cohort Study, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hongxia Peng
- Division of Birth Cohort Study, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
36
|
Li S, Geng J, Xu X, Huang X, Leng D, Jiang D, Liang J, Wang C, Jiang D, Dai H. miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1. PLoS One 2016; 11:e0150418. [PMID: 26953888 PMCID: PMC4783101 DOI: 10.1371/journal.pone.0150418] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/13/2016] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and usually lethal fibrotic lung disease with largely unknown etiology and pathogenesis. Evidence suggests microRNAs (miRNA) contribute to pathogenesis of IPF. In this study, we sought to identify miRNA expression signatures and determine the role of miR-130b-3p in lung fibrosis. The miRNA expression profile of the lungs from patients with IPF and normal donors was determined by Affymetrix microarray, and transcriptome with Affymetrix array. The functions and signal pathways as well as miRNA-mRNA networks were established by bioinformatics analysis. Luciferase assays and ELISA were used to confirm the miRNA target gene. The effect of miRNA-transfected epithelium on fibroblast activities was assessed using a co-culture system. The fibroblast activities were determined by qRT-PCR, western blotting, Transwell and BrdU assays. Seven miRNAs were significantly decreased in IPF lungs, with miR-130b-3p being the highest in the miRNA-mRNA network. Insulin-like growth factor (IGF-1) was a target gene of miR-130b-3p in the epithelium. miR-130b-3p inhibition in the epithelium induced collagen I expression and enhanced the proliferation and migration ability of fibroblast in co-culture systems, which mimicked the functions of exogenous IGF-1 on fibroblasts. Neutralizing IGF-1 with an antibody significantly reduced the modulatory effects of miR-130b-3p inhibitor-transfected epithelium on the activation of fibroblasts. Our results show that miR-130b-3p was downregulated in IPF lungs. miR-130b-3p downregulation contributed to the activation of fibroblasts and the dysregulated epithelial-mesenchymal crosstalk by promoting IGF-1 secretion from lung epithelium, suggesting a key regulatory role for this miRNA in preventing lung fibrosis.
Collapse
Affiliation(s)
- Shuhong Li
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
| | - Jing Geng
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing 100730, P.R. China
| | - Xiaoxi Huang
- Department of Medical Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dingyuan Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
| | - Jiurong Liang
- Department of Medicine Pulmonary Division and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Chen Wang
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing 100730, P.R. China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Beijing, 100029, P.R. China
| | - Dianhua Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
- Department of Medicine Pulmonary Division and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
- * E-mail: (HD); (DHJ)
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, P.R. China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Beijing, 100029, P.R. China
- * E-mail: (HD); (DHJ)
| |
Collapse
|
37
|
Li Y, Chen D, Li Y, Jin L, Liu J, Su Z, Qi Z, Shi M, Jiang Z, Gui Y, Yang S, Mao X, Lai Y. Identification of miR‑130b as an oncogene in renal cell carcinoma. Mol Med Rep 2015; 13:1902-8. [PMID: 26717956 DOI: 10.3892/mmr.2015.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 11/10/2015] [Indexed: 11/05/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of renal tumor, which has a poor prognosis. Improvements in understanding the underlying molecular biology of RCC has led to systemic treatments, which have markedly improved patient outcomes. Therefore, it is necessary and worthwhile to identify novel biomarkers for RCC. MicroRNAs (miRNAs) have been found to be important in a wide range of biological and pathological processes, including cell differentiation, migration, growth, proliferation, apoptosis and metabolism. Aberrant expression of miRNA‑130b has previously been reported in tumors, however, its role in RCC remains to be elucidated. In the present study, the upregulation of miR‑130b was observed in RCC tissues and cell lines using reverse transcription‑quantitative polymerase chain reaction analysis, which was consistent with previous microRNA profiling in RCC. Furthermore, the effects of miR‑130b on cell migration, proliferation and apoptosis were examined using a wound scratch assay, an MTT assay and flow cytometric analysis, respectively. The results demonstrated that the downregulation of miR‑130b by a synthesized inhibitor inhibited cell migration, suppressed cell proliferation and induced RCC cell apoptosis. The present study was the first, to the best of our knowledge, to suggest that miR‑130b may be a promising biomarker for diagnosis and a therapeutic target for the treatment of RCC. Further investigations are required to examine the roles and target genes of miR‑130b in RCC.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Duqun Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuchi Li
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengming Su
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengyu Qi
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Min Shi
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
38
|
Jiang W, Mitra R, Lin CC, Wang Q, Cheng F, Zhao Z. Systematic dissection of dysregulated transcription factor-miRNA feed-forward loops across tumor types. Brief Bioinform 2015; 17:996-1008. [PMID: 26655252 PMCID: PMC5142013 DOI: 10.1093/bib/bbv107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription factor and microRNA (miRNA) can mutually regulate each other and jointly regulate their shared target genes to form feed-forward loops (FFLs). While there are many studies of dysregulated FFLs in a specific cancer, a systematic investigation of dysregulated FFLs across multiple tumor types (pan-cancer FFLs) has not been performed yet. In this study, using The Cancer Genome Atlas data, we identified 26 pan-cancer FFLs, which were dysregulated in at least five tumor types. These pan-cancer FFLs could communicate with each other and form functionally consistent subnetworks, such as epithelial to mesenchymal transition-related subnetwork. Many proteins and miRNAs in each subnetwork belong to the same protein and miRNA family, respectively. Importantly, cancer-associated genes and drug targets were enriched in these pan-cancer FFLs, in which the genes and miRNAs also tended to be hubs and bottlenecks. Finally, we identified potential anticancer indications for existing drugs with novel mechanism of action. Collectively, this study highlights the potential of pan-cancer FFLs as a novel paradigm in elucidating pathogenesis of cancer and developing anticancer drugs.
Collapse
Affiliation(s)
- Wei Jiang
- *These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
39
|
Lin CC, Mitra R, Cheng F, Zhao Z. A cross-cancer differential co-expression network reveals microRNA-regulated oncogenic functional modules. MOLECULAR BIOSYSTEMS 2015; 11:3244-52. [PMID: 26448606 PMCID: PMC4643368 DOI: 10.1039/c5mb00443h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target gene expressions at the post-transcriptional level. Moreover, they have been reported as either oncomirs or tumor suppressors and possess therapeutic potential in cancer. In this study, we investigated differential co-expression of miRNAs across four cancer types. We observed that the loss of positive co-expressions among miRNAs frequently occurs in the studied cancer types. This observation suggests that the disruption of positive co-expressions among miRNAs may be prevalent during tumorigenesis. By systematically collecting these lost positive co-expressions among miRNAs in cancer, we constructed a cross-cancer miRNA differential co-expression network. We observed that the influential miRNAs in the proposed network, i.e., hubs or in larger cliques, tended to be involved in more cancer types than other miRNAs. Moreover, we found that miRNAs which lose their positive co-expressions in cancers might co-contribute to cancer development, and even could be used to predict the cancer types in which miRNAs were involved. Finally, we identified two potential miRNA-regulated onco-modules, mitosis and DNA replication, that are associated with poor survival outcomes in patients across multiple cancers. Collectively, our study suggested that the disruption of miRNA positive co-expression in cancer might contribute to cancer development. Our findings also form an important basis for identifying miRNAs with potential co-contribution to carcinogenesis.
Collapse
Affiliation(s)
- Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA. and Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA. and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
40
|
Kim P, Cheng F, Zhao J, Zhao Z. ccmGDB: a database for cancer cell metabolism genes. Nucleic Acids Res 2015; 44:D959-68. [PMID: 26519468 PMCID: PMC4702820 DOI: 10.1093/nar/gkv1128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/15/2015] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has demonstrated that rewiring of metabolism in cells is an important hallmark of cancer. The percentage of patients killed by metabolic disorder has been estimated to be 30% of the advanced-stage cancer patients. Thus, a systematic annotation of cancer cell metabolism genes is imperative. Here, we present ccmGDB (Cancer Cell Metabolism Gene DataBase), a comprehensive annotation database for cell metabolism genes in cancer, available at http://bioinfo.mc.vanderbilt.edu/ccmGDB. We assembled, curated, and integrated genetic, genomic, transcriptomic, proteomic, biological network and functional information for over 2000 cell metabolism genes in more than 30 cancer types. In total, we integrated over 260 000 somatic alterations including non-synonymous mutations, copy number variants and structural variants. We also integrated RNA-Seq data in various primary tumors, gene expression microarray data in over 1000 cancer cell lines and protein expression data. Furthermore, we constructed cancer or tissue type-specific, gene co-expression based protein interaction networks and drug-target interaction networks. Using these systematic annotations, the ccmGDB portal site provides 6 categories: gene summary, phenotypic information, somatic mutations, gene and protein expression, gene co-expression network and drug pharmacological information with a user-friendly interface for browsing and searching. ccmGDB is developed and maintained as a useful resource for the cancer research community.
Collapse
Affiliation(s)
- Pora Kim
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| |
Collapse
|
41
|
Lu L, Wang J, Lu H, Zhang G, Liu Y, Wang J, Zhang Y, Shang H, Ji H, Chen X, Duan Y, Li Y. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study. Biochem Biophys Res Commun 2015; 465:387-93. [PMID: 26255201 DOI: 10.1016/j.bbrc.2015.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
Abstract
Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3'-untranslated region (3'-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl4) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3'-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis.
Collapse
Affiliation(s)
- Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Jinlong Wang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Guoyu Zhang
- West Hospital Ward 1, Shaanxi Provincial People's Hospital, No.256, Youyi Road(west), Xi'an, Shaanxi 710068, China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Jiazhong Wang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yafei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Hao Shang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yanxia Duan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
42
|
Lin CC, Jiang W, Mitra R, Cheng F, Yu H, Zhao Z. Regulation rewiring analysis reveals mutual regulation between STAT1 and miR-155-5p in tumor immunosurveillance in seven major cancers. Sci Rep 2015; 5:12063. [PMID: 26156524 PMCID: PMC4496795 DOI: 10.1038/srep12063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/16/2015] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) form a gene regulatory network (GRN) at the transcriptional and post-transcriptional level in living cells. However, this network has not been well characterized, especially in regards to the mutual regulations between TFs and miRNAs in cancers. In this study, we collected those regulations inferred by ChIP-Seq or CLIP-Seq to construct the GRN formed by TFs, miRNAs, and target genes. To increase the reliability of the proposed network and examine the regulation activity of TFs and miRNAs, we further incorporated the mRNA and miRNA expression profiles in seven cancer types using The Cancer Genome Atlas data. We observed that regulation rewiring was prevalent during tumorigenesis and found that the rewired regulatory feedback loops formed by TFs and miRNAs were highly associated with cancer. Interestingly, we identified one regulatory feedback loop between STAT1 and miR-155-5p that is consistently activated in all seven cancer types with its function to regulate tumor-related biological processes. Our results provide insights on the losing equilibrium of the regulatory feedback loop between STAT1 and miR-155-5p influencing tumorigenesis.
Collapse
Affiliation(s)
- Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Wei Jiang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Hui Yu
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA.,Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| |
Collapse
|
43
|
Mitra R, Zhao Z. The oncogenic and prognostic potential of eight microRNAs identified by a synergetic regulatory network approach in lung cancer. ACTA ACUST UNITED AC 2014; 7:384-93. [PMID: 25539849 DOI: 10.1504/ijcbdd.2014.066572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) and microRNAs (miRNAs), the two main gene regulators in the biological system, control the gene expression at the transcriptional and post-transcriptional level, respectively. However, little is known regarding whether the miRNATF co-regulatory mechanisms, predicted by several studies, truly reflect the molecular interactions in cellular systems. To tackle this important issue, we developed an integrative framework by utilising four independent miRNA and matched mRNA expression profiling datasets to identify reproducible regulations, and demonstrated this approach in non-small cell lung cancer (NSCLC). Our analyses pinpointed several reproducible miRNA-TF co-regulatory networks in NSCLC from which we systematically prioritised eight hub miRNAs that may have strong oncogenic characteristics. Here, we discussed the major findings of our study and explored the oncogenic and prognostic potential of eight prioritised miRNAs through literature-mining based analysis and patient survival analysis. The findings provide additional insights into the miRNA-TF co-regulation in lung cancer.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Zhongming Zhao
- Departments of Biomedical Informatics, Psychiatry, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
44
|
Hui YU, Ramkrishna MITRA, Jing YANG, YuanYuan LI, ZhongMing ZHAO. Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation. SCIENCE CHINA. LIFE SCIENCES 2014; 57:1090-102. [PMID: 25326829 PMCID: PMC4779643 DOI: 10.1007/s11427-014-4762-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
Identification of differential regulators is critical to understand the dynamics of cellular systems and molecular mechanisms of diseases. Several computational algorithms have recently been developed for this purpose by using transcriptome and network data. However, it remains largely unclear which algorithm performs better under a specific condition. Such knowledge is important for both appropriate application and future enhancement of these algorithms. Here, we systematically evaluated seven main algorithms (TED, TDD, TFactS, RIF1, RIF2, dCSA_t2t, and dCSA_r2t), using both simulated and real datasets. In our simulation evaluation, we artificially inactivated either a single regulator or multiple regulators and examined how well each algorithm detected known gold standard regulators. We found that all these algorithms could effectively discern signals arising from regulatory network differences, indicating the validity of our simulation schema. Among the seven tested algorithms, TED and TFactS were placed first and second when both discrimination accuracy and robustness against data variation were considered. When applied to two independent lung cancer datasets, both TED and TFactS replicated a substantial fraction of their respective differential regulators. Since TED and TFactS rely on two distinct features of transcriptome data, namely differential co-expression and differential expression, both may be applied as mutual references during practical application.
Collapse
Affiliation(s)
- YU Hui
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - MITRA Ramkrishna
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - YANG Jing
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - LI YuanYuan
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - ZHAO ZhongMing
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37212, USA
- Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee, 37232, USA
| |
Collapse
|
45
|
Edmonds MD, Eischen CM. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse. PLoS One 2014; 9:e101802. [PMID: 25028925 PMCID: PMC4100742 DOI: 10.1371/journal.pone.0101802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Relapse of adenocarcinoma, the most common non-small cell lung cancer (NSCLC), is a major clinical challenge to improving survival. To gain insight into the early molecular events that contribute to lung adenocarcinoma relapse, and taking into consideration potential cell type specificity, we used stringent criteria for sample selection. We measured miRNA expression only from flash frozen stage I lung adenocarcinomas, excluding other NSCLC subtypes. We compared miRNA expression in lung adenocarcinomas that relapsed within two years to those that did not relapse within three years after surgical resection prior to adjuvant therapy. The most significant differences in mRNA expression for recurrent tumors compared to non-recurrent tumors were decreases in miR-106b*, -187, -205, -449b, -774* and increases in miR-151-3p, let-7b, miR-215, -520b, and -512-3p. A unique comparison between adjacent normal lung tissue from relapse and non-relapse groups revealed dramatically different miRNA expression, suggesting dysregulation of miRNA in the environment around the tumor. To assess patient-to-patient variability, miRNA levels in the tumors were normalized to levels in matched adjacent normal lung tissue. This analysis revealed a different set of significantly altered miRNA in tumors that recurred compared to tumors that did not. Together our analyses elucidated miRNA not previously linked to lung adenocarcinoma that likely have important roles in its development and progression. Our results also highlight the differences in miRNA expression in normal lung tissue in adenocarcinomas that do and do not recur. Most notably, our data identified those miRNA that distinguish early stage tumors likely to relapse prior to treatment and miRNA that could be further studied for use as biomarkers for prognosis, patient monitoring, and/or treatment decisions.
Collapse
Affiliation(s)
- Mick D. Edmonds
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christine M. Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|