1
|
Chodurska B, Kunej T. Long non-coding RNAs in humans: Classification, genomic organization and function. Noncoding RNA Res 2025; 11:313-327. [PMID: 39967600 PMCID: PMC11833636 DOI: 10.1016/j.ncrna.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate numerous biological functions in animals. Despite recent advances in lncRNA research, their structural and functional annotation and classification remain an ongoing challenge. This review provides a comprehensive overview of human lncRNAs, highlighting their genomic organization, mode of action and role in physiological and pathological processes. Subgroups of lncRNA genes are discussed using representative examples and visualizations of genomic organization. The HUGO Gene Nomenclature Committee (HGNC) categorizes lncRNAs into nine subgroups: (1) microRNA non-coding host genes, (2) small nucleolar RNA non-coding host genes, (3) long intergenic non-protein coding RNAs (LINC), (4) antisense RNAs, (5) overlapping transcripts, (6) intronic transcripts, (7) divergent transcripts, (8) long non-coding RNAs with non-systematic symbols and (9) long non-coding RNAs with FAM root systems. Circular RNAs (circRNAs) are a separate class that shares some characteristics with lncRNAs and are divided into exonic, intronic and intronic-exonic types. LncRNAs act as molecular signals, decoys, scaffolds and sponges for microRNAs and often function as competing endogenous RNAs (ceRNAs). LncRNAs are involved in various physiological and pathological processes, such as cell differentiation, p53-mediated DNA damage response, glucose metabolism, inflammation and immune functions. They are associated with several diseases, including various types of neoplasms, Alzheimer's disease and autoimmune diseases. A clear classification system for lncRNA is essential for understanding their biological role and for facilitating practical applications in biomedical research. Future studies should focus on drug development and biomarker discovery. As important regulators of various biological processes, lncRNAs represent promising targets for innovative therapies.
Collapse
Affiliation(s)
- Barbara Chodurska
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
- Medical University of Łódź, Faculty of Biomedical Sciences, Poland
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Slovenia
| |
Collapse
|
2
|
Ahmad I, Sead FF, Kanjariya P, Kumar A, Rajivm A, Shankhyan A, Jaidka S, Kumar H, Aminov Z. Nanomaterial sensors for enhanced detection of serotonin. Clin Chim Acta 2025; 569:120160. [PMID: 39892692 DOI: 10.1016/j.cca.2025.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The detection of serotonin (5-HT), a critical neurotransmitter, has garnered significant attention in biosensor research because of its pivotal role in neurological and physiological processes. This narrative review highlights advancements in nanomaterial-based sensors designed to increase the sensitivity, specificity, and functionality of serotonin detection. Carbon-based nanomaterials, including carbon nanotubes (CNTs), graphene derivatives, and carbon nanofibers (CNFs), have demonstrated remarkable potential owing to their large surface area, superior electrical conductivity, and biocompatibility. These materials enable rapid electron transfer and selective serotonin adsorption, making them integral to electrochemical and wearable sensor technologies. Emerging technologies, including field-effect transistors (FETs), magnetoelastic biosensors, and molecularly imprinted polymers (MIPs), have demonstrated ultralow detection limits and real-time monitoring capabilities, suggesting promising applications for clinical diagnostics and personalized healthcare. Metal-based sensors, which utilize nanoparticles of gold, silver, and other metals, have also shown exceptional performance in serotonin detection through enhanced electrocatalysis and optical properties. This review underscores the transformative potential of nanomaterial-based sensors in serotonin detection, emphasizing their role in advancing neuroscience research, disease diagnostics, and therapeutic monitoring.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia.
| | - Fadhel F Sead
- Department of Dentistry, College of Dentistry, the Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Prakash Kanjariya
- Marwadi University Research Center, Department of Physics, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University, Mathura 281406, India
| | - Asha Rajivm
- Department of Physics & Electronics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Jaidka
- Department of Physics, Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | - Harish Kumar
- Department of Applied Sciences-Physics, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| |
Collapse
|
3
|
Zheng S, Hu J, Jiao Z, Wang T, Hu J, Zhang CY. Lighting up three-dimensional nanolantern for circular RNA imaging and precise gene therapy. Biosens Bioelectron 2025; 276:117273. [PMID: 39970724 DOI: 10.1016/j.bios.2025.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Circular RNAs (circRNAs) are a category of endogenous single-stranded RNAs with covalently closed head-to-tail topology, and they play a crucial part in regulating gene expression at post-transcriptional and transcriptional levels. Herein, we construct a three-dimensional nanolantern for circRNA imaging and precise gene therapy. This assay involves an integrated multi-functionalized lantern-shaped probe. By rationally engineering four vertexes and six edges of DNA dimensional architecture, the integrated nanolantern probe functions not only as a delivery machine for reactants but also as a scaffold for catalytic hybridization reactions. The presence of circCDYL initiates the entropy-driven strand displacement assembly of nanolantern monomer to generate long nanolantern concatemers while releasing small interfering RNAs (siRNAs) for target-stimulated on-site and on-demand gene therapy. Compared with canonical linear probe-based catalytic circuit, this method exhibits significantly improved fluorescence stability and gene therapy efficiency due to the inherent resistance of DNA rigid structure to enzymic digestion. This strategy enables one-step detection of circCDYL with a limit of detection (LOD) of 28.2 aM, and accurate quantification of circCDYL expressions in breast cancer patients and healthy individuals. Importantly, this catalytic circuit can achieve tumor-specific gene silencing with minimal off-target toxicity, holding great potential in tumor diagnosis and precise medicine.
Collapse
Affiliation(s)
- Shi Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinping Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210000, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210000, China.
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Lin H, Conn VM, Conn SJ. Past, present, and future strategies for detecting and quantifying circular RNA variants. FEBS J 2025. [PMID: 39934961 DOI: 10.1111/febs.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
Circular RNAs (circRNAs) are a family of covalently closed RNA transcripts ubiquitous across the eukaryotic kingdom. CircRNAs are generated by a class of alternative splicing called backsplicing, with the resultant circularization of a part of parental RNA producing the characteristic backsplice junction (BSJ). Because of the noncontiguous sequence of the BSJ with respect to the DNA genome, circRNAs remained hidden in plain sight through over a decade of RNA next-generation sequencing, yet over 3 million unique circRNA transcripts have been illuminated in the past decade alone. CircRNAs are expressed in a cell type-specific manner, are highly stable, with many examples of circRNAs being evolutionarily conserved and/or functional in specific contexts. However, circRNAs can be very lowly expressed and predictions of the circRNA context from BSJ-spanning reads alone can confound extrapolation of the exact sequence composition of the circRNA transcript. For these reasons, specific and ultrasensitive detection, combined with enrichment, bespoke bioinformatics pipelines and, more recently, long-read, highly processive sequencing is becoming critical for complete characterization of all circRNA variants. Concomitantly, the need for targeted detection and quantification of specific circRNAs has sparked numerous laboratory-based and commercial approaches to visualize circRNAs in cells and quantify them in biological samples, including biospecimens. This review focuses on advancements in the detection and quantification of circRNAs, with a particular focus on recent next-generation sequencing approaches to bolster detection of circRNA variants and accurately normalize between sequencing libraries.
Collapse
Affiliation(s)
- He Lin
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
6
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2025; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
7
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
8
|
Li Y, Sun S. RNA dysregulation in neurodegenerative diseases. EMBO J 2025; 44:613-638. [PMID: 39789319 PMCID: PMC11790913 DOI: 10.1038/s44318-024-00352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of RNA processing has in recent years emerged as a significant contributor to neurodegeneration. The diverse mechanisms and molecular functions underlying RNA processing underscore the essential role of RNA regulation in maintaining neuronal health and function. RNA molecules are bound by RNA-binding proteins (RBPs), and interactions between RNAs and RBPs are commonly affected in neurodegeneration. In this review, we highlight recent progress in understanding dysregulated RNA-processing pathways and the causes of RBP dysfunction across various neurodegenerative diseases. We discuss both established and emerging mechanisms of RNA-mediated neuropathogenesis in this rapidly evolving field. Furthermore, we explore the development of potential RNA-targeting therapeutic approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Tolentino-Molina BX, Loaeza-Loaeza J, Ortega-Soto A, Castro-Coronel Y, Fernández-Tilapa G, Hernández-Sotelo D. Hsa_circ_0009910 knockdown in HeLa cells increases miR‑198 expression levels and decreases c‑Met expression levels and cell viability. Oncol Lett 2025; 29:74. [PMID: 39650233 PMCID: PMC11622005 DOI: 10.3892/ol.2024.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/09/2024] [Indexed: 12/11/2024] Open
Abstract
Cervical cancer (CC) is considered a public health problem. Circular RNAs (circRNAs) serve important roles in different types of cancer, including CC. However, the mechanisms used by circRNAs to facilitate CC progression are currently unclear. The present study analyzed the effects of hsa_circ_0009910 knockdown on microRNA (miRNA/miR)-198 and mesenchymal-epithelial transition factor (c-Met) expression levels and its impact on apoptosis and the viability of HeLa cells. Differentially expressed circRNAs in CC were identified using analysis of circRNA microarray data. Bioinformatics analysis was performed to predict circRNA-microRNA (miRNA) and miRNA-mRNA interactions. The knockdown of hsa_circ_0009910 in HeLa cells was performed using small interfering RNA and the expression levels of hsa_circ_0009910, miR-198 and c-Met were assessed using reverse transcription-quantitative PCR. The viability and apoptosis of HeLa cells were evaluated using MTT, neutral red uptake and ApoLive-Glo™ multiplex assays. Hsa_circ_0009910 was significantly upregulated in HeLa cells and the knockdown of hsa_circ_0009910 increased miRNA-198 expression levels, reduced c-Met expression levels and decreased cellular viability, but not apoptosis, in HeLa cells. Overall, these results indicated that hsa_circ_0009910 could act as a molecular sponge of miRNA-198 and contribute to the upregulation of c-Met expression levels. The hsa_circ_0009910/miRNA-198/c-Met interaction network affects the viability, but not apoptosis, of HeLa cells. Based on this mechanism, the present study suggests that hsa_circ_0009910 may be a promising biomarker for CC.
Collapse
Affiliation(s)
- Bernardo Xavier Tolentino-Molina
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Jaqueline Loaeza-Loaeza
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Arturo Ortega-Soto
- Laboratory of Neurotoxicology, Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07300, Mexico
| | - Yaneth Castro-Coronel
- Laboratory of Cytopathology and Histochemistry, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| | - Daniel Hernández-Sotelo
- Laboratory of Cancer Epigenetics, School of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39070, Mexico
| |
Collapse
|
10
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2025; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
11
|
He S, Bing J, Zhong Y, Zheng X, Zhou Z, Wang Y, Hu J, Sun X. PlantCircRNA: a comprehensive database for plant circular RNAs. Nucleic Acids Res 2025; 53:D1595-D1605. [PMID: 39189447 PMCID: PMC11701686 DOI: 10.1093/nar/gkae709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Circular RNAs (circRNAs) represent recently discovered novel regulatory non-coding RNAs. While they are present in many eukaryotes, there has been limited research on plant circRNAs. We developed PlantCircRNA (https://plant.deepbiology.cn/PlantCircRNA/) to fill this gap. The two most important features of PlantCircRNA are (i) it incorporates circRNAs from 94 plant species based on 39 245 RNA-sequencing samples and (ii) it imports the original AtCircDB and CropCircDB databases. We manually curated all circRNAs from published articles, and imported them into the database. Furthermore, we added detailed information of tissue as well as abiotic stresses to the database. To help users understand these circRNAs, the database includes a detection score to measure their consistency and a naming system following the guidelines recently proposed for eukaryotes. Finally, we developed a comprehensive platform for users to visualize, analyze, and download data regarding specific circRNAs. This resource will serve as a home for plant circRNAs and provide the community with unprecedented insights into these mysterious molecule.
Collapse
Affiliation(s)
- Shutian He
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jianhao Bing
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhong
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyang Zheng
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ziyu Zhou
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yifei Wang
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiming Hu
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaoyong Sun
- Agricultural Big Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
12
|
Zhao Y, Wang S, Fu S, Wang X, Zhang J, Chen F. The diagnostic and therapeutic potential of multiple myeloma-associated circular RNAs. Exp Hematol 2025; 144:104709. [PMID: 39756785 DOI: 10.1016/j.exphem.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Circular RNA (circRNA) was first discovered in viruses in 1974; they are primarily formed through back splicing, where a downstream splice donor is joined to an upstream splice acceptor, resulting in a closed circRNA transcript. Under normal conditions, most circRNAs are stably expressed; however, in pathological conditions, circRNAs can play critical roles in the disease process of multiple myeloma (MM) through mechanisms such as competing endogenous RNAs (ceRNAs), regulation of transcription and splicing, affecting protein expression and localization, and even direct encoding of peptides. In recent years, there has been increasing interest in the role of circRNAs in MM and their regulatory functions during the disease process. Numerous studies have revealed that circRNAs are involved in the pathogenesis and prognosis of MM, aiding in the identification of reliable prognostic markers and potential therapeutic targets. Therefore, this review summarizes the structural characteristics of circRNAs, and their regulatory roles in MM, and introduces the latest advancements in understanding the novel functions of circRNAs in MM.
Collapse
Affiliation(s)
- Yue Zhao
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shaokun Wang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuang Fu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinxin Wang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fang Chen
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
13
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Boo SH, Shin MK, Hwang HJ, Hwang H, Chang S, Kim T, Baek D, Kim YK. Circular RNAs trigger nonsense-mediated mRNA decay. Mol Cell 2024; 84:4862-4877.e7. [PMID: 39667933 DOI: 10.1016/j.molcel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs produced predominantly through a back-splicing process. They play regulatory roles in various biological and physiological processes; however, the molecular mechanisms by which circRNAs operate remain unclear. Herein, we demonstrate that circRNAs facilitate rapid mRNA degradation through RNA-RNA interactions between circRNAs and the 3' untranslated regions (3' UTRs) of mRNAs. This interaction positions the exon-junction complexes (EJCs), deposited onto circRNAs by back-splicing, near the 3' UTRs of the mRNAs, thereby leading to EJC-dependent nonsense-mediated mRNA decay (NMD), a process we describe as circRNA-induced NMD (circNMD). Our transcriptomic analysis reveals hundreds of potential circNMD candidates, and the biological importance of circNMD in cellular apoptosis is validated. We also demonstrate that exogenously expressed circRNAs designed to interact with the 3' UTRs of endogenous mRNAs significantly downregulate the mRNA levels. Collectively, our observations provide compelling molecular evidence for circNMD and its potential therapeutic application in selective mRNA downregulation.
Collapse
Affiliation(s)
- Sung Ho Boo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyung Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunwoo Chang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
16
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
17
|
Zuo L, Tan Y, Xu QL, Li XL, Xiao M. Circ-RNF111 Promotes Proliferation of Ovarian Cancer Cell SKOV-3 by Targeting the MiR-556-5p/CCND1 Axis. Biochem Genet 2024; 62:4884-4895. [PMID: 38376577 DOI: 10.1007/s10528-024-10665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/01/2024] [Indexed: 02/21/2024]
Abstract
The aim of this study was to investigate the role and mechanism of circ-RNF111 in the human ovarian cancer cell line SKOV-3. First, qRT-PCR was used to detect circ-RNF111 and miR-556-5p expression levels in human normal ovarian epithelial cells IOSE80 and human ovarian cancer cells SKOV-3. CCK-8 and colony formation assays were adopted to determine the proliferation rate and cell viability of SKOV-3 cells, respectively. Additionally, in an attempt to reveal the mechanism of circ-RNF111, we predicted the targeting relationship between miR-556-5p and circ-RNF111 as well as miR-556-5p and CCND1 using the circinteractome and TargetScan databases, respectively, and validated their relationship by dual-luciferase reporter assay. The protein expression levels of CCND1 in SKOV-3 cells were detected by Western blot. Based on the above experiments, the expression of circ-RNF111 was found to be up-regulated in SKOV-3, and the knockdown of circ-RNF111 significantly inhibited the proliferation and viability of SKOV-3 cells. Then we confirmed that circ-RNF111 sponged miR-556-5p in SKOV-3 cells to up-regulate CCND1 expression. In addition, simultaneous inhibition of miR-556-5p or overexpression of CCND1 in SKOV-3 cells with knockdown of circ-RNF111 reversed the inhibitory effect of knockdown of circ-RNF111 on the protein expression level of CCND1, cell proliferation rate, and cell viability. In summary, circ-RNF111 promotes the proliferation of SKOV-3 cells by targeting the miR-556-5p/CCND1 axis. Circ-RNF111 may serve as a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Li Zuo
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Yue Tan
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Qiao-Ling Xu
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Xiao-Li Li
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Mi Xiao
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China.
| |
Collapse
|
18
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Yi Q, Ouyang X, Zhong K, Chen Z, Zhu W, Zhu G, Zhong J. circFOXP1: a potential diagnostic and therapeutic target in human diseases. Front Immunol 2024; 15:1489378. [PMID: 39606233 PMCID: PMC11599189 DOI: 10.3389/fimmu.2024.1489378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNA (circRNA) are a unique class of non-coding RNAs characterized by their covalently closed loop structures, which grant them properties such as stability and conservation. Among these, circFOXP1 has been implicated in various diseases, including cancers, respiratory, skeletal, and cardiovascular disorders. This review systematically examines circFOXP1's role in disease progression, highlighting its involvement in critical biological processes, including cell proliferation, invasion, apoptosis, and autophagy. Mechanistically, circFOXP1 functions through miRNA sponging, protein interactions, and modulation of key signaling pathways such as Wnt and PI3K/AKT. We discuss its potential as a diagnostic and therapeutic target. Our analysis also identifies key unresolved questions, such as the precise regulatory networks involving circFOXP1 and its translation potential, offering pathways for future research.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kui Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Chen
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Bakhtiarizade MR, Heidari M, Ghanatghestani AHM. Comprehensive circular RNA profiling in various sheep tissues. Sci Rep 2024; 14:26238. [PMID: 39482374 PMCID: PMC11527890 DOI: 10.1038/s41598-024-76940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
Collapse
Affiliation(s)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
21
|
Sun X, Feng P, Chen H, Ji Z, Zhuang L, Zhu T, Ji G, Wang J. Hsa_circ_0048764 facilitates the progression of non-small cell lung cancer by targeting miR-1178-3p/HMGA1 axis. Cell Signal 2024; 125:111484. [PMID: 39461578 DOI: 10.1016/j.cellsig.2024.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Non-small cell lung cancer (NSCLC) remains a highly lethal disease, with a lack of fully established biomarkers and therapies. Circular RNAs (circRNAs) have emerged as powerful regulators of gene expression in multiple cancers. The role of circRNAs in NSCLC progression is still not well understood. In this study, GEO database analysis and qRT-PCR results revealed that hsa_circ_0048764 (circ_0048764) was overexpressed in NSCLC tissues and associated with poorer overall survival in patients with NSCLC. Functional assays demonstrated that silencing circ_0048764 inhibited NSCLC cell proliferation and metastasis. Bioinformatics analysis identified miR-1178-3p as having complementary binding sites with circ_0048764, a finding further validated by the dual-luciferase reporter assay. Additionally, predictions from the Starbase3.0 database, along with cellular experiments, revealed that miR-1178-3p regulates HMGA1 expression in NSCLC. Taken together, our findings suggest that circ_0048764 promotes NSCLC progression by enhancing HMGA1 expression through sponging miR-1178-3p, offering potential therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Xing Sun
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China
| | - Ping Feng
- Department of Gastroenterology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, No. 1279 Sanmen Road, Shanghai 200434, China
| | - Haihua Chen
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China
| | - Zhijuan Ji
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China
| | - Lanmei Zhuang
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China
| | - Ting Zhu
- Department of Respiratory Medicine, Shanghai Gonghui Hospital, No. 450 Wenshui Road, Shanghai 200040, China
| | - Guangling Ji
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China
| | - Jin Wang
- Department of Respiratory Medicine, Shanghai Shibei Hospital, No. 4500 Gonghe New Road, Shanghai 200436, China.
| |
Collapse
|
22
|
Zhang M, He M, Bai L, Du F, Xie Y, Li B, Zhang Y. CircMALAT1 promotes the proliferation and metastasis of intrahepatic cholangiocarcinoma via the miR-512-5p/VCAM1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:223-236. [PMID: 39463204 DOI: 10.3724/abbs.2024185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Circular RNAs play a pivotal role in the progression of various cancers. In our previous study, we observed high expression of the circRNA MALAT1 (cMALAT1) in intrahepatic cholangiocarcinoma (ICC) cells co-incubated with activated hepatic stellate cells. This study is designed to explore the roles of cMALAT1 and the underlying mechanisms in ICC. We find that cMALAT1 significantly facilitates the progression of ICC both in vitro and in vivo. The binding between cMALAT1 and miR-512-5p is subsequently confirmed through RNA pull-down experiments. As anticipated, the application of miR-512-5p mimics noticeably reverses the cMALAT1 overexpression-induced malignant phenotypes of ICC cells. Furthermore, VCAM1 is identified as a downstream gene of the cMALAT1/miR-512-5p axis. Importantly, silencing of VCAM1 not only effectively suppresses the malignant phenotypes of ICC cells but also significantly impairs the functions of cMALAT1. Our study reveals that cMALAT1 promotes the progression of ICC by competitively binding to VCAM1 mRNA with miR-512-5p, leading to the upregulation of VCAM1 expression and the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Meixia Zhang
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Mingyan He
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liangliang Bai
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fan Du
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yingping Xie
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Bimin Li
- Department of Gastroenterology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuming Zhang
- Department of Surgery, People's Hospital of Nanchang Economic and Technological Development Zone, Nanchang 330013, China
| |
Collapse
|
23
|
He C, Duan L, Zheng H, Wang X, Guan L, Xu J. A Representation Learning Approach for Predicting circRNA Back-Splicing Event via Sequence-Interaction-Aware Dual Encoder. IEEE Trans Nanobioscience 2024; 23:603-611. [PMID: 39226209 DOI: 10.1109/tnb.2024.3454079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Circular RNAs (circRNAs) play a crucial role in gene regulation and association with diseases because of their unique closed continuous loop structure, which is more stable and conserved than ordinary linear RNAs. As fundamental work to clarify their functions, a large number of computational approaches for identifying circRNA formation have been proposed. However, these methods fail to fully utilize the important characteristics of back-splicing events, i.e., the positional information of the splice sites and the interaction features of its flanking sequences, for predicting circRNAs. To this end, we hereby propose a novel approach called SIDE for predicting circRNA back-splicing events using only raw RNA sequences. Technically, SIDE employs a dual encoder to capture global and interactive features of the RNA sequence, and then a decoder designed by the contrastive learning to fuse out discriminative features improving the prediction of circRNAs formation. Empirical results on three real-world datasets show the effectiveness of SIDE. Further analysis also reveals that the effectiveness of SIDE.
Collapse
|
24
|
Wang H, Gao S, Dissanayaka WL. Circ_0003764 Regulates the Osteogenic Differentiation of Periodontal Ligament Stem Cells. Int Dent J 2024; 74:1110-1119. [PMID: 38553328 PMCID: PMC11561517 DOI: 10.1016/j.identj.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 09/20/2024] Open
Abstract
INTRODUCTION AND AIMS Specific circular RNAs (circRNAs) have been proven to play crucial roles in osteogenesis in vitro and in vivo. This study aims to identify a certain circRNA involved in the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and explore its regulatory role. METHODS The expression of 5 candidate circRNAs (circ_0026344, circ_ACAP2, circ_0003764, circ_0008259, and circ_0060731) was detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) after PDLSCs were cultured in the osteogenic induction medium or medium supplemented with tumour necrosis factor-α (TNF-α, 10 ng/mL) for 3 and 7 days. The circRNA significantly decreased in both 3 and 7 days of osteogenic induction in PDLSCs and markedly increased in TNF-α-induced PDLSCs for 3 and 7 days screened. Identified circRNA was knocked down or overexpressed, and the effect on the osteogenic differentiation of PDLSCs was investigated by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, and alizarin red S (ARS) staining. Cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were applied to detect the effect of the circRNA on the proliferation of PDLSCs. RESULTS qRT-PCR results showed that the expression of circ_0003764 was significantly decreased when PDLSCs were cultured in the osteogenic induction medium for 3 or 7 days, whereas it was dramatically increased in TNF-α-induced PDLSCs. Knockdown of circ_0003764 promoted the expression of the osteogenesis-related genes (RUNX2, ALP, OCN) and proteins (RUNX2, OCN), enhanced the ALP activity, and elevated the mineralization by PDLSCs, as shown by ARS staining. However, with the overexpression of circ_0003764, the osteogenic differentiation capacity of PDLSCs was significantly reduced. The CCK-8 and EdU results indicated that circ_0003764 could inhibit the proliferation of PDLSCs. CONCLUSION Circ_0003764 is involved in the osteogenesis process and inhibits the osteogenic differentiation and proliferation of PDLSCs. CLINICAL RELEVANCE This study indicates that circ_0003764 can serve as a diagnostic and therapeutic target in bone regeneration-related diseases treated by PDLSCs-based tissue engineering.
Collapse
Affiliation(s)
- Hong Wang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR; Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shuting Gao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR.
| |
Collapse
|
25
|
Liu XY, Tong JF, Li MY, Li LF, Cai WW, Li JQ, Wang LH, Sun MJ. Progress in application of cyclic single-stranded nucleic acids. J Biotechnol 2024; 393:140-148. [PMID: 39067578 DOI: 10.1016/j.jbiotec.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cyclic nucleic acids are biologically stable against nucleic acid exonucleases due to the absence of 5' and 3' termini. Studies of cyclic nucleic acids mainly focus on cyclic single-stranded nucleic acids. Cyclic single-stranded nucleic acids are further divided into circular RNA (circRNA) and circular single-stranded DNA (cssDNA). The synthesis methods of circRNA include lasso-driven cyclization, intron-paired cyclization, intron cyclization, intron complementary pairing-driven cyclization, RNA-binding protein-driven cyclization, and artificial synthesis depending on the source. Its main role is to participate in gene expression and the treatment of some diseases. Circular single-stranded DNA is mainly synthesized by chemical ligation, template-directed enzyme ligation, and new techniques for the efficient preparation of DNA single loops and topologies based on CircLigase. It is mainly used in rolling circle amplification (RCA) technology and in the bioprotection of circular aptamers and second messengers. This review focuses on the types, synthesis methods, and applications of cyclic single-stranded nucleic acids, providing a reference for further research on cyclic single-stranded nucleic acids.
Collapse
Affiliation(s)
- Xin-Yang Liu
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jian-Fei Tong
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Ming-Yang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Lian-Fang Li
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Wen-Wei Cai
- Department of Student team, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China
| | - Liang-Hua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| | - Ming-Juan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, 200433, People's Republic of China.
| |
Collapse
|
26
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
27
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
28
|
Wu Z, Wu M, Jiang X, Shang F, Li S, Mi Y, Geng C, Tian Y, Li Z, Zhao Z. The study on circRNA profiling uncovers the regulatory function of the hsa_circ_0059665/miR-602 pathway in breast cancer. Sci Rep 2024; 14:20555. [PMID: 39232183 PMCID: PMC11374783 DOI: 10.1038/s41598-024-71505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Abnormal expression of circRNAs has been observed in different types of carcinomas, and they play significant roles in the biology of these cancers. Nevertheless, the clinical relevance and functional mechanisms of the majority of circRNAs implicated in breast cancer progression remain unclear. The primary objective of our investigation is to uncover new circRNAs in breast cancer and elucidate the underlying mechanisms by which they exert their effects. The circRNA expression profile data for breast cancer and RNA-sequencing data were acquired from distinct public databases. Differentially expressed circRNAs and mRNA were identified through fold change filtering. The establishment of the competing endogenous RNAs (ceRNAs) network relied on the interplay between circular RNAs, miRNAs, and mRNAs. The hub genes were identified from the protein-protein interaction (PPI) regulatory network using the CytoHubba plugin in Cytoscape. Moreover, the expression levels and prognostic value of these hub genes in the PPI network were assessed using the GEPIA and Kaplan-Meier plotter databases. Fluorescence in situ hybridization (FISH) was used to identified the expression and intracellular localization of hsa_circ_0059665 by using the tissue microarray. Transwell analysis and CCK-8 analysis were performed to assess the invasion, migration, and proliferation abilities of breast cancer cells. Additionally, we investigated the interactions between hsa_circ_0059665 and miR-602 through various methods, including FISH, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assay. Rescue experiments were conducted to determine the potential regulatory role of hsa_circ_0059665 in breast cancer progression. A total of 252 differentially expressed circRNAs were identified. Among them, 246 circRNAs were up-regulated, while 6 circRNAs were down-regulated. Based on prediction and screening of circRNA-miRNA and miRNA-mRNA binding sites, we constructed a network consisting of circRNA-miRNA-mRNA interactions. In addition, we constructed a Protein-Protein Interaction (PPI) network and identified six hub genes. Moreover, the expression levels of these six hub genes in breast cancer tissues were found to be significantly lower. Furthermore, the survival analysis results revealed a significant correlation between low expression levels of KIT, FGF2, NTRK2, CAV1, LEP and poorer prognosis in breast cancer patients. The FISH experiment results indicated that hsa_circ_0059665 exhibits significant downregulation in breast cancer, and its decreased expression is linked to poor prognosis in breast cancer patients. Functional in vitro experiments revealed that overexpression of hsa_circ_0059665 can inhibit proliferation, migration and invasion abilities of breast cancer cells. Further molecular mechanism studies showed that hsa_circ_0059665 exerts its anticancer gene role by acting as a molecular sponge for miR-602. In our study, we constructed and analyzed a circRNA-related ceRNA regulatory network and found that hsa_circ_0059665 can act as a sponge for miR-602 and inhibit the proliferation, invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Ming Wu
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Fangjian Shang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Sainan Li
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yunzhe Mi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yanfeng Tian
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China
| | - Zhongxin Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China.
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei, 050031, People's Republic of China.
| |
Collapse
|
29
|
Gao J, Wang C, Zhang J, Shawuti Z, Wang S, Ma C, Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol Cell Endocrinol 2024; 590:112261. [PMID: 38679361 DOI: 10.1016/j.mce.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hyperglycemia is a key contributor to diabetic macrovascular and ocular complications. It triggers a cascade of cellular damage, particularly in the retinal microvascular endothelial cells (RMECs). However, the underlying molecular mechanisms remain only partially understood. This study hypothesizes that CircZNF609 plays a pivotal role in mediating high glucose-induced damage in RMECs by modulating miR-150-5p and its downstream target genes, thereby affecting cellular survival, apoptosis, and oxidative stress. Gene expression datasets (GSE193974 and GSE160308) and clinical samples were used to investigate the expression levels of CircZNF609 and its interaction with miR-150-5p in the context of diabetic retinopathy (DR). Our results demonstrate that CircZNF609 is upregulated in both peripheral blood stem cells from DR patients and high glucose-stimulated hRMECs. Functional experiments reveal that silencing CircZNF609 improves cell viability, reduces apoptosis, inhibits tube formation, and modulates oxidative stress markers, whereas CircZNF609 overexpression exacerbates these effects. Moreover, miR-150-5p, a microRNA, was found to be negatively regulated by CircZNF609 and downregulated in DR. Its overexpression mitigates high glucose-induced cell injury. Our findings suggest a novel mechanism whereby CircZNF609 exacerbates high glucose-induced endothelial cell damage by sponging miR-150-5p, implicating the CircZNF609/miR-150-5p axis as a potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi 830054, China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zulifeiya Shawuti
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Siyao Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Cunhua Ma
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Juan Wang
- Department of Cardiology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
30
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
31
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
32
|
Ma Y, Du S, Wang S, Liu X, Cong L, Shen W, Ye K. Circ_0004674 regulation of glycolysis and proliferation mechanism of osteosarcoma through miR-140-3p/TCF4 pathway. J Biochem Mol Toxicol 2024; 38:e23846. [PMID: 39243204 DOI: 10.1002/jbt.23846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Shaowen Du
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Shengdong Wang
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Liu
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Liming Cong
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedic surgery, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Yang T, Qiu L, Chen S, Wang Z, Jiang Y, Bai H, Bi Y, Chang G. RNA-Seq Analysis of Glycolysis Regulation of Avian Leukosis Virus Subgroup J Replication. Animals (Basel) 2024; 14:2500. [PMID: 39272286 PMCID: PMC11394362 DOI: 10.3390/ani14172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Avian Leukosis virus (ALV) is a widely spread virus that causes major economic losses to the global poultry industry. This study aims to investigate the effect of glycolysis on the replication of the ALV-J virus and identify the key circular RNAs that regulate the replication of the ALV-J virus. We found that glucose uptake, pyruvate content, and lactate content in DF1 cells were increased after ALV-J infection. Moreover, inhibiting the glycolysis of ALV-J-infected DF1 cells reduced the replication of the ALV-J virus. To further study the mechanism of glycolysis in the replication of the ALV-J virus, we performed RNA-seq on ALV-J-infected and ALV-J-infected cells treated with glycolysis inhibition. RNA-seq results show that a total of 10,375 circular RNAs (circRNAs) were identified, of which the main types were exonic circular RNAs, and 28 circRNAs were differentially expressed between ALV-J-infected and ALV-J-infected cells treated with glycolysis inhibition. Then, we performed functional enrichment analysis of differentially expressed circRNA source and target genes. Functional enrichment analysis indicated that some circRNAs might be involved in regulating the replication of the ALV-J virus by influencing some pathways like glycolysis/gluconeogenesis, the NOD-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway, Toll-like receptor signaling pathway, Insulin signaling pathway, and Apoptosis. This study revealed the effect of glycolysis on the replication of the ALV-J virus in DF1 cells and its possible regulatory mechanism, which provided a basis for understanding the factors influencing the replication of the ALV-J virus and reducing the rate of infection of the ALV-J virus in poultry.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
34
|
Shi H, Wang Y, Chen L, Li Y, Qin Y, Lv J. CircRNAs expression profile and potential roles of circRERE-PMN in pre-metastatic lungs. Front Immunol 2024; 15:1455603. [PMID: 39253079 PMCID: PMC11381296 DOI: 10.3389/fimmu.2024.1455603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
The successful pulmonary metastasis of malignant cancer cells depends on the survival of circulating tumor cells in a distant and hostile microenvironment. The formation of a pre-metastatic niche (PMN) creates a supportive environment for subsequent metastasis. Circular RNAs (circRNAs) are increasingly acknowledged as crucial elements in the mechanisms of metastasis due to their stable structures and functions, making them promising early metastasis detection markers. However, the specific expression patterns and roles of circRNAs in the lungs before metastasis remain largely unexplored. Our research aims to chart the circRNA expression profile and assess their impact on the lung PMN. We developed a lung PMN model and employed comprehensive RNA sequencing to analyze the differences in circRNA expression between normal and pre-metastatic lungs. We identified 38 significantly different circRNAs, primarily involved in metabolism, apoptosis, and inflammation pathways. We then focused on one specific circRNA, circ:chr4:150406196 - 150406664 (circRERE-PMN), which exhibited a significant change in expression and was prevalent in myeloid-derived suppressor cells (MDSCs), alveolar epithelial cells, and macrophages within the pre-metastatic lung environment. CircRERE-PMN was found to potentially regulate apoptosis and the expression of cytokines and chemokines through its interaction with the downstream target HUR in alveolar epithelial cells. Overall, our study highlights the crucial role of circRNAs in the formation of lung PMNs, supporting their potential as diagnostic or therapeutic targets for lung metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- CT Scan Room, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yuanyuan Li
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
35
|
Mafi A, Khoshnazar SM, Shahpar A, Nabavi N, Hedayati N, Alimohammadi M, Hashemi M, Taheriazam A, Farahani N. Mechanistic insights into circRNA-mediated regulation of PI3K signaling pathway in glioma progression. Pathol Res Pract 2024; 260:155442. [PMID: 38991456 DOI: 10.1016/j.prp.2024.155442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Circular RNAs (CircRNAs) are non-coding RNAs (ncRNAs) characterized by a stable circular structure that regulates gene expression at both transcriptional and post-transcriptional levels. They play diverse roles, including protein interactions, DNA methylation modification, protein-coding potential, pseudogene creation, and miRNA sponging, all of which influence various physiological processes. CircRNAs are often highly expressed in brain tissues, and their levels vary with neural development, suggesting their significance in nervous system diseases such as gliomas. Research has shown that circRNA expression related to the PI3K pathway correlates with various clinical features of gliomas. There is an interact between circRNAs and the PI3K pathway to regulate glioma cell processes such as proliferation, differentiation, apoptosis, inflammation, angiogenesis, and treatment resistance. Additionally, PI3K pathway-associated circRNAs hold potential as biomarkers for cancer diagnosis, prognosis, and treatment. In this study, we reviewed the latest advances in the expression and cellular roles of PI3K-mediated circRNAs and their connections to glioma carcinogenesis and progression. We also highlighted the significance of circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Ma Y, He X, Di Y, Li W, Sun L, Zhang X, Xu L, Bai Z, Li Z, Cai L, Sun H, Corpe C, Wang J. Circular RNA LIPH promotes pancreatic cancer glycolysis and progression through sponge miR-769-3p and interaction with GOLM1. Clin Transl Med 2024; 14:e70003. [PMID: 39167076 PMCID: PMC11337905 DOI: 10.1002/ctm2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Yan Ma
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Xiaomeng He
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Yang Di
- Department of Pancreatic Surgery, Pancreatic Disease InstituteHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wenyang Li
- Department of Physiology and PathophysiologyHexi University School of MedicineZhangyeGansuChina
| | - Lixiang Sun
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
| | - Xin Zhang
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
| | - Li Xu
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Zhihui Bai
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
| | - Zehuan Li
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lijun Cai
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
| | - Huaqin Sun
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
| | | | - Jin Wang
- Central LaboratoryZhongshan Hospital (Xiamen), Fudan UniversityXiamenFujianChina
- Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| |
Collapse
|
37
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
38
|
Jabeen S, Ahmed N, Rashid F, Lal N, Kong F, Fu Y, Zhang F. Circular RNAs in tuberculosis and lung cancer. Clin Chim Acta 2024; 561:119810. [PMID: 38866175 DOI: 10.1016/j.cca.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
This review signifies the role of circular RNAs (circRNAs) in tuberculosis (TB) and lung cancer (LC), focusing on pathogenesis, diagnosis, and treatment. CircRNAs, a newly discovered type of non-coding RNA, have emerged as key regulators of gene expression and promising biomarkers in various bodily fluids due to their stability. The current review discusses circRNA biogenesis, highlighting their RNase-R resistance due to their loop forming structure, making them effective biomarkers. It details their roles in gene regulation, including splicing, transcription control, and miRNA interactions, and their impact on cellular processes and diseases. For LC, the review identifies circRNA dysregulation affecting cell growth, motility, and survival, and their potential as therapeutic targets and biomarkers. In TB, it addresses circRNAs' influence on host anti-TB immune responses, proposing their use as early diagnostic markers. The paper also explores the interplay between TB and LC, emphasizing circRNAs as dual biosignatures, and the necessity for differential diagnosis. It concludes that no single circRNA biomarker is universally applicable for both TB and LC. Ultimately, the review highlights the pivotal role of circRNAs in TB and LC, encouraging further research in biomarker identification and therapeutic development concomitant for both diseases.
Collapse
Affiliation(s)
- Sadia Jabeen
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Niaz Ahmed
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Faiqa Rashid
- Department of Bioinformatics And Biosciences, Capital University Of Science & Technology, Islamabad Expressway, Kahuta Road, Zone-V, Islamabad, Pakistan
| | - Nand Lal
- Department of Physiology, School of Biomedical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Fanhui Kong
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Yingmei Fu
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China.
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien Teh Institute, Harbin Medical University, Harbin 150081, China; Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
39
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
40
|
Deng K, Li Z, Huang T, Huang J. Noncoding RNAs in regulation of plant secondary metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108718. [PMID: 38733939 DOI: 10.1016/j.plaphy.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Plant secondary metabolites (PSMs) are a large class of structurally diverse molecules, mainly consisting of terpenoids, phenolic compounds, and nitrogen-containing compounds, which play active roles in plant development and stress responses. The biosynthetic processes of PSMs are governed by a sophisticated regulatory network at multiple levels. Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) may serve as post-transcriptional regulators for plant secondary metabolism through acting on genes encoding either transcription factors or participating enzymes in relevant metabolic pathways. High-throughput sequencing technologies have facilitated the large-scale identifications of ncRNAs potentially involved in plant secondary metabolism in model plant species as well as certain species with enriched production of specific types of PSMs. Moreover, a series of miRNA-target modules have been functionally characterized to be responsible for regulating PSM biosynthesis and accumulation in plants under abiotic or biotic stresses. In this review, we will provide an overview of current findings on the ncRNA-mediated regulation of plant secondary metabolism with special attention to its participation in plant stress responses, and discuss possible issues to be addressed in future fundamental research and breeding practice.
Collapse
Affiliation(s)
- Keyin Deng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jianzi Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
41
|
Lu W, Li L, Li L, Guo N, Ma X. Circular RNA circ_0101675 Promotes NSCLC Cell Proliferation, Migration, Invasion, Angiogenesis and Immune Evasion by Sponging miR-607/PDL1 Axis. Biochem Genet 2024; 62:1539-1555. [PMID: 37646893 DOI: 10.1007/s10528-023-10493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common and fatal cancers in the world. Circular RNA (circRNA) can broadly participate in the initiation and progression of the NSCLC. However, the regulatory mechanisms of circRNA in NSCLC remain poorly understood. In present study, we aimed to explore the potential role of circ_0101675 in the progression of NSCLC. Quantitative real-time polymerase chain reaction was performed to examine the expression of circ_0101675, microRNA-607 (miR-607) and programmed cell death receptor ligand 1 (PDL1) in NSCLC tissues and cells. Cell count kit 8 assay, colony formation assay, wound healing assay, transwell assay, tube formation assay and flow cytometry were applied to examine NSCLC cell proliferation, migration, invasion, angiogenesis and apoptosis. NSCLC cells were co-cultured with peripheral blood mononuclear cells to assess immune response. The protein levels of PDL1 and proteins related to apoptosis were detected by western blotting. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the direct target site between miR-607 and circ_0101675 or PDL1. The experiments in vivo were employed to explore the effects of circ_0101675 on tumor growth in NSCLC. Circ_0101675 and PDL1 were high-expressed, while miR-607 was low-expressed in NSCLC cells and cancer tissues. The suppression of circ_0101675 suppressed growth, migration, invasion, angiogenesis and immune escape in NSCLC cells. Mechanistically, we found that high level of circ_0101675 could upregulate PDL1 expression via sponging miR-607. Moreover, the down-regulation of circ_0101675 inhibited the growth of NSCLC tumors in vivo by enhancing miR-607 expression to decrease PDL1 expression. Taken together, our results suggested that circ_0101675 might promote the proliferation, migration, invasion, and immune evasion abilities of NSCLC through miR-607/PDL1 axis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Avenue, Haikou City, 570208, Hainan Province, People's Republic of China
| | - Liang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Li Li
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Avenue, Haikou City, 570208, Hainan Province, People's Republic of China
| | - Nanbian Guo
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Avenue, Haikou City, 570208, Hainan Province, People's Republic of China
| | - Ximiao Ma
- Department of Thoracic Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Avenue, Haikou City, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
42
|
Dadihanc T, Zhang Y, Li GQ, Zhou HK, Huang J, Zhang X, Li ZQ, Ma HR. CircRNA SEC24A promotes osteoarthritis through miR-107-5p/CASP3 axis. Regen Ther 2024; 26:60-70. [PMID: 38828010 PMCID: PMC11143789 DOI: 10.1016/j.reth.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Background Osteoarthritis (OA) is the most frequently diagnosed chronic joint disease. CircSEC24A is significantly elevated in OA chondrocytes upon IL-1β stimulation. However, its biological function in OA is still not fully understood. Methods The circRNAs-miRNA-mRNA network was predicted by bioinformatics analysis. An in vitro OA chondrocytes model was established by IL-1β stimulation. The expression of circSEC24A, miR-107-5p, CASP3, apoptosis-related molecules and extracellular matrix (ECM) components were detected by Western blot and qRT-PCR. MTT assay and Annexin V/PI staining were employed to monitor cell viability and apoptosis, respectively. The interaction between circSEC24A and miR-107-5p, as well as the binding between miR-107-5p and CASP3 3' UTR were detected by luciferase reporter and RIP assays. Cytokine secretion was monitored by ELISA assay. The role of circSEC24A was also explored in anterior cruciate ligament transection (ACLT) rat models. Results CircSEC24A and CASP3 were increased, but miR-107-5p was decreased in rat OA cartilage tissues and OA chondrocytes. CircSEC24A acted as a sponge of miR-107-5p. Knockdown of circSEC24A promoted chondrocyte proliferation, but suppressed chondrocyte apoptosis, ECM degradation and inflammation via sponging miR-107-5p. CASP3 was identified as a miR-107-5p target gene. MiR-107-5p mimics protected against OA progression via targeting CASP3. Silencing of circSEC24A alleviated OA progression in ACLT model. Conclusion CircSEC24A promotes OA progression through miR-107-5p/CASP3 axis.
Collapse
Affiliation(s)
- Tuerxunjiang Dadihanc
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
- Department of Orthopaedic Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Yong Zhang
- School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200010, PR China
| | - Guo-Qing Li
- Department of Orthopaedic Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Hai-Kang Zhou
- Department of Orthopaedic Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Jingyong Huang
- Department of Orthopaedic Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Xue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Zhi-Qiang Li
- Animal Research Center, Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| | - Hai-Rong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Province, PR China
| |
Collapse
|
43
|
Shi Y, Shen F, Chen X, Sun M, Zhang P. Current understanding of circular RNAs in preeclampsia. Hypertens Res 2024; 47:1607-1619. [PMID: 38605141 DOI: 10.1038/s41440-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Trauma Medicine, Soochow University, Suzhou, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Yin Z, Zhao Q, Lv X, Zhang X, Wu Y. Circular RNA ath-circ032768, a competing endogenous RNA, response the drought stress by targeting miR472-RPS5 module. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:544-559. [PMID: 38588338 DOI: 10.1111/plb.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
CircRNAs (circular RNAs) reduce the abundance of miRNAs through ceRNA (competing endogenous RNA), to regulate many physiological processes and stress responses in plants. However, the role of circRNA in drought stress is poorly understood. Through ring identification and sequencing verification of ath-circ032768, bioinformatics analysis predicted the interaction of ath-circ032768-miR472-RPS5, and further obtained transgenic plants overexpressing ath-circ032768 and silencing STTM-miR472. The change in drought stress was analysed using biochemical and molecular biological methods. Sequencing and biological analysis confirmed that ath-circ032768, miR472 and RPS5 were responsive to drought stress, and changes in gene expression were consistent with the prediction of ceRNA. The silencing vectors ath-circ032768 and STTM-miR472 were constructed using molecular biology techniques, and stable transgenic plants with drought tolerance obtained. Further physiological and biochemical studies showed that ath-circ032768 could bind to miR472, and that miR472 could bind to the RPS5 gene, resulting in decreased expression of RPS5. Hence, ath-circ032768 can competitively inhibit degradation of RPS5 by miR472 through ceRNA. This process is accompanied by increased expression of DREB2A, RD29A and RD29B genes. Through the ath-circ032768-miR472-RPS5 pathway, the RPS5 stress resistance protein interacts with DREB2A protein to enhance expression of downstream drought resistance genes, RD29A and RD29B, and participate in the regulation mechanism of plant drought resistance, thereby improving drought tolerance of plants.
Collapse
Affiliation(s)
- Z Yin
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Q Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Y Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| |
Collapse
|
45
|
Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation. Exp Mol Med 2024; 56:1272-1280. [PMID: 38871818 PMCID: PMC11263353 DOI: 10.1038/s12276-024-01220-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs without a 5' cap structure and a 3' poly(A) tail typically present in linear mRNAs of eukaryotic cells. CircRNAs are predominantly generated through a back-splicing process within the nucleus. CircRNAs have long been considered non-coding RNAs seemingly devoid of protein-coding potential. However, many recent studies have challenged this idea and have provided substantial evidence that a subset of circRNAs can associate with polysomes and indeed be translated. Therefore, in this review, we primarily highlight the 5' cap-independent internal initiation of translation that occurs on circular RNAs. Several molecular features of circRNAs, including the internal ribosome entry site, N6-methyladenosine modification, and the exon junction complex deposited around the back-splicing junction after back-splicing event, play pivotal roles in their efficient internal translation. We also propose a possible relationship between the translatability of circRNAs and their stability, with a focus on nonsense-mediated mRNA decay and nonstop decay, both of which are well-characterized mRNA surveillance mechanisms. An in-depth understanding of circRNA translation will reshape and expand our current knowledge of proteomics.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
46
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
47
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
48
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
49
|
Lin J, Zhong W, Lyu Z, Peng J, Rong Y, Zeng K, Lai J, Wu D, Wang J, Li Y, Zheng J, Zhang J, Pan Z. Circular RNA circTATDN3 promotes the Warburg effect and proliferation in colorectal cancer. Cancer Lett 2024; 589:216825. [PMID: 38548218 DOI: 10.1016/j.canlet.2024.216825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
As one of the key metabolic enzymes in the glycolytic pathway, lactate dehydrogenase A (LDHA) might be linked to tumor proliferation by driving the Warburg effect. Circular RNAs (circRNAs) are widely implicated in tumor progression. Here, we report that circTATDN3, a circular RNA that interacts with LDHA, plays a critical role in proliferation and energy metabolism in CRC. We found that circTATDN3 expression was increased in CRC cells and tumor tissues and that high circTATDN3 expression was positively associated with poor postoperative prognosis in CRC patients. Additionally, circTATDN3 promoted the proliferation of CRC cells in vivo and vitro. Mechanistically, circTATDN3 was shown to function as an adaptor molecule that enhances the binding of LDHA to FGFR1, leading to increased LDHA phosphorylation and consequently promoting the Warburg effect. Moreover, circTATDN3 increased the expression of LDHA by sponging miR-511-5p, which synergistically promoted CRC progression and the Warburg effect. In conclusion, circTATDN3 may be a target for the treatment of CRC.
Collapse
Affiliation(s)
- Jiatong Lin
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, 510006, China
| | - Wenhui Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Jingwen Peng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, SunYat-sen University, Guangzhou, Guandong, China
| | - Yi Rong
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Kejing Zeng
- Department of Endocrinology, Department of Diabetes and Obesity Reversal Research Center Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Guangzhou, Guangdong, 510317, China
| | - Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Zihao Pan
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China.
| |
Collapse
|
50
|
Qiu M, Chen Y, Zeng C. Biological functions of circRNA in regulating the hallmarks of gastrointestinal cancer (Review). Int J Oncol 2024; 64:49. [PMID: 38488023 PMCID: PMC10997371 DOI: 10.3892/ijo.2024.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Circular RNA (circRNA) was first observed in the cytoplasm of eukaryotic cells in 1979, but it was not characterized in detail until 2012, when high‑throughput sequencing technology was more advanced and available. Consequently, the mechanism of circRNA formation and its biological function have been progressively elucidated by researchers. circRNA is abundant in eukaryotic cells and exhibits a certain degree of organization, timing and disease‑specificity. Additionally, it is poorly degradable, meeting the characteristics of an ideal clinical biomarker. In the present review, the recent research progress of circRNAs in digestive tract malignant tumors was primarily discussed. This included the roles, biological functions and clinical significance of circRNA, providing references for its research value and clinical potential in gastrointestinal cancer.
Collapse
Affiliation(s)
- Mengjun Qiu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|