1
|
Jezernik G, Glavač D, Skok P, Krušič M, Potočnik U, Gorenjak M. Discovery of Novel Biomarkers with Extended Non-Coding RNA Interactor Networks from Genetic and Protein Biomarkers. Int J Mol Sci 2024; 25:10210. [PMID: 39337694 PMCID: PMC11432684 DOI: 10.3390/ijms251810210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Curated online interaction databases and gene ontology tools have streamlined the analysis of highly complex gene/protein networks. However, understanding of disease pathogenesis has gradually shifted from a protein-based core to complex interactive networks where non-coding RNA (ncRNA) is thought to play an essential role. As current gene ontology is based predominantly on protein-level information, there is a growing need to analyze networks with ncRNA. In this study, we propose a gene ontology workflow integrating ncRNA using the NPInter V5.0 database. To validate the proposed workflow, we analyzed our previously published curated biomarker datasets for hidden disease susceptibility processes and pharmacogenomics. Our results show a novel involvement of melanogenesis in psoriasis response to biological drugs in general. Hyperpigmentation has been previously observed in psoriasis following treatment with currently indicated biological drugs, thus calling attention to melanogenesis research as a response biomarker in psoriasis. Moreover, our proposed workflow highlights the need to critically evaluate computed ncRNA interactions within databases and a demand for gene ontology analysis of large miRNA blocks.
Collapse
Affiliation(s)
- Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- National-Level Institute for Sustainable Environmental Solutions, Jadranska cesta 28, 2000 Maribor, Slovenia
| | - Damjan Glavač
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Pavel Skok
- Department of Gastroenterology, Internal Medicine Clinic, University Medical Centre Maribor, Ljubljanska ulica 8, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Martina Krušič
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
| | - Uroš Potočnik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 8, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
| |
Collapse
|
2
|
Antonazzo G, Gaudet P, Lovering RC, Attrill H. Representation of non-coding RNA-mediated regulation of gene expression using the Gene Ontology. RNA Biol 2024; 21:36-48. [PMID: 39374113 PMCID: PMC11459742 DOI: 10.1080/15476286.2024.2408523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge. Here, a targeted effort to revise GO terms used for the annotation of regulatory ncRNAs is described, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). This paper provides guidance to biocurators annotating ncRNA-mediated processes using the GO and serves as background for researchers wishing to make use of the GO in their studies of ncRNAs and the biological processes they regulate.
Collapse
Affiliation(s)
- Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Geneva, Switzerland
| | - Ruth C. Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Simona P, Panneerselvam K, Porras P, Duesbury M, Perfetto L, Licata L, Hermjakob H, Orchard S. The landscape of microRNA interaction annotation: analysis of three rare disorders as a case study. Database (Oxford) 2023; 2023:baad066. [PMID: 37819683 PMCID: PMC10566539 DOI: 10.1093/database/baad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
In recent years, a huge amount of data on ncRNA interactions has been described in scientific papers and databases. Although considerable effort has been made to annotate the available knowledge in public repositories, there are still significant discrepancies in how different resources capture and interpret data on ncRNA functional and physical associations. In the present paper, we present a collection of microRNA-mRNA interactions annotated from the scientific literature following recognized standard criteria and focused on microRNAs, which regulate genes associated with rare diseases as a case study. The list of protein-coding genes with a known role in specific rare diseases was retrieved from the Genome England PanelApp, and associated microRNA-mRNA interactions were annotated in the IntAct database and compared with other datasets. RNAcentral identifiers were used for unambiguous, stable identification of ncRNAs. The information about the interaction was enhanced by a detailed description of the cell types and experimental conditions, providing a computer-interpretable summary of the published data, integrated with the huge amount of protein interactions already gathered in the database. Furthermore, for each interaction, the binding sites of the microRNA are precisely mapped on a well-defined mRNA transcript of the target gene. This information is crucial to conceive and design optimal microRNA mimics or inhibitors to interfere in vivo with a deregulated process. As these approaches become more feasible, high-quality, reliable networks of microRNA interactions are needed to help, for instance, in the selection of the best target to be inhibited and to predict potential secondary off-target effects. Database URL https://www.ebi.ac.uk/intact.
Collapse
Affiliation(s)
- Panni Simona
- Dipartimento di Biologia Ecologia e Scienze della Terra, Università della Calabria, Rende 87036, Italy
| | - Kalpana Panneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton, Cambridge CB10 1SD, UK
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton, Cambridge CB10 1SD, UK
- Astra Zeneca, Data Office, Data Science and AI, UK Academy House, 136 Hills Road, Cambridge CB2 8PA, UK
| | - Margaret Duesbury
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton, Cambridge CB10 1SD, UK
| | - Livia Perfetto
- Department of Biology and Biotechnologies “Charles Darwin”, La Sapienza University, Rome, Italy
| | - Luana Licata
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
4
|
Zhang T, Zhai J, Zhang X, Ling L, Li M, Xie S, Song M, Ma C. Interactive Web-based Annotation of Plant MicroRNAs with iwa-miRNA. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:557-567. [PMID: 34332120 PMCID: PMC9801042 DOI: 10.1016/j.gpb.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/15/2020] [Accepted: 03/06/2021] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression. The large-scale detection and profiling of miRNAs have been accelerated with the development of high-throughput small RNA sequencing (sRNA-Seq) techniques and bioinformatics tools. However, generating high-quality comprehensive miRNA annotations remains challenging due to the intrinsic complexity of sRNA-Seq data and inherent limitations of existing miRNA prediction tools. Here, we present iwa-miRNA, a Galaxy-based framework that can facilitate miRNA annotation in plant species by combining computational analysis and manual curation. iwa-miRNA is specifically designed to generate a comprehensive list of miRNA candidates, bridging the gap between already annotated miRNAs provided by public miRNA databases and new predictions from sRNA-Seq datasets. It can also assist users in selecting promising miRNA candidates in an interactive mode, contributing to the accessibility and reproducibility of genome-wide miRNA annotation. iwa-miRNA is user-friendly and can be easily deployed as a web application for researchers without programming experience. With flexible, interactive, and easy-to-use features, iwa-miRNA is a valuable tool for the annotation of miRNAs in plant species with reference genomes. We also illustrate the application of iwa-miRNA for miRNA annotation using data from plant species with varying genomic complexity. The source codes and web server of iwa-miRNA are freely accessible at http://iwa-miRNA.omicstudio.cloud/.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Jingjing Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Xiaorong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Lei Ling
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Menghan Li
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860006, China
| | - Shang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| | - Minggui Song
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China,Corresponding author.
| |
Collapse
|
5
|
Kuiper M, Bonello J, Fernández-Breis JT, Bucher P, Futschik ME, Gaudet P, Kulakovskiy IV, Licata L, Logie C, Lovering RC, Makeev VJ, Orchard S, Panni S, Perfetto L, Sant D, Schulz S, Zerbino DR, Lægreid A. The Gene Regulation Knowledge Commons: The action area of GREEKC. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1865:194768. [PMID: 34757206 DOI: 10.1016/j.bbagrm.2021.194768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
The COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various parts of the knowledge cycle that is central to understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to update and standardise existing knowledge management workflows, encourage new experimental approaches and thoroughly involve end-users in the process to design the Gene Regulation Knowledge Commons (GRKC). The GREEKC consortium describes its main achievements, contextualised in a state-of-the-art of current tools and resources that today represent the GRKC.
Collapse
Affiliation(s)
- Martin Kuiper
- Systems Biology Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Joseph Bonello
- Faculty of Information & Communication Technology, University of Malta, Msida, Malta
| | | | - Philipp Bucher
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1204 Geneva, Switzerland
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud University, PO Box 9101, Nijmegen 6500HG, the Netherlands
| | - Ruth C Lovering
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, 119991 Moscow, Russia
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Simona Panni
- Department DIBEST, University of Calabria, Rende, Italy
| | - Livia Perfetto
- Fondazione Human Technopole, Department of Biology, Via Cristina Belgioioso, 171, 20157 Milan, Italy
| | - David Sant
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way #140, Salt Lake City, UT 84108, United States
| | - Stefan Schulz
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerpl. 2, Graz, Austria
| | - Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|
6
|
Saverimuttu SCC, Kramarz B, Rodríguez-López M, Garmiri P, Attrill H, Thurlow KE, Makris M, de Miranda Pinheiro S, Orchard S, Lovering RC. Gene Ontology curation of the blood-brain barrier to improve the analysis of Alzheimer's and other neurological diseases. Database (Oxford) 2021; 2021:baab067. [PMID: 34697638 PMCID: PMC8546235 DOI: 10.1093/database/baab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
The role of the blood-brain barrier (BBB) in Alzheimer's and other neurodegenerative diseases is still the subject of many studies. However, those studies using high-throughput methods have been compromised by the lack of Gene Ontology (GO) annotations describing the role of proteins in the normal function of the BBB. The GO Consortium provides a gold-standard bioinformatics resource used for analysis and interpretation of large biomedical data sets. However, the GO is also used by other research communities and, therefore, must meet a variety of demands on the breadth and depth of information that is provided. To meet the needs of the Alzheimer's research community we have focused on the GO annotation of the BBB, with over 100 transport or junctional proteins prioritized for annotation. This project has led to a substantial increase in the number of human proteins associated with BBB-relevant GO terms as well as more comprehensive annotation of these proteins in many other processes. Furthermore, data describing the microRNAs that regulate the expression of these priority proteins have also been curated. Thus, this project has increased both the breadth and depth of annotation for these prioritized BBB proteins. Database URLhttps://www.ebi.ac.uk/QuickGO/.
Collapse
Affiliation(s)
- Shirin C C Saverimuttu
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1ST, UK
| | - Barbara Kramarz
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Milagros Rodríguez-López
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1ST, UK
| | - Penelope Garmiri
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1ST, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katherine E Thurlow
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Marios Makris
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Sandra de Miranda Pinheiro
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, Wellcome Genome Campus, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1ST, UK
| | - Ruth C Lovering
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), Rayne Building, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
7
|
Thurlow KE, Lovering RC, De Miranda Pinheiro S. Student biocuration projects as a learning environment. F1000Res 2021; 10:1023. [PMID: 35211294 PMCID: PMC8831850 DOI: 10.12688/f1000research.72808.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. Methods: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. Results: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. Conclusion: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind.
Collapse
Affiliation(s)
- Katherine E. Thurlow
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Sandra De Miranda Pinheiro
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| |
Collapse
|
8
|
Thurlow KE, Lovering RC, De Miranda Pinheiro S. Student biocuration projects as a learning environment. F1000Res 2021; 10:1023. [PMID: 35211294 PMCID: PMC8831850 DOI: 10.12688/f1000research.72808.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 08/23/2024] Open
Abstract
Background: Bioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon. Some universities do provide courses on a variety of bioinformatics resources and tools, a few also provide biocuration projects, during which students submit data to annotation resources. Methods: To assess the usefulness and enjoyability of annotation projects a survey was sent to University College London (UCL) students who have undertaken Gene Ontology biocuration projects. Results: Analysis of survey responses suggest that these projects provide students with an opportunity not only to learn about bioinformatics resources but also to improve their literature analysis, presentation and writing skills. Conclusion: Biocuration student projects provide valuable annotations as well as enabling students to develop a variety of skills relevant to their future careers. It is also hoped that, as future scientists, these students will critically assess their own manuscripts and ensure that these are written with the biocurators of the future in mind.
Collapse
Affiliation(s)
- Katherine E. Thurlow
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| | - Sandra De Miranda Pinheiro
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, WC1E 6JF, UK
| |
Collapse
|
9
|
Roychowdhury D, Gupta S, Qin X, Arighi CN, Vijay-Shanker K. emiRIT: a text-mining-based resource for microRNA information. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6287648. [PMID: 34048547 PMCID: PMC8163238 DOI: 10.1093/database/baab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
microRNAs (miRNAs) are essential gene regulators, and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications and developing new hypotheses built on previous knowledge. Here, we present extracting miRNA Information from Text (emiRIT), a text-miningbased resource, which presents miRNA information mined from the literature through a user-friendly interface. We collected 149 ,233 miRNA –PubMed ID pairs from Medline between January 1997 and May 2020. emiRIT currently contains ‘miRNA –gene regulation’ (69 ,152 relations), ‘miRNA disease (cancer)’ (12 ,300 relations), ‘miRNA –biological process and pathways’ (23, 390 relations) and circulatory ‘miRNAs in extracellular locations’ (3782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text-mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively. We provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource’s information coverage, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of cancer and a third case study to assess the usage of emiRIT in the curation of miRNA information. Database URL: https://research.bioinformatics.udel.edu/emirit/
Collapse
Affiliation(s)
- Debarati Roychowdhury
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| | - Samir Gupta
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| | - Xihan Qin
- Department of Computer and Information Sciences, Center of Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Room 205, Newark, DE 19711, USA
| | - Cecilia N Arighi
- Department of Computer and Information Sciences, Center of Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Room 205, Newark, DE 19711, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| |
Collapse
|
10
|
Kramarz B, Huntley RP, Rodríguez-López M, Roncaglia P, Saverimuttu SCC, Parkinson H, Bandopadhyay R, Martin MJ, Orchard S, Hooper NM, Brough D, Lovering RC. Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. J Alzheimers Dis 2021; 75:1417-1435. [PMID: 32417785 PMCID: PMC7369085 DOI: 10.3233/jad-200207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research. OBJECTIVE We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs). METHODS We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data. Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence. RESULTS We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression, yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the original study, such as 'gliogenesis', 'regulation of neuron projection development', or 'response to cytokine', demonstrating enhanced applicability of GO for neuroscience research. CONCLUSIONS This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Barbara Kramarz
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Rachael P Huntley
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Milagros Rodríguez-López
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Paola Roncaglia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shirin C C Saverimuttu
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rina Bandopadhyay
- UCL Institute of Neurology and Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - Maria-Jesus Martin
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
11
|
Garcia A, Dunoyer-Geindre S, Fish RJ, Neerman-Arbez M, Reny JL, Fontana P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb Haemost 2021; 121:409-421. [PMID: 33124028 PMCID: PMC8263142 DOI: 10.1055/s-0040-1718730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Richard J. Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
12
|
Garcia-Moreno A, Carmona-Saez P. Computational Methods and Software Tools for Functional Analysis of miRNA Data. Biomolecules 2020; 10:biom10091252. [PMID: 32872205 PMCID: PMC7563698 DOI: 10.3390/biom10091252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs are important regulators of gene expression that play a key role in many biological processes. High-throughput techniques allow researchers to discover and characterize large sets of miRNAs, and enrichment analysis tools are becoming increasingly important in decoding which miRNAs are implicated in biological processes. Enrichment analysis of miRNA targets is the standard technique for functional analysis, but this approach carries limitations and bias; alternatives are currently being proposed, based on direct and curated annotations. In this review, we describe the two workflows of miRNAs enrichment analysis, based on target gene or miRNA annotations, highlighting statistical tests, software tools, up-to-date databases, and functional annotations resources in the study of metazoan miRNAs.
Collapse
Affiliation(s)
- Adrian Garcia-Moreno
- Bioinformatics Unit, Centre for Genomics and Oncological Research (GENyO)—Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
| | - Pedro Carmona-Saez
- Bioinformatics Unit, Centre for Genomics and Oncological Research (GENyO)—Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Department of Statistics, University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|
13
|
Quality Matters: Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:91-103. [PMID: 32652120 PMCID: PMC7646089 DOI: 10.1016/j.gpb.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022]
|
14
|
Bao S, Zheng Z, Aweya JJ, Yao D, Li S, Sun C, Hong Y, Zhang Y. microRNA-589-5p modulates the expression of hemocyanin as part of the anti-WSSV immune response in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103642. [PMID: 32061940 DOI: 10.1016/j.dci.2020.103642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The respiratory glycoprotein, hemocyanin (HMC) has multiple immune-related functions, including antiviral activity. In this study, in silico methods were used to predict seven miRNAs targeting Litopenaeus vannamei HMC (LvHMC), out of which miR-589-5p was selected for further investigation because of its role in immune response. Transcript levels of miR-589-5p were ubiquitously distributed in all shrimp tissues examined, and significantly induced in hemocytes and hepatopancreas upon challenge with white-spot syndrome virus (WSSV) as well as by marine bacterial pathogens, which suggest that miR-589-5p is involved in shrimp immune response to pathogens. Morever, using Drosophila S2 cells stably overexpressing EGFP-LvHMC, flow cytometry and dual luciferase reporter assays, miR-589-5p was shown to significantly inhibit the in vitro expression of LvHMC. In addition, in vivo knockdown of miR-589-5p using antagomir-589-5p resulted in significant down-regulation in LvHMC expression, while overexpression of miR-589-5p using agomir-589-5p decreased the level of LvHMC expression in shrimp hemocytes and hepatopancreas. Further, the increased expression of miR-589-5p resulted in high shrimp mortality following WSSV challenge, coupled with an increase in the number of WSSV copies in hemocytes and hepatopancreas. These results suggest that miR-589-5p is involved in shrimp immune response to WSSV by negatively regulating the expression of LvHMC.
Collapse
Affiliation(s)
- Shiyuan Bao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Caihui Sun
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, 515200, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
15
|
RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 2020; 47:D221-D229. [PMID: 30395267 PMCID: PMC6324050 DOI: 10.1093/nar/gky1034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org.
Collapse
Affiliation(s)
- The RNAcentral Consortium
http://orcid.org/0000-0002-6497-2883SweeneyBlake Ahttp://orcid.org/0000-0001-7279-2682PetrovAnton IBurkovBorishttp://orcid.org/0000-0001-8626-2148FinnRobert Dhttp://orcid.org/0000-0002-6982-4660BatemanAlexSzymanskiMaciejKarlowskiWojciech MGorodkinJanSeemannStefan ECannoneJamie JGutellRobin RFeyPetraBasuSiddharthaKaySimonhttp://orcid.org/0000-0001-7954-7057CochraneGuyBillisKostantinosEmmertDavidMarygoldSteven Jhttp://orcid.org/0000-0001-6718-3559HuntleyRachael Phttp://orcid.org/0000-0002-9791-0064LoveringRuth CFrankishAdamChanPatricia Phttp://orcid.org/0000-0003-3253-6021LoweTodd Mhttp://orcid.org/0000-0002-8380-5247BrufordElspethSealRuthhttp://orcid.org/0000-0001-6274-0184VandesompeleJohttp://orcid.org/0000-0002-2685-2637VoldersPieter-JanParaskevopoulouMariaMaLinaZhangZhangGriffiths-JonesSamBujnickiJanusz MBoccalettoPietrohttp://orcid.org/0000-0001-8522-334XBlakeJudith ABultCarol JChenRunshengZhaoYiWoodValerieRutherfordKimhttp://orcid.org/0000-0002-2084-269XRivasElenaColeJameshttp://orcid.org/0000-0001-5356-4174LaulederkindStanley J FShimoyamaMaryGillespieMarc EOrlic-MilacicMarijahttp://orcid.org/0000-0001-9424-9197KalvariIoannahttp://orcid.org/0000-0002-2497-3427NawrockiEricEngelStacia Rhttp://orcid.org/0000-0001-9163-5180CherryJ MichaelTeamSILVABerardiniTanya ZHatzigeorgiouArtemisKaragkouniDimitrahttp://orcid.org/0000-0002-1751-9226HoweKevinDavisPaulDingerMarcelhttp://orcid.org/0000-0002-7294-0865HeShunminYoshihamaMakiKenmochiNaoyaStadlerPeter FWilliamsKelly P
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute for Cellular and Molecular Biology, and the Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
- dictyBase, Northwestern University, 420 E. Superior St., Chicago, IL 60611, USA
- Department of Molecular and Cellular Biology, Harvard University, Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02140, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
- Ghent University and Cancer Research Institute Ghent, 9000 Ghent, Belgium
- St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
- Cambridge Systems Biology and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, Cambridgeshire CB2 1GA, UK
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
- National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD 20894, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, USA
- Department of Genetics, Stanford University, Palo Alto, CA 94304 USA
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen
- Jacobs University Bremen, School of Engineering and Science, D-28759 Bremen
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Phoenix Bioinformatics, Fremont, CA 94538, USA
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 1618, 04107 Leipzig, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Ritterstrasse 9–13, 04109 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Insel Strasse 22, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- To whom correspondence should be addressed. Tel: +44 1223 492550; Fax: +44 1223 494468;
| |
Collapse
|
16
|
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2020; 47:D155-D162. [PMID: 30423142 PMCID: PMC6323917 DOI: 10.1093/nar/gky1141] [Citation(s) in RCA: 2590] [Impact Index Per Article: 647.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
miRBase catalogs, names and distributes microRNA gene sequences. The latest release of miRBase (v22) contains microRNA sequences from 271 organisms: 38 589 hairpin precursors and 48 860 mature microRNAs. We describe improvements to the database and website to provide more information about the quality of microRNA gene annotations, and the cellular functions of their products. We have collected 1493 small RNA deep sequencing datasets and mapped a total of 5.5 billion reads to microRNA sequences. The read mapping patterns provide strong support for the validity of between 20% and 65% of microRNA annotations in different well-studied animal genomes, and evidence for the removal of >200 sequences from the database. To improve the availability of microRNA functional information, we are disseminating Gene Ontology terms annotated against miRBase sequences. We have also used a text-mining approach to search for microRNA gene names in the full-text of open access articles. Over 500 000 sentences from 18 542 papers contain microRNA names. We score these sentences for functional information and link them with 12 519 microRNA entries. The sentences themselves, and word clouds built from them, provide effective summaries of the functional information about specific microRNAs. miRBase is publicly and freely available at http://mirbase.org/.
Collapse
Affiliation(s)
- Ana Kozomara
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Maria Birgaoanu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Machackova T, Prochazka V, Kala Z, Slaby O. Translational Potential of MicroRNAs for Preoperative Staging and Prediction of Chemoradiotherapy Response in Rectal Cancer. Cancers (Basel) 2019; 11:cancers11101545. [PMID: 31614848 PMCID: PMC6827048 DOI: 10.3390/cancers11101545] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer and the second cause of cancer-related deaths. Rectal cancer presents roughly one-third of all colorectal cancer cases and differs from it on both anatomical and molecular levels. While standard treatment of colon cancer patients is radical surgery, rectal cancer is usually treated with pre-operative chemoradiotherapy followed by total mesorectal excision, which requires precise estimation of TNM staging. Unfortunately, stage evaluation is based solely on imaging modalities, and they often do not correlate with postoperative pathological findings. Moreover, approximately half of rectal cancer patients do not respond to such pre-operative therapy, so they are exposed to its toxic effects without any clinical benefit. Thus, biomarkers that could precisely predict pre-operative TNM staging, and especially response to therapy, would significantly advance rectal cancer treatment—but till now, no such biomarker has been identified. In cancer research, microRNAs are emerging biomarkers due to their connection with carcinogenesis and exceptional stability. Circulating miRNAs are promising non-invasive biomarkers that could allow monitoring of a patient throughout the whole therapeutic process. This mini-review aims to summarize the current knowledge on miRNAs and circulating miRNAs involved in the prediction of response to treatment and pre-operative staging in rectal cancer patients.
Collapse
Affiliation(s)
- Tana Machackova
- Department of Molecular Medicine, European Institute of Technology, 625 00 Brno, Czech Republic.
| | - Vladimir Prochazka
- Department of Surgery, University Hospital Brno, 625 00 Brno, Czech Republic.
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno, 625 00 Brno, Czech Republic.
| | - Ondrej Slaby
- Department of Molecular Medicine, European Institute of Technology, 625 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Non-coding RNA regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194417. [PMID: 31493559 DOI: 10.1016/j.bbagrm.2019.194417] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
It is well established that the vast majority of human RNA transcripts do not encode for proteins and that non-coding RNAs regulate cell physiology and shape cellular functions. A subset of them is involved in gene regulation at different levels, from epigenetic gene silencing to post-transcriptional regulation of mRNA stability. Notably, the aberrant expression of many non-coding RNAs has been associated with aggressive pathologies. Rapid advances in network biology indicates that the robustness of cellular processes is the result of specific properties of biological networks such as scale-free degree distribution and hierarchical modularity, suggesting that regulatory network analyses could provide new insights on gene regulation and dysfunction mechanisms. In this study we present an overview of public repositories where non-coding RNA-regulatory interactions are collected and annotated, we discuss unresolved questions for data integration and we recall existing resources to build and analyse networks.
Collapse
|
19
|
Lovering RC, Roncaglia P, Howe DG, Laulederkind SJF, Khodiyar VK, Berardini TZ, Tweedie S, Foulger RE, Osumi-Sutherland D, Campbell NH, Huntley RP, Talmud PJ, Blake JA, Breckenridge R, Riley PR, Lambiase PD, Elliott PM, Clapp L, Tinker A, Hill DP. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001813. [PMID: 29440116 PMCID: PMC5821137 DOI: 10.1161/circgen.117.001813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. Methods and Results: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. Conclusions: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.
Collapse
Affiliation(s)
- Ruth C Lovering
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.).
| | - Paola Roncaglia
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Douglas G Howe
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Stanley J F Laulederkind
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Varsha K Khodiyar
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Tanya Z Berardini
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Susan Tweedie
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Rebecca E Foulger
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - David Osumi-Sutherland
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Nancy H Campbell
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Rachael P Huntley
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Philippa J Talmud
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Judith A Blake
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Ross Breckenridge
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Paul R Riley
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Pier D Lambiase
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Perry M Elliott
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Lucie Clapp
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - Andrew Tinker
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| | - David P Hill
- From the Institute of Cardiovascular Science (R.C.L., V.K.K., R.E.F., N.H.C., R.P.H., P.J.T., P.D.L., P.M.E., L.C.) and Metabolism and Experimental Therapeutics, Division of Medicine (R.B.), University College London, United Kingdom; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, United Kingdom (P.R., D.O.-S.); Gene Ontology Consortium (P.R., T.Z.B., D.O.-S., J.A.B., D.P.H.); The Zebrafish Model Organism Database, University of Oregon, Eugene (D.G.H.); Rat Genome Database, Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee (S.J.F.L.); Arabidopsis Information Resource, Phoenix Bioinformatics, Fremont, CA (T.Z.B.); FlyBase, University of Cambridge, United Kingdom (S.T.); Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME (J.A.B., D.P.H.); Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (P.R.R.); and William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.T.)
| |
Collapse
|
20
|
Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett 2018; 23:45. [PMID: 30250489 PMCID: PMC6145373 DOI: 10.1186/s11658-018-0111-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Recent developments in high-throughput genotyping technologies have revealed the existence of several new classes of RNA that do not encode proteins but serve other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to modulate both gene expression and genome remodeling, thus contributing to the control of both normal and disease-related cellular processes. The attraction of this research topic can be seen in the increasing number of submissions on ncRNAs to molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As researchers attempt to deepen the understanding of the role of ncRNAs in cell biology, it is worth discussing the broader importance of this research.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- 1Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F Sikorski
- 2Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
21
|
Huntley RP, Kramarz B, Sawford T, Umrao Z, Kalea A, Acquaah V, Martin MJ, Mayr M, Lovering RC. Expanding the horizons of microRNA bioinformatics. RNA (NEW YORK, N.Y.) 2018; 24:1005-1017. [PMID: 29871895 PMCID: PMC6049505 DOI: 10.1261/rna.065565.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyze microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics data sets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 4400 Gene Ontology annotations associated with over 500 microRNAs from human, mouse, and rat and over 2400 experimentally validated microRNA:target interactions. We illustrate how this resource can be used to create microRNA-focused interaction networks with a biological context using the known biological role of microRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent data sets for reproducible functional analysis of microRNAs across all biological research areas.
Collapse
Affiliation(s)
- Rachael P Huntley
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Barbara Kramarz
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Tony Sawford
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zara Umrao
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Anastasia Kalea
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Maria J Martin
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
22
|
Ma G, Wang T, Korhonen PK, Ang CS, Williamson NA, Young ND, Stroehlein AJ, Hall RS, Koehler AV, Hofmann A, Gasser RB. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Int J Parasitol 2018; 48:763-772. [PMID: 29792880 DOI: 10.1016/j.ijpara.2018.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
In this study, we explored the molecular alterations in the developmental switch from the L3 to the exsheathed L3 (xL3) and to the L4 stage of Haemonchus contortus in vitro using an integrated transcriptomic, proteomic and bioinformatic approach. Totals of 9,754 mRNAs, 88 microRNAs (miRNAs) and 1,591 proteins were identified, and 6,686 miRNA-mRNA pairs inferred in all larval stages studied. Approximately 16% of transcripts in the combined transcriptome (representing all three larval stages) were expressed as proteins, and there were positive correlations (r = 0.39-0.44) between mRNA transcription and protein expression in the three distinct developmental stages of the parasite. Of the predicted targets, 1,019 (27.0%) mRNA transcripts were expressed as proteins, and there was a negative correlation (r = -0.60 to -0.50) in the differential mRNA transcription and protein expression between developmental stages upon pairwise comparison. The changes in transcription (mRNA and miRNA) and protein expression from the free-living to the parasitic life cycle phase of H. contortus related to enrichments in biological pathways associated with metabolism (e.g., carbohydrate and lipid degradation, and amino acid metabolism), environmental information processing (e.g., signal transduction, signalling molecules and interactions) and/or genetic information processing (e.g., transcription and translation). Specifically, fatty acid degradation, steroid hormone biosynthesis and the Rap1 signalling pathway were suppressed, whereas transcription, translation and protein processing in the endoplasmic reticulum were upregulated during the transition from the free-living L3 to the parasitic xL3 and L4 stages of the nematode in vitro. Dominant post-transcriptional regulation was inferred to elicit these changes, and particular miRNAs (e.g., hco-miR-34 and hco-miR-252) appear to play roles in stress responses and/or environmental adaptations during developmental transitions of H. contortus. Taken together, these integrated results provide a comprehensive insight into the developmental biology of this important parasite at the molecular level in vitro. The approach applied here to H. contortus can be readily applied to other parasitic nematodes.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
23
|
Roy B, Dwivedi Y. Understanding the Neuroepigenetic Constituents of Suicide Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:233-262. [PMID: 29933952 DOI: 10.1016/bs.pmbts.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stressful life incidents often cause a predisposition for developing mental disorders such as major depressive disorder (MDD). Impaired neurocognitive and neuro-vegetative functions of the central nervous system are the hallmarks of this mental illness. Blunted responses from emotionally salient regions of the brain including cortex, hippocampus, and amygdala have been associated with MDD-related behavioral changes. Moreover, improper signal processing and neuronal atrophy were held responsible for the overall dysfunctionality of these vulnerable regions in the MDD brain. The prevalence of genetic susceptibility along with adverse environmental stimuli often makes the situation worse for MDD patients, leading to an increased risk of suicidal behavior and eventually death by suicide. Despite considerable efforts to understand the complex neurobiology associated with MDD and suicidal behavior, their pathological determinants remain mostly elusive. Recent research, however, has shown that epigenetic perturbations have a formidable impact on the etiopathogenesis of MDD. Understanding the neuroepigenetic nature of this mental disorder may provide opportunities to devise more effective treatment strategies. Moreover, this can potentially lead to identifying predictive biomarkers associated with suicide risk. The present chapter critically reviews studies pertaining to epigenetic signatures of MDD and suicide brain.
Collapse
Affiliation(s)
- Bhaskar Roy
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yogesh Dwivedi
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
24
|
Lopez A, Harada K, Mizrak Kaya D, Dong X, Song S, Ajani JA. Liquid biopsies in gastrointestinal malignancies: when is the big day? Expert Rev Anticancer Ther 2017; 18:19-38. [DOI: 10.1080/14737140.2018.1403320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anthony Lopez
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastroenterology and Hepatology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochuan Dong
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Panni S, Prakash A, Bateman A, Orchard S. The yeast noncoding RNA interaction network. RNA (NEW YORK, N.Y.) 2017; 23:1479-1492. [PMID: 28701522 PMCID: PMC5602107 DOI: 10.1261/rna.060996.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
This article describes the creation of the first expert manually curated noncoding RNA interaction networks for S. cerevisiae The RNA-RNA and RNA-protein interaction networks have been carefully extracted from the experimental literature and made available through the IntAct database (www.ebi.ac.uk/intact). We provide an initial network analysis and compare their properties to the much larger protein-protein interaction network. We find that the proteins that bind to ncRNAs in the network contain only a small proportion of classical RNA binding domains. We also see an enrichment of WD40 domains suggesting their direct involvement in ncRNA interactions. We discuss the challenges in collecting noncoding RNA interaction data and the opportunities for worldwide collaboration to fill the unmet need for this data.
Collapse
Affiliation(s)
- Simona Panni
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Rende 87036, Italy
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
26
|
Sunderland N, Skroblin P, Barwari T, Huntley RP, Lu R, Joshi A, Lovering RC, Mayr M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ Res 2017; 120:418-435. [PMID: 28104774 DOI: 10.1161/circresaha.116.309303] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Over the last few years, several groups have evaluated the potential of microRNAs (miRNAs) as biomarkers for cardiometabolic disease. In this review, we discuss the emerging literature on the role of miRNAs and other small noncoding RNAs in platelets and in the circulation, and the potential use of miRNAs as biomarkers for platelet activation. Platelets are a major source of miRNAs, YRNAs, and circular RNAs. By harnessing multiomics approaches, we may gain valuable insights into their potential function. Because not all miRNAs are detectable in the circulation, we also created a gene ontology annotation for circulating miRNAs using the gene ontology term extracellular space as part of blood plasma. Finally, we share key insights for measuring circulating miRNAs. We propose ways to standardize miRNA measurements, in particular by using platelet-poor plasma to avoid confounding caused by residual platelets in plasma or by adding RNase inhibitors to serum to reduce degradation. This should enhance comparability of miRNA measurements across different cohorts. We provide recommendations for future miRNA biomarker studies, emphasizing the need for accurate interpretation within a biological and methodological context.
Collapse
Affiliation(s)
- Nicholas Sunderland
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Philipp Skroblin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Rachael P Huntley
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruth C Lovering
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.).
| |
Collapse
|
27
|
Petrov AI, Kay SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane G, Finn RD, Bateman A, Kozomara A, Griffiths-Jones S, Frankish A, Zwieb CW, Lau BY, Williams KP, Chan PP, Lowe TM, Cannone JJ, Gutell R, Machnicka MA, Bujnicki JM, Yoshihama M, Kenmochi N, Chai B, Cole JR, Szymanski M, Karlowski WM, Wood V, Huala E, Berardini TZ, Zhao Y, Chen R, Zhu W, Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG, Ma L, Zhang Z, Puetz J, Stadler PF, McDonald D, Basu S, Fey P, Engel SR, Cherry JM, Volders PJ, Mestdagh P, Wower J, Clark MB, Quek XC, Dinger ME. RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 2017; 45:D128-D134. [PMID: 27794554 PMCID: PMC5210518 DOI: 10.1093/nar/gkw1008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.
Collapse
|
28
|
Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 2016; 45:D331-D338. [PMID: 27899567 PMCID: PMC5210579 DOI: 10.1093/nar/gkw1108] [Citation(s) in RCA: 1329] [Impact Index Per Article: 166.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/.
Collapse
|
29
|
Gao W, Qudair Baig A, Ali H, Sajjad W, Reza Farahani M. Margin based ontology sparse vector learning algorithm and applied in biology science. Saudi J Biol Sci 2016; 24:132-138. [PMID: 28053583 PMCID: PMC5199015 DOI: 10.1016/j.sjbs.2016.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023] Open
Abstract
In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.
Collapse
Affiliation(s)
- Wei Gao
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
| | - Abdul Qudair Baig
- Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan
| | - Haidar Ali
- Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan
| | - Wasim Sajjad
- Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan
| | - Mohammad Reza Farahani
- Department of Applied Mathematics, Iran University of Science and Technology, Narmak, 16844 Tehran, Iran
| |
Collapse
|