1
|
Lobo V, Nowak I, Fernandez C, Correa Muler AI, Westholm J, Huang HC, Fabrik I, Huynh HT, Shcherbinina E, Poyraz M, Härtlova A, Benhalevy D, Angeletti D, Sarshad AA. Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference. Nucleic Acids Res 2024; 52:9917-9935. [PMID: 38994560 PMCID: PMC11381323 DOI: 10.1093/nar/gkae589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
Collapse
Affiliation(s)
- Vivian Lobo
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Iwona Nowak
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Carola Fernandez
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ana Iris Correa Muler
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jakub O Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Hsiang-Chi Huang
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ivo Fabrik
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hang T Huynh
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Evgeniia Shcherbinina
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Melis Poyraz
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Daniel Benhalevy
- Lab of Cellular RNA Biology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Billi M, De Marinis E, Gentile M, Nervi C, Grignani F. Nuclear miRNAs: Gene Regulation Activities. Int J Mol Sci 2024; 25:6066. [PMID: 38892257 PMCID: PMC11172810 DOI: 10.3390/ijms25116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which contribute to the regulation of many physiological and pathological processes. Conventionally, miRNAs perform their activity in the cytoplasm where they regulate gene expression by interacting in a sequence-specific manner with mature messenger RNAs. Recent studies point to the presence of mature miRNAs in the nucleus. This review summarizes current findings regarding the molecular activities of nuclear miRNAs. These molecules can regulate gene expression at the transcriptional level by directly binding DNA on the promoter or the enhancer of regulated genes. miRNAs recruit different protein complexes to these regions, resulting in activation or repression of transcription, through a number of molecular mechanisms. Hematopoiesis is presented as a paradigmatic biological process whereby nuclear miRNAs possess a relevant regulatory role. Nuclear miRNAs can influence gene expression by affecting nuclear mRNA processing and by regulating pri-miRNA maturation, thus impacting the biogenesis of miRNAs themselves. Overall, nuclear miRNAs are biologically active molecules that can be critical for the fine tuning of gene expression and deserve further studies in a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Monia Billi
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| | - Elisabetta De Marinis
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Martina Gentile
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Clara Nervi
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, 04100 Latina, Italy; (E.D.M.); (M.G.); (C.N.)
| | - Francesco Grignani
- General Pathology and Department of Medicine, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
3
|
Moradimotlagh A, Brar HK, Chen S, Moon KM, Foster LJ, Reiner N, Nandan D. Characterization of Argonaute-containing protein complexes in Leishmania-infected human macrophages. PLoS One 2024; 19:e0303686. [PMID: 38781128 PMCID: PMC11115314 DOI: 10.1371/journal.pone.0303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intracellular protozoan parasite Leishmania causes leishmaniasis in humans, leading to serious illness and death in tropical and subtropical areas worldwide. Unfortunately, due to the unavailability of approved vaccines for humans and the limited efficacy of available drugs, leishmaniasis is on the rise. A comprehensive understanding of host-pathogen interactions at the molecular level could pave the way to counter leishmaniasis. There is growing evidence that several intracellular pathogens target RNA interference (RNAi) pathways in host cells to facilitate their persistence. The core elements of the RNAi system are complexes of Argonaute (Ago) proteins with small non-coding RNAs, also known as RNA-induced silencing complexes (RISCs). Recently, we have shown that Leishmania modulates Ago1 protein of host macrophages for its survival. In this study, we biochemically characterize the Ago proteins' interactome in Leishmania-infected macrophages compared to non-infected cells. For this, a quantitative proteomic approach using stable isotope labelling by amino acids in cell culture (SILAC) was employed, followed by purification of host Ago-complexes using a short TNRC6 protein-derived peptide fused to glutathione S-transferase beads as an affinity matrix. Proteomic-based detailed biochemical analysis revealed Leishmania modulated host macrophage RISC composition during infection. This analysis identified 51 Ago-interacting proteins with a broad range of biological activities. Strikingly, Leishmania proteins were detected as part of host Ago-containing complexes in infected cells. Our results present the first report of comprehensive quantitative proteomics of Ago-containing complexes isolated from Leishmania-infected macrophages and suggest targeting the effector complex of host RNAi machinery. Additionally, these results expand knowledge of RISC in the context of host-pathogen interactions in parasitology in general.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Harsimran Kaur Brar
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Stella Chen
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Neil Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
4
|
Johnson K, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott J, Brekken R, Peng L, Karagkounis G, Corey D. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res 2024; 52:1930-1952. [PMID: 38109320 PMCID: PMC10899759 DOI: 10.1093/nar/gkad1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yi Han
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Tao Wang
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235, USA
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Gu J, Li Y, Tian Y, Zhang Y, Cheng Y, Tang Y. Noncanonical functions of microRNAs in the nucleus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:151-161. [PMID: 38167929 PMCID: PMC10984876 DOI: 10.3724/abbs.2023268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that play their roles in the regulation of physiological and pathological processes. Originally, it was assumed that miRNAs only modulate gene expression posttranscriptionally in the cytoplasm by inducing target mRNA degradation. However, with further research, evidence shows that mature miRNAs also exist in the cell nucleus, where they can impact gene transcription and ncRNA maturation in several ways. This review provides an overview of novel models of nuclear miRNA functions. Some of the models remain to be verified by experimental evidence, and more details of the miRNA regulation network remain to be discovered in the future.
Collapse
Affiliation(s)
- Jiayi Gu
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yuanan Li
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Youtong Tian
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yehao Zhang
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yongjun Cheng
- Department of Rheumatologythe First People’s Hospital of WenlingWenling317500China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology/Department of RheumatologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai200031China
| |
Collapse
|
6
|
Linscott ML, Yildiz Y, Flury S, Newby ML, Pak TR. Age and 17β-Estradiol (E 2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain. Noncoding RNA 2023; 9:74. [PMID: 38133208 PMCID: PMC10745551 DOI: 10.3390/ncrna9060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause.
Collapse
Affiliation(s)
| | | | | | | | - Toni R. Pak
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.L.L.); (Y.Y.); (S.F.); (M.L.N.)
| |
Collapse
|
7
|
Larivera S, Neumeier J, Meister G. Post-transcriptional gene silencing in a dynamic RNP world. Biol Chem 2023; 404:1051-1067. [PMID: 37739934 DOI: 10.1515/hsz-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.
Collapse
Affiliation(s)
- Simone Larivera
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
8
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Johnson KC, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott JM, Brekken RA, Peng L, Karagkounis G, Corey DR. Nuclear Localization of Argonaute is affected by Cell Density and May Relieve Repression by microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548119. [PMID: 37461596 PMCID: PMC10350042 DOI: 10.1101/2023.07.07.548119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Audrius Kilikevicius
- current address, Eli Lilly, Lilly Cambridge Innovation Center, Cambridge, MA 02142
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yi Han
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Tao Wang
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| |
Collapse
|
10
|
Alagia A, Tereňová J, Ketley RF, Di Fazio A, Chelysheva I, Gullerova M. Small vault RNA1-2 modulates expression of cell membrane proteins through nascent RNA silencing. Life Sci Alliance 2023; 6:e202302054. [PMID: 37037596 PMCID: PMC10087102 DOI: 10.26508/lsa.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Gene expression can be regulated by transcriptional or post-transcriptional gene silencing. Recently, we described nuclear nascent RNA silencing that is mediated by Dicer-dependent tRNA-derived small RNA molecules. In addition to tRNA, RNA polymerase III also transcribes vault RNA, a component of the ribonucleoprotein complex vault. Here, we show that Dicer-dependent small vault RNA1-2 (svtRNA1-2) associates with Argonaute 2 (Ago2). Although endogenous vtRNA1-2 is present mostly in the cytoplasm, svtRNA1-2 localises predominantly in the nucleus. Furthermore, in Ago2 and Dicer knockdown cells, a subset of genes that are up-regulated at the nascent level were predicted to be targeted by svtRNA1-2 in the intronic region. Genomic deletion of vtRNA1-2 results in impaired cellular proliferation and the up-regulation of genes associated with cell membrane physiology and cell adhesion. Silencing activity of svtRNA1-2 molecules is dependent on seed-plus-complementary-paired hybridisation features and the presence of a 5-nucleotide loop protrusion on target RNAs. Our data reveal a role of Dicer-dependent svtRNA1-2, possessing unique molecular features, in modulation of the expression of membrane-associated proteins at the nascent RNA level.
Collapse
Affiliation(s)
- Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jana Tereňová
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Johnson KC, Corey DR. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA (NEW YORK, N.Y.) 2023; 29:415-422. [PMID: 36657971 PMCID: PMC10019369 DOI: 10.1261/rna.079500.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
RNA interference is almost always associated with post-transcriptional silencing in the cytoplasm. MicroRNAs (miRNAs) and critical RNAi protein factors like argonaute (AGO) and trinucleotide repeat binding containing 6 protein (TNRC6), however, are also found in cell nuclei, suggesting that nuclear miRNAs may be targets for gene regulation. Designed small duplex RNAs (dsRNAs) can modulate nuclear processes such as transcription and splicing, suggesting that they can also provide leads for therapeutic discovery. The goal of this Perspective is to provide the background on nuclear RNAi necessary to guide discussions on whether nuclear RNAi can play a role in therapeutic development programs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
12
|
Kirstein N, Dokaneheifard S, Cingaram PR, Valencia MG, Beckedorff F, Gomes Dos Santos H, Blumenthal E, Tayari MM, Gaidosh GS, Shiekhattar R. The Integrator complex regulates microRNA abundance through RISC loading. SCIENCE ADVANCES 2023; 9:eadf0597. [PMID: 36763664 PMCID: PMC9916992 DOI: 10.1126/sciadv.adf0597] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
MicroRNA (miRNA) homeostasis is crucial for the posttranscriptional regulation of their target genes during development and in disease states. miRNAs are derived from primary transcripts and are processed from a hairpin precursor intermediary to a mature 22-nucleotide duplex RNA. Loading of the duplex into the Argonaute (AGO) protein family is pivotal to miRNA abundance and its posttranscriptional function. The Integrator complex plays a key role in protein coding and noncoding RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global destabilization of mature miRNAs. Enhanced ultraviolet cross-linking and immunoprecipitation of Integrator uncovered an association with duplex miRNAs before their loading onto AGOs. Tracing miRNA fate from biogenesis to stabilization by incorporating 4-thiouridine in nascent transcripts pinpointed a critical role for Integrator in miRNA assembly into AGOs.
Collapse
Affiliation(s)
- Nina Kirstein
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Sadat Dokaneheifard
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Pradeep Reddy Cingaram
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Monica Guiselle Valencia
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Helena Gomes Dos Santos
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Medical Scientist Training Program and Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mina Masoumeh Tayari
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Gabriel Stephen Gaidosh
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
13
|
Mauro M, Berretta M, Palermo G, Cavalieri V, La Rocca G. The Multiplicity of Argonaute Complexes in Mammalian Cells. J Pharmacol Exp Ther 2023; 384:1-9. [PMID: 35667689 PMCID: PMC9827513 DOI: 10.1124/jpet.122.001158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.
Collapse
Affiliation(s)
- Maurizio Mauro
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Massimiliano Berretta
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Giuseppe Palermo
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Vincenzo Cavalieri
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| | - Gaspare La Rocca
- Department of Medicine, Albert Einstein College of Medicine, New York, New York (M.M.); Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy (M.B.); Gruppo Oncologico Ricercatori Italiani, GORI ONLUS, Pordenone, Italy (M.B.); Department of Biomedical and Biotechnological Sciences, University of Catania, Catania Italy (G.P.); Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy (V.C.); and Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York (G.L.R.)
| |
Collapse
|
14
|
Small Interfering RNAs Targeting a Chromatin-Associated RNA Induce Its Transcriptional Silencing in Human Cells. Mol Cell Biol 2022; 42:e0027122. [PMID: 36445136 PMCID: PMC9753735 DOI: 10.1128/mcb.00271-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Transcriptional gene silencing by small interfering RNAs (siRNAs) has been widely described in various species, including plants and yeast. In mammals, its extent remains somewhat debated. Previous studies showed that siRNAs targeting gene promoters could induce the silencing of the targeted promoter, although the involvement of off-target mechanisms was also suggested. Here, by using nascent RNA capture and RNA polymerase II chromatin immunoprecipitation, we show that siRNAs targeting a chromatin-associated noncoding RNA induced its transcriptional silencing. Deletion of the sequence targeted by one of these siRNAs on the two alleles by genome editing further showed that this silencing was due to base-pairing of the siRNA to the target. Moreover, by using cells with heterozygous deletion of the target sequence, we showed that only the wild-type allele, but not the deleted allele, was silenced by the siRNA, indicating that transcriptional silencing occurred only in cis. Finally, we demonstrated that both Ago1 and Ago2 are involved in this transcriptional silencing. Altogether, our data demonstrate that siRNAs targeting a chromatin-associated RNA at a distance from its promoter induce its transcriptional silencing. Our results thus extend the possible repertoire of endogenous or exogenous interfering RNAs.
Collapse
|
15
|
Douvris A, Viñas J, Burns KD. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci 2022; 79:376. [PMID: 35731367 PMCID: PMC9217846 DOI: 10.1007/s00018-022-04406-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-β and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jose Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
17
|
Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23094493. [PMID: 35562884 PMCID: PMC9104172 DOI: 10.3390/ijms23094493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.
Collapse
|
18
|
La Rocca G, Cavalieri V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes (Basel) 2022; 13:414. [PMID: 35327968 PMCID: PMC8954937 DOI: 10.3390/genes13030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
19
|
Okeke C, Silas U, Nnodu O, Clementina O. HSC and miRNA Regulation with Implication for Foetal Haemoglobin Induction in Beta Haemoglobinopathies. Curr Stem Cell Res Ther 2022; 17:339-347. [PMID: 35189805 DOI: 10.2174/1574888x17666220221104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies. Hemopoietic stem cells (HSCs) are characterized by a specific miRNA signature in every state of differentiation. The role of miRNAs has become evident both in the maintenance of the "stemness" and in the early induction of differentiation by modulation of the expression of the master pluripotency genes and during early organogenesis. miRNAs are extra regulatory mechanisms in hematopoietic stem cells (HSCs) via influencing transcription profiles together with transcript stability. miRNAs have been reported to be used to reprogram primary somatic cells toward pluripotency. Their involvement in cell editing holds the potential for therapy for many genetic diseases. This review provides a snapshot of miRNA involvement in cell fate decisions, haemoglobin induction pathway, and their journey as some emerge prime targets for therapy in beta haemoglobinopathies.
Collapse
Affiliation(s)
- Chinwe Okeke
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Obiageli Nnodu
- Department of Haematology, College of Medicine, University of Abuja, Abuja Nigeria
| | - Odoh Clementina
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
20
|
Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM, Ghaben AL, An YA, Sadek HA, Gordillo R, Akgul Y, Chen S, Samovski D, Fischer-Posovszky P, Kusminski CM, Klein S, Scherer PE. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 2021; 33:1853-1868.e11. [PMID: 34418352 PMCID: PMC8429176 DOI: 10.1016/j.cmet.2021.08.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Adipocytes undergo intense energetic stress in obesity resulting in loss of mitochondrial mass and function. We have found that adipocytes respond to mitochondrial stress by rapidly and robustly releasing small extracellular vesicles (sEVs). These sEVs contain respiration-competent, but oxidatively damaged mitochondrial particles, which enter circulation and are taken up by cardiomyocytes, where they trigger a burst of ROS. The result is compensatory antioxidant signaling in the heart that protects cardiomyocytes from acute oxidative stress, consistent with a preconditioning paradigm. As such, a single injection of sEVs from energetically stressed adipocytes limits cardiac ischemia/reperfusion injury in mice. This study provides the first description of functional mitochondrial transfer between tissues and the first vertebrate example of "inter-organ mitohormesis." Thus, these seemingly toxic adipocyte sEVs may provide a physiological avenue of potent cardio-protection against the inevitable lipotoxic or ischemic stresses elicited by obesity.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shujuan Li
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatric Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dmitri Samovski
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Klein
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Johnson ST, Chu Y, Liu J, Corey DR. Impact of scaffolding protein TNRC6 paralogs on gene expression and splicing. RNA (NEW YORK, N.Y.) 2021; 27:1004-1016. [PMID: 34108231 PMCID: PMC8370741 DOI: 10.1261/rna.078709.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 05/11/2023]
Abstract
TNRC6 is a scaffolding protein that bridges interactions between small RNAs, argonaute (AGO) protein, and effector proteins to control gene expression. There are three paralogs in mammalian cells, TNRC6A, TNRC6B, and TNRC6C These paralogs have ∼40% amino acid sequence identity and the extent of their unique or redundant functions is unclear. Here, we use knockout cell lines, enhanced crosslinking immunoprecipitation (eCLIP), and high-throughput RNA sequencing (RNA-seq) to explore the roles of TNRC6 paralogs in RNA-mediated control of gene expression. We find that the paralogs are largely functionally redundant and changes in levels of gene expression are well-correlated with those observed in AGO knockout cell lines. Splicing changes observed in AGO knockout cell lines are also observed in TNRC6 knockout cells. These data further define the roles of the TNRC6 isoforms as part of the RNA interference (RNAi) machinery.
Collapse
Affiliation(s)
- Samantha T Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Yongjun Chu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - Jing Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
22
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
23
|
Semina EV, Rysenkova KD, Troyanovskiy KE, Shmakova AA, Rubina KA. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. BIOCHEMISTRY (MOSCOW) 2021; 86:785-799. [PMID: 34284705 DOI: 10.1134/s0006297921070014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs. miRNAs that are secreted into the extracellular space as components of exosomes or as complexes with proteins, participate in morphogenesis, regeneration, oncogenesis, metastasis, and chemoresistance of tumor cells. miRNAs play a dual role in oncogenesis: on one hand, they act as oncogene suppressors; on the other hand, they function as oncogenes themselves and inactivate oncosuppressors, stimulate tumor neoangiogenesis, and mediate immunosuppressive processes in the tumors, The review presents current concepts of the miRNA biogenesis and their functions in the cytoplasm and nucleus with special focus on the noncanonical mechanisms of gene regulation by miRNAs and involvement of miRNAs in oncogenesis, as well as the authors' opinion on the role of miRNAs in metastasis and formation of the premetastatic niche.
Collapse
Affiliation(s)
- Ekaterina V Semina
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Karina D Rysenkova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | | | - Anna A Shmakova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Kseniya A Rubina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| |
Collapse
|
24
|
Zhang Z, Funcke JB, Zi Z, Zhao S, Straub LG, Zhu Y, Zhu Q, Crewe C, An YA, Chen S, Li N, Wang MY, Ghaben AL, Lee C, Gautron L, Engelking LJ, Raj P, Deng Y, Gordillo R, Kusminski CM, Scherer PE. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab 2021; 33:1624-1639.e9. [PMID: 34174197 PMCID: PMC8338877 DOI: 10.1016/j.cmet.2021.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.
Collapse
Affiliation(s)
- Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenzhen Zi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luke J Engelking
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Jia R, Song Z, Lin J, Li Z, Shan G, Huang C. Gawky modulates MTF-1-mediated transcription activation and metal discrimination. Nucleic Acids Res 2021; 49:6296-6314. [PMID: 34107019 PMCID: PMC8216474 DOI: 10.1093/nar/gkab474] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Metal-induced genes are usually transcribed at relatively low levels under normal conditions and are rapidly activated by heavy metal stress. Many of these genes respond preferentially to specific metal-stressed conditions. However, the mechanism by which the general transcription machinery discriminates metal stress from normal conditions and the regulation of MTF-1-meditated metal discrimination are poorly characterized. Using a focused RNAi screening in Drosophila Schneider 2 (S2) cells, we identified a novel activator, the Drosophila gawky, of metal-responsive genes. Depletion of gawky has almost no effect on the basal transcription of the metallothionein (MT) genes, but impairs the metal-induced transcription by inducing the dissociation of MTF-1 from the MT promoters and the deficient nuclear import of MTF-1 under metal-stressed conditions. This suggests that gawky serves as a 'checkpoint' for metal stress and metal-induced transcription. In fact, regular mRNAs are converted into gawky-controlled transcripts if expressed under the control of a metal-responsive promoter, suggesting that whether transcription undergoes gawky-mediated regulation is encrypted therein. Additionally, lack of gawky eliminates the DNA binding bias of MTF-1 and the transcription preference of metal-specific genes. This suggests a combinatorial control of metal discrimination by gawky, MTF-1, and MTF-1 binding sites.
Collapse
Affiliation(s)
- Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
26
|
An emerging role of chromatin-interacting RNA-binding proteins in transcription regulation. Essays Biochem 2020; 64:907-918. [PMID: 33034346 DOI: 10.1042/ebc20200004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP-chromatin interactions and their functional diversities in transcription regulation.
Collapse
|
27
|
Extracellular MicroRNAs as Intercellular Mediators and Noninvasive Biomarkers of Cancer. Cancers (Basel) 2020; 12:cancers12113455. [PMID: 33233600 PMCID: PMC7699762 DOI: 10.3390/cancers12113455] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There are an extensive number of publications regarding the role of endogenous miRNAs as regulators of gene expression in cancer. However, extracellular miRNAs have emerged as a novel mechanism of cell-to-cell communication in normal conditions and disease and have drawn a large amount of interest as regulators of gene expression and as potential non-invasive biomarkers in cancer. Despite this high interest and the abundance of research on the biology and role of extracellular miRNAs in cancer, they are not yet completely understood. The aim of this review is to highlight the relevant biological characteristics of extracellular miRNAs that enable them to function as intercellular mediators of gene expression regulation and provide the recently published evidence of the specific role of extracellular miRNAs in tumor development and progression. Abstract MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.
Collapse
|
28
|
Wang H, Tian Z, Xu Y, Wang Q, Ding SW, Li Y. Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Front Microbiol 2020; 11:590904. [PMID: 33281788 PMCID: PMC7688628 DOI: 10.3389/fmicb.2020.590904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) causes seasonal infections and periodic pandemics in humans. The non-structural protein 1 (NS1) of IAV is the main viral antagonist of the innate immune responses that play a key role in influenza pathogenesis. However, the mechanism to disrupt the host cell homeostasis by IAV NS1 remains poorly understood. Here, we show that expression of NS1 from the WSN strain, but not PR8 strain, of IAV, markedly induced nuclear import of the host RNA interference (RNAi) factors such as Argonaute-2 and microRNA 16. We found that the single residue substitution of aspartic acid with histidine at position 101 (D101H) of IAV-PR8 NS1 was sufficient to induce the nuclear import process and to enhance the virulence of IAV-PR8 in mice. However, we observed no significant differences between the wild-type and mutant IAV-PR8 in virus titers or induction of the interferon response in lung tissues, indicating a novel role of NS1 in the virulence determination of IAV in a mammalian host. Moreover, our bioinformatic analysis of 69,057 NS1 sequences from all IAV subtypes deposited in the NCBI database revealed that the NS1-H101 gene of IAV-WSN was widespread among H1N1 viruses isolated in 1933 but disappeared completely after 1940. Thus, IAV NS1 (H101) is a mutation selected against during evolution of IAV, suggesting that mutation H101 confers an important biological phenotype.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhonghui Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Ferguson CM, Echeverria D, Hassler M, Ly S, Khvorova A. Cell Type Impacts Accessibility of mRNA to Silencing by RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:384-393. [PMID: 32650236 PMCID: PMC7340969 DOI: 10.1016/j.omtn.2020.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
RNA interference (RNAi) is a potent mechanism that silences mRNA and protein expression in all cells and tissue types. RNAi is known to exert many of its functional effects in the cytoplasm, and thus, the cellular localization of target mRNA may impact observed potency. Here, we demonstrate that cell identity has a profound impact on accessibility of apolipoprotein E (ApoE) mRNA to RNAi. We show that, whereas both neuronal and glial cell lines express detectable ApoE mRNA, in neuronal cells, ApoE mRNA is not targetable by RNAi. Screening of a panel of thirty-five chemically modified small interfering RNAs (siRNAs) did not produce a single hit in a neuronal cell line, whereas up to fifteen compounds showed strong efficacy in glial cells. Further investigation of the cellular localization of ApoE mRNA demonstrates that ApoE mRNA is partially spliced and preferentially localized to the nucleus (∼80%) in neuronal cells, whereas more than 90% of ApoE mRNA is cytoplasmic in glial cells. Such an inconsistency in intracellular localization and splicing might provide an explanation for functional differences in RNAi compounds. Thus, cellular origin might have an impact on accessibility of mRNA to RNAi and should be taken into account during the screening process.
Collapse
Affiliation(s)
- Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Artificial miRNAs targeting CAG repeat expansion in ORFs cause rapid deadenylation and translation inhibition of mutant transcripts. Cell Mol Life Sci 2020; 78:1577-1596. [PMID: 32696070 PMCID: PMC7904544 DOI: 10.1007/s00018-020-03596-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington’s disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins. Here, using polyQ disease models, we aimed to demonstrate how miRNA-based gene expression regulation is dependent on target sequence features. We show that the silencing efficiency and selectivity of art-miRNAs is influenced by the localization of the CAG repeat tract within transcript and the specific sequence context. Furthermore, we aimed to reveal the events leading to downregulation of mutant polyQ proteins and found very rapid activation of translational repression and HTT transcript deadenylation. Slicer-activity of AGO2 was dispensable in this process, as determined in AGO2 knockout cells generated with CRISPR-Cas9 technology. We also showed highly allele-selective downregulation of huntingtin in human HD neural progenitors (NPs). Taken together, art-miRNA activity may serve as a model of the cooperative activity and targeting of ORF regions by endogenous miRNAs.
Collapse
|
31
|
Stavast CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019; 8:cells8111465. [PMID: 31752361 PMCID: PMC6912820 DOI: 10.3390/cells8111465] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3'- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.
Collapse
|
32
|
Liu Z, Johnson ST, Zhang Z, Corey DR. Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Ther 2019; 29:323-334. [PMID: 31670606 PMCID: PMC6885777 DOI: 10.1089/nat.2019.0815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The trinucleotide repeat containing 6 (TNRC6) family of proteins are core components of RNA interference (RNAi) and consist of three paralogs (TNRC6A, TNRC6B, and TNRC6C). The TNRC6 paralogs associate with argonaute (AGO) protein, the core RNAi factor, and bridge its interactions with other proteins. We obtained TNRC6A and TNRC6B single and double knockout cell lines to investigate how the TNRC6 paralogs contribute to RNAi. We found that TNRC6 proteins are not required for gene silencing when duplex RNAs are fully complementary. TNRC6 expression was necessary for regulation by a microRNA. TNRC6A, but not TNRC6B, expression was necessary for transcriptional activation by a duplex RNA targeting a gene promoter. By contrast, AGO2 is required for all three gene expression pathways. TNRC6A can affect the Dicer localization in cytoplasm versus the nucleus, but none of the three TNRC6 paralogs was necessary for nuclear localization of AGO2. Our data suggest that the roles of the TNRC6 paralogs differ in some details and that TNRC6 is not required for clinical therapeutic silencing mechanisms that involve fully complementary duplex RNAs.
Collapse
Affiliation(s)
- Zhongtian Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.,Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Samantha T Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
33
|
RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets. BMC Bioinformatics 2019; 20:120. [PMID: 30999843 PMCID: PMC6471694 DOI: 10.1186/s12859-019-2683-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line. Methods We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment. Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting from the RIP experiment. We used the expression profile of the input sample to compute several variables, using formulae capable of integrating the information on miRNA binding sites, both in the 3’UTR and coding regions, with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2 and GW182 related samples. Results For each of the two proteins, we trained and tested several support vector machine algorithms capable of distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using variables involving the number of binding sites in both the 3’UTR and coding region, integrated with the miRNA expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region. Conclusions Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the 3’UTR and coding region, but only the longer mRNAs probably remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs. Electronic supplementary material The online version of this article (10.1186/s12859-019-2683-y) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Ben-Yishay R, Shav-Tal Y. The dynamic lifecycle of mRNA in the nucleus. Curr Opin Cell Biol 2019; 58:69-75. [PMID: 30889416 DOI: 10.1016/j.ceb.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The mRNA molecule roams through the nucleus on its way out to the cytoplasm. mRNA encounters and is bound by many protein factors, from the moment it begins to emerge from RNA polymerase II and during its travel in the nucleoplasm, where it will come upon chromatin and nuclear bodies. Some of the protein factors that engage with the mRNA can process it, until finally reaching a mature state fit for export through the nuclear pore complex (NPC). Examining the lifecycle of mRNAs in living cells using mRNA tagging techniques opens a window into our understanding of the rules that drive the dynamics of gene expression from transcription to mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
35
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
36
|
Trabucchi M, Mategot R. Subcellular Heterogeneity of the microRNA Machinery. Trends Genet 2018; 35:15-28. [PMID: 30503571 DOI: 10.1016/j.tig.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Different methods have recently been developed to understand the subcellular localization and role of microRNAs (miRNAs) as well as small RNAs associated with Argonaute (AGO) proteins. The heterogeneity of the protein complexes associated with miRNAs, along with their subcellular localization, provides clues into their biochemical mechanism of function. Subcellular diversity indicates that miRNAs localized to different cellular regions could have different functions, including transcriptional regulation on chromatin or post-transcriptional control, providing global regulation of gene expression by miRNAs. Herein, I review the current knowledge and most recent discoveries relating to the subcellular function of miRNAs and other AGO-associated small RNAs, revealing the emergence of a multitude of functions of the miRNA pathway to control different steps of the gene expression program(s).
Collapse
Affiliation(s)
- Michele Trabucchi
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France.
| | - Raphael Mategot
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France
| |
Collapse
|
37
|
Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F, Towler DA, Gordillo R, Scherer PE. An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell 2018; 175:695-708.e13. [PMID: 30293865 DOI: 10.1016/j.cell.2018.09.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Kim
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA; Cardiovascular and Metabolic Disease Center (CMDC), Inje University, Busan, South Korea
| | - Fang Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA; Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dwight A Towler
- Department of Internal Medicine, Endocrine Division, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
39
|
Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC, Corey DR. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell Rep 2018; 20:1543-1552. [PMID: 28813667 DOI: 10.1016/j.celrep.2017.07.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/10/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023] Open
Abstract
In the cytoplasm, small RNAs can control mammalian translation by regulating the stability of mRNA. In the nucleus, small RNAs can also control transcription and splicing. The mechanisms for RNA-mediated nuclear regulation are not understood and remain controversial, hindering the effective application of nuclear RNAi and investigation of its natural regulatory roles. Here, we reveal that the human GW182 paralogs TNRC6A/B/C are central organizing factors critical to RNA-mediated transcriptional activation. Mass spectrometry of purified nuclear lysates followed by experimental validation demonstrates that TNRC6A interacts with proteins involved in protein degradation, RNAi, the CCR4-NOT complex, the mediator complex, and histone-modifying complexes. Functional analysis implicates TNRC6A, NAT10, MED14, and WDR5 in RNA-mediated transcriptional activation. These findings describe protein complexes capable of bridging RNA-mediated sequence-specific recognition of noncoding RNA transcripts with the regulation of gene transcription.
Collapse
Affiliation(s)
- Jessica A Hicks
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Oleg Volkov
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Krystal C Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
40
|
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17:64. [PMID: 29471827 PMCID: PMC5822656 DOI: 10.1186/s12943-018-0765-5] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
Collapse
Affiliation(s)
- Hongyu Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Cheng Lei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qin He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Zou Pan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
41
|
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma. Curr Pharm Biotechnol 2018; 19:611-621. [PMID: 29886828 PMCID: PMC6204661 DOI: 10.2174/1389201019666180611093428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oligonucleotide drug development has revolutionised the drug discovery field. Within this field, 'small' or 'short' activating RNAs (saRNA) are a more recently discovered category of short double-stranded RNA with clinical potential. saRNAs promote transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). OBJECTIVE The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, the potential clinical application of saRNAs is to increase target gene expression in a sequence-specific manner. saRNA-based therapeutics present opportunities for expanding the "druggable genome" with particular areas of interest including transcription factor activation and cases of haploinsufficiency. RESULTS AND CONCLUSION In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEBPA, induces increased expression of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEBPA is presently in Phase I clinical trials for hepatocellular carcinoma (HCC). The clinical development of MTL-CEBPA will demonstrate "proof of concept" that saRNAs can provide the basis for drugs which enhance target gene expression and consequently improve treatment outcome in patients.
Collapse
Affiliation(s)
| | | | | | - John J. Rossi
- Address correspondence to this author at the Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA; Tel: 626-218-7390; Fax: 626-301-8371; E-mail:
| |
Collapse
|
42
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Comprehensive Identification of Nuclear and Cytoplasmic TNRC6A-Associating Proteins. J Mol Biol 2017; 429:3319-3333. [DOI: 10.1016/j.jmb.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
|
44
|
Reactivity of human AGO2 monoclonal antibody 11A9 with the SWI/SNF complex: A case study for rigorously defining antibody selectivity. Sci Rep 2017; 7:7278. [PMID: 28779093 PMCID: PMC5544689 DOI: 10.1038/s41598-017-07539-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, we originally aimed to characterize the potential role of Argonaute 2 (AGO2) in the nucleus, a key protein of the miRNA machinery. We combined Chromatin Immunoprecipitation (ChIP) with high throughput sequencing (ChIP-seq) and quantitative mass spectrometry (ChIP-MS) using the broadly used AGO2 11A9 antibody to determine interactions with chromatin and nuclear proteins. We found a previously described interaction between AGO2 and SWI/SNF on chromatin with ChIP-MS and observed enrichment at enhancers and transcription start sites using ChIP-seq. However, antibody specificity issues can produce misleading results for ChIP, RNA-seq and Mass spectrometry. Therefore, we developed a CRISPR/Cas9 engineered AGO2−/− HEK293T cell line to validate our findings. ChIP-qPCR and immunoprecipitation combined with MS (IP-MS) showed that the 11A9 antibody associates with chromatin and SWI/SNF in the absence of AGO2. Furthermore, stoichiometry, IP-MS and co-IP analysis suggests a direct interaction of this antibody with SMARCC1, a component of the SWI/SNF complex. For this reason, particular care should be taken in performing and interpreting experiments in which the 11A9 antibody is used to study a nuclear role of AGO2.
Collapse
|
45
|
Nikan M, Osborn MF, Coles AH, Biscans A, Godinho BM, Haraszti RA, Sapp E, Echeverria D, DiFiglia M, Aronin N, Khvorova A. Synthesis and Evaluation of Parenchymal Retention and Efficacy of a Metabolically Stable O-Phosphocholine-N-docosahexaenoyl-l-serine siRNA Conjugate in Mouse Brain. Bioconjug Chem 2017; 28:1758-1766. [PMID: 28462988 PMCID: PMC5578421 DOI: 10.1021/acs.bioconjchem.7b00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-conjugated siRNAs have the potential to achieve targeted delivery and efficient silencing in neurons following local administration in the central nervous system (CNS). We recently described the activity and safety profile of a docosahexaenoic acid (DHA)-conjugated, hydrophobic siRNA (DHA-hsiRNA) targeting Huntingtin (Htt) mRNA in mouse brain. Here, we report the synthesis of an amide-modified, phosphocholine-containing DHA-hsiRNA conjugate (PC-DHA-hsiRNA), which closely resembles the endogenously esterified biological structure of DHA. We hypothesized that this modification may enhance neuronal delivery in vivo. We demonstrate that PC-DHA-hsiRNA silences Htt in mouse primary cortical neurons and astrocytes. After intrastriatal delivery, Htt-targeting PC-DHA-hsiRNA induces ∼80% mRNA silencing and 71% protein silencing after 1 week. However, PC-DHA-hsiRNA did not substantially outperform DHA-hsiRNA under the conditions tested. Moreover, at the highest locally administered dose (4 nmol, 50 μg), we observe evidence of PC-DHA-hsiRNA-mediated reactive astrogliosis. Lipophilic ligand conjugation enables siRNA delivery to neural tissues, but rational design of functional, nontoxic siRNA conjugates for CNS delivery remains challenging.
Collapse
Affiliation(s)
- Mehran Nikan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maire F. Osborn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew H. Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bruno M.D.C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Reka A. Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
46
|
Urbanek MO, Fiszer A, Krzyzosiak WJ. Reduction of Huntington's Disease RNA Foci by CAG Repeat-Targeting Reagents. Front Cell Neurosci 2017; 11:82. [PMID: 28400719 PMCID: PMC5368221 DOI: 10.3389/fncel.2017.00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
In several human polyglutamine diseases caused by expansions of CAG repeats in the coding sequence of single genes, mutant transcripts are detained in nuclear RNA foci. In polyglutamine disorders, unlike other repeat-associated diseases, both RNA and proteins exert pathogenic effects; therefore, decreases of both RNA and protein toxicity need to be addressed in proposed treatments. A variety of oligonucleotide-based therapeutic approaches have been developed for polyglutamine diseases, but concomitant assays for RNA foci reduction are lacking. Here, we show that various types of oligonucleotide-based reagents affect RNA foci number in Huntington’s disease cells. We analyzed the effects of reagents targeting either CAG repeat tracts or specific HTT sequences in fibroblasts derived from patients. We tested reagents that either acted as translation blockers or triggered mRNA degradation via the RNA interference pathway or RNase H activation. We also analyzed the effect of chemical modifications of CAG repeat-targeting siRNAs on their efficiency in the foci decline. Our results suggest that the decrease of RNA foci number may be considered as a readout of treatment outcomes for oligonucleotide reagents.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| | - Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry Polish Academy of Sciences Poznan, Poland
| |
Collapse
|
47
|
Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 2016; 17:ijms17101712. [PMID: 27754357 PMCID: PMC5085744 DOI: 10.3390/ijms17101712] [Citation(s) in RCA: 774] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
The finding that small non-coding RNAs (ncRNAs) are able to control gene expression in a sequence specific manner has had a massive impact on biology. Recent improvements in high throughput sequencing and computational prediction methods have allowed the discovery and classification of several types of ncRNAs. Based on their precursor structures, biogenesis pathways and modes of action, ncRNAs are classified as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs), promoter associate RNAs (pRNAs), small nucleolar RNAs (snoRNAs) and sno-derived RNAs. Among these, miRNAs appear as important cytoplasmic regulators of gene expression. miRNAs act as post-transcriptional regulators of their messenger RNA (mRNA) targets via mRNA degradation and/or translational repression. However, it is becoming evident that miRNAs also have specific nuclear functions. Among these, the most studied and debated activity is the miRNA-guided transcriptional control of gene expression. Although available data detail quite precisely the effectors of this activity, the mechanisms by which miRNAs identify their gene targets to control transcription are still a matter of debate. Here, we focus on nuclear functions of miRNAs and on alternative mechanisms of target recognition, at the promoter lavel, by miRNAs in carrying out transcriptional gene silencing.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Department of Cellular Biotechnologies and Hematology, University of Rome Sapienza, Rome 00179, Italy.
| | - Carlo Cogoni
- Department of Cellular Biotechnologies and Hematology, University of Rome Sapienza, Rome 00179, Italy.
| | - Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University of Rome Sapienza, Rome 00179, Italy.
| |
Collapse
|