1
|
Chen J, Ke R. Spatial analysis toolkits for RNA in situ sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1842. [PMID: 38605484 DOI: 10.1002/wrna.1842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Spatial transcriptomics (ST) is featured by high-throughput gene expression profiling within their native cell and tissue context, offering a means to investigate gene regulatory networks in tissue microenvironment. In situ sequencing (ISS) is an imaging-based ST technology that simultaneously detects hundreds to thousands of genes at subcellular resolution. As a highly reproducible and robust technique, ISS has been widely adapted and undergone a series of technical iterations. As the interest in ISS-based spatial transcriptomic analysis grows, scalable and integrated data analysis workflows are needed to facilitate the applications of ISS in different research fields. This review presents the state-of-the-art bioinformatic toolkits for ISS data analysis, which covers the upstream and downstream analysis workflows, including image analysis, cell segmentation, clustering, functional enrichment, detection of spatially variable genes and cell clusters, spatial cell-cell interactions, and trajectory inference. To assist the community in choosing the right tools for their research, the application of each tool and its compatibility with ISS data are reviewed in detailed. Finally, future perspectives and challenges concerning how to integrate heterogeneous tools into a user-friendly analysis pipeline are discussed. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Chi R, Lin PY, Jhuo YS, Cheng FY, Ho JAA. Colorimetric detection of African swine fever (ASF)-associated microRNA based on rolling circle amplification and salt-induced gold nanoparticle aggregation. Talanta 2024; 267:125159. [PMID: 37738746 DOI: 10.1016/j.talanta.2023.125159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
African swine fever (ASF) is a severe viral disease with a high mortality rate in domestic and wild pigs, for which no effective vaccine and antiviral drugs are available. The great infectivity of the ASF virus highlights the need for sensitive, simple, and on-site detection assays of ASF. We herein developed a colorimetric sensing strategy for the detection of an ASF-associated miRNA, based on isothermal rolling circle amplification (RCA) and salt-induced gold nanoparticle aggregation. Ssc-miR-451 was selected as the target ASF biomarker due to its high expression in ASF virus-infected pigs. With a red-purple-blue color shifting, this biosensing platform offers convenient detection of ssc-miR-451 with a UV-Vis spectrometer or the naked eye. The proposed assay exhibits a dose-response relationship between the optical absorbance ratio (A525/A640) and the amounts of ssc-miR-451, with a detection limit calculated as 3.56 fmol (equivalent to 11.86 pM in 300 μL reaction mixture). This assay's coefficient of variation (CV%) was determined to be less than 5.95%, revealing its reproducibility is satisfactory. In addition, the newly developed method was successfully applied in the detection of spiked ssc-miR-451 in pig serum samples. In light of its simplicity, convenience (colorimetric), sensitivity, and energy efficiency (isothermal amplification), this biosensing strategy presents great potential to be applied in the local swine industry and pig farming for screening of viral diseases affecting pigs.
Collapse
Affiliation(s)
- Rong Chi
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Pei-Ying Lin
- Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan
| | - Yi-Syuan Jhuo
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, 10617, Taipei, Taiwan; Center for Emerging Materials and Advanced Devices, National Taiwan University, 10617, Taipei, Taiwan; Center for Biotechnology, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
3
|
An instrument-free, programmable approach for nucleic acid detection. Nat Biomed Eng 2023; 7:1537-1538. [PMID: 37142845 PMCID: PMC10158681 DOI: 10.1038/s41551-023-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
4
|
Phillips EA, Silverman AD, Joneja A, Liu M, Brown C, Carlson P, Coticchia C, Shytle K, Larsen A, Goyal N, Cai V, Huang J, Hickey JE, Ryan E, Acheampong J, Ramesh P, Collins JJ, Blake WJ. Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes. Nat Biomed Eng 2023; 7:1571-1582. [PMID: 37142844 PMCID: PMC10727988 DOI: 10.1038/s41551-023-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023]
Abstract
Nucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection. We used INSPECTR to detect a panel of five respiratory viral targets in a single reaction via a lateral-flow readout and ~4,000 copies of viral RNA via additional ambient-temperature rolling circle amplification of the expression cassette. Leveraging synthetic biology to simplify workflows for nucleic acid diagnostics may facilitate their broader applicability at the point of care.
Collapse
Affiliation(s)
| | | | | | | | - Carl Brown
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Emily Ryan
- Sherlock Biosciences, Watertown, MA, USA
| | | | | | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA
- College of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William J Blake
- Sherlock Biosciences, Watertown, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
5
|
Cai Q, Wang F, Ge J, Xu Z, Li M, Xu H, Wang H. G-wire-based self-quenched fluorescence probe combining with target-activated isothermal cascade amplification for ultrasensitive microRNA detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121605. [PMID: 35843057 DOI: 10.1016/j.saa.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we reported the G-wire-based self-quenched fluorescence probe and its application in ultrasensitive microRNA (miRNA) detection by combining with target-activated isothermal cascade amplification. The terminal-single-fluorescein (FAM)-labeled G-rich oligonucletides self-assembled into G-wire nanostructures (G-wires) with K+ and Mg2+. Thereafter, the G-wires brought terminal-labeled FAM into close proximity, as a result, the self-quenched signal probe formed. Besides, when there was the target miRNA, target-activated isothermal cascade amplification converted miRNA into the copious trigger DNA. After hybridization between trigger DNA and the self-quenched probe, the G-wires were splited and forced the apart of proximate FAM, and then the self-quenched probe displayed an "on" mechanism. Therefore, the approach gave a limit of detection (LOM) of 0.82 aM to miRNA-21 and could be implemented within a wide linear range of 2 aM to 2 nM. This approach was able to distinguish the single-mismatched miRNA-21, which was selective and sensitive in detecting human spiked serum samples.
Collapse
Affiliation(s)
- Qingyou Cai
- School of Teacher Education, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Fanfan Wang
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Jingying Ge
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Zhiguo Xu
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Mei Li
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China; Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China.
| | - Hui Xu
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China; Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| |
Collapse
|
6
|
ClampFISH 2.0 enables rapid, scalable amplified RNA detection in situ. Nat Methods 2022; 19:1403-1410. [PMID: 36280724 PMCID: PMC9838136 DOI: 10.1038/s41592-022-01653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
RNA labeling in situ has enormous potential to visualize transcripts and quantify their levels in single cells, but it remains challenging to produce high levels of signal while also enabling multiplexed detection of multiple RNA species simultaneously. Here, we describe clampFISH 2.0, a method that uses an inverted padlock design to efficiently detect many RNA species and exponentially amplify their signals at once, while also reducing the time and cost compared with the prior clampFISH method. We leverage the increased throughput afforded by multiplexed signal amplification and sequential detection to detect 10 different RNA species in more than 1 million cells. We also show that clampFISH 2.0 works in tissue sections. We expect that the advantages offered by clampFISH 2.0 will enable many applications in spatial transcriptomics.
Collapse
|
7
|
In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification. Biochem Biophys Res Commun 2022; 610:30-34. [DOI: 10.1016/j.bbrc.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
8
|
Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D, Fürth D, Pawlowski AC, Jindal K, Tam JM, Mifflin L, Alon S, Sinha A, Wassie AT, Chen F, Cheng A, Willocq V, Meyer K, Ling KH, Camplisson CK, Kohman RE, Aach J, Lee JH, Yankner BA, Boyden ES, Church GM. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res 2021; 49:e58. [PMID: 33693773 PMCID: PMC8191787 DOI: 10.1093/nar/gkab120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene–gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.
Collapse
Affiliation(s)
- Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Eswar P R Iyer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Daniel Goodwin
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Andrew C Pawlowski
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kunal Jindal
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jenny M Tam
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shahar Alon
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anubhav Sinha
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asmamaw T Wassie
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Fei Chen
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Anne Cheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Valerie Willocq
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Katharina Meyer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Conor K Camplisson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Je Hyuk Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Edward S Boyden
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USAHoward Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Horio K, Takahashi H, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence In Situ Hybridization. Microorganisms 2021; 9:1208. [PMID: 34204984 PMCID: PMC8228470 DOI: 10.3390/microorganisms9061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed an in situ mRNA detection method termed RNase H-assisted rolling circle amplification-fluorescence in situ hybridization (RHa-RCA-FISH), which can detect even short mRNA in a bacterial cell. However, because this FISH method is sensitive to the sample condition, it is necessary to find a suitable cell permeabilization and collection protocol. Here, we demonstrate its further applicability for detecting intrinsic mRNA expression using lactic acid bacteria (LAB) as a model consortium. Our results show that this method can visualize functional gene expression in LAB cells and can be used for monitoring the temporal transition of gene expression. In addition, we also confirmed that data obtained from bulk analyses such as RNA-seq or microarray do not always correspond to gene expression in individual cells. RHa-RCA-FISH will be a powerful tool to compensate for insufficient data from metatranscriptome analyses while clarifying the carriers of function in microbial consortia. By extending this technique to capture spatiotemporal microbial gene expression at the single-cell level, it will be able to characterize microbial interactions in phytoplankton-bacteria interactions.
Collapse
Affiliation(s)
- Kyohei Horio
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan;
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| |
Collapse
|
10
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CCJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Church GM, Marblestone AH, Boyden ES. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021; 371:eaax2656. [PMID: 33509999 PMCID: PMC7900882 DOI: 10.1126/science.aax2656] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Faculty of Engineering, Gonda Brain Research Center and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel R Goodwin
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Anubhav Sinha
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Fei Chen
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Yosuke Bando
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Kioxia Corporation, Minato-ku, Tokyo, Japan
| | | | - Andrew G Xue
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | | | | | - Yi Cui
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Andrew C Payne
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chun-Chen Yao
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ho-Jun Suk
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Ru Wang
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Paul Tillberg
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Paul Reginato
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nikita Pak
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Eswar P R Iyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel L Abravanel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Edward S Boyden
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
11
|
Lin C, Jiang M, Liu L, Chen X, Zhao Y, Chen L, Hong Y, Wang X, Hong C, Yao X, Ke R. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. N Biotechnol 2020; 61:116-123. [PMID: 33301924 DOI: 10.1016/j.nbt.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022]
Abstract
An amplification-based single-molecule fluorescence in situ hybridization (asmFISH) assay is introduced that exploits improved probe design for highly specific imaging of individual transcripts in fixed cells and tissues. In this method, a pair of DNA ligation probes are ligated on RNA templates upon specific hybridization, followed by probe circularization based on enzymatic DNA ligation and rolling circle amplification for signal boosting. The method is more efficient and specific than the padlock probe assay for detection of the same RNA molecules and discrimination of single nucleotide polymorphisms. Moreover, asmFISH is a versatile method which can be applied not only to cultured cells, but also to fresh frozen and formalin-fixed, paraffin-embedded tissue sections.
Collapse
Affiliation(s)
- Chen Lin
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Meng Jiang
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Ling Liu
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Xiaoyuan Chen
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Chengye Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xihu Yao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China.
| |
Collapse
|
12
|
SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol 2020; 18:e3000675. [PMID: 33216742 PMCID: PMC7717588 DOI: 10.1371/journal.pbio.3000675] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/04/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions. This study presents SCRINSHOT, an amenable, multiplex RNA-mapping method, applicable to a wide variety of tissue types and conditions. It can function quantitatively across a broad range of expression levels and detect even rare cell types, facilitating the creation of digital tissue maps with single-cell resolution.
Collapse
|
13
|
Zhou C, Huang R, Zhou X, Xing D. Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification. Talanta 2020; 216:120954. [DOI: 10.1016/j.talanta.2020.120954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
14
|
Lin C, Jiang M, Duan S, Qiu J, Hong Y, Wang X, Chen X, Ke R. Visualization of individual microRNA molecules in fixed cells and tissues using target-primed padlock probe assay. Biochem Biophys Res Commun 2020; 526:607-611. [PMID: 32247612 DOI: 10.1016/j.bbrc.2020.03.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression at the posttranscriptional level. Precisely profiling of miRNA expression will help us to better understand their roles in normal and diseased cells and tissues. Here we describe in situ miRNA detection by padlock probing and miRNA target-primed rolling circle amplification. We optimized our protocol and showed it can be applied to both fixed cells and tissue sections. The method can be used in basic research and potentially in clinical diagnostics in the future.
Collapse
Affiliation(s)
- Chen Lin
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Shanshan Duan
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Jianlong Qiu
- Department of Pathology, 910th Hospital of the Joint Logistics Support Force of PLA, Quanzhou, Fujian, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China.
| |
Collapse
|
15
|
Label-free detection of microRNA: two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters. Mikrochim Acta 2020; 187:141. [PMID: 31965324 DOI: 10.1007/s00604-019-4094-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
Abstract
A method is described for the determination of microRNAs via two-stage signal enhancement. This is attained by combining hairpin (HP) assisted cascade isothermal amplification with light-up DNA-Ag nanoclusters. A rationally designed dual-functional HP is used, and microRNA-21 is chosen as a model analyte. At the first stage, upon the hybridization of the microRNA-21 with HP, microRNA recycling via polymerase-displacement reaction and a circulative nicking-replication process are achieved. This generates numerous G-abundant overhang DNA sequences. In the second stage, the above-released G-abundant overhang DNA sequences hybridize with the dark green Ag NCs, and this results in the appearance of bright red fluorescence. Thanks to the two signal enhancement processes, a linear dependence between the fluorescence intensity at 616 nm and the concentration of microRNA-21 is obtained in the range from 1 pM to 20 pM with a detection limit of 0.7 pM. The strategy clearly discriminates between perfectly-matched and mismatched targets. The method was applied to the determination of microRNA-21 in a spiked serum sample. Graphical abstractSchematic representation of microRNA detection by integrating hairpin assisted cascade isothermal amplification with light-up DNA Ag nanoclusters. With microRNA, G-abundant overhang DNA sequences from amplification reaction hybridize with dark green Ag nanoclusters to produce a concentration-dependent bright red fluorescence.
Collapse
|
16
|
Jiang M, Liu L, Hong C, Chen D, Yao X, Chen X, Lin C, Ke R. Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues. RNA (NEW YORK, N.Y.) 2019; 25:1038-1046. [PMID: 31064786 PMCID: PMC6633204 DOI: 10.1261/rna.070599.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Visualization of gene expression at single RNA molecular level represents a great challenge to both imaging technologies and molecular engineering. Here we show a single molecule chromogenic in situ hybridization (smCISH) assay that enables counting and localizing individual RNA molecules in fixed cells and tissue under bright-field microscopy. Our method is based on in situ padlock probe assays directly using RNA as a ligation template and rolling circle amplification combined with enzyme catalyzed chromogenic reaction for amplification product visualization. We show potential applications of our method by detecting gene expression variations in single cells, subcellular localization information of expressed genes, and gene expression heterogeneity in formalin-fixed, paraffin-embedded tissue sections. This facile and straightforward method can in principle be applied to any type of RNA molecules in different samples.
Collapse
Affiliation(s)
- Meng Jiang
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Ling Liu
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Chengye Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Debo Chen
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xihu Yao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xiaoyuan Chen
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Chen Lin
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Rongqin Ke
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| |
Collapse
|
17
|
Oda Y, Chiba J, Kurosaki F, Yamade Y, Inouye M. Additive‐Free Enzymatic Phosphorylation and Ligation of Artificial Oligonucleotides with C‐Nucleosides at the Reaction Points. Chembiochem 2019; 20:1945-1952. [DOI: 10.1002/cbic.201900217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yutaro Oda
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Junya Chiba
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Fumihiro Kurosaki
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Yusuke Yamade
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
18
|
Takahashi H, Ohkawachi M, Horio K, Kobori T, Aki T, Matsumura Y, Nakashimada Y, Okamura Y. RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection. Sci Rep 2018; 8:7770. [PMID: 29773824 PMCID: PMC5958062 DOI: 10.1038/s41598-018-26132-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-primed rolling circle amplification (RPRCA) is a useful laboratory method for RNA detection; however, the detection of RNA is limited by the lack of information on 3′-terminal sequences. We uncovered that conventional RPRCA using pre-circularized probes could potentially detect the internal sequence of target RNA molecules in combination with RNase H. However, the specificity for mRNA detection was low, presumably due to non-specific hybridization of non-target RNA with the circular probe. To overcome this technical problem, we developed a method for detecting a sequence of interest in target RNA molecules via RNase H-assisted RPRCA using padlocked probes. When padlock probes are hybridized to the target RNA molecule, they are converted to the circular form by SplintR ligase. Subsequently, RNase H creates nick sites only in the hybridized RNA sequence, and single-stranded DNA is finally synthesized from the nick site by phi29 DNA polymerase. This method could specifically detect at least 10 fmol of the target RNA molecule without reverse transcription. Moreover, this method detected GFP mRNA present in 10 ng of total RNA isolated from Escherichia coli without background DNA amplification. Therefore, this method can potentially detect almost all types of RNA molecules without reverse transcription and reveal full-length sequence information.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Masahiko Ohkawachi
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Kyohei Horio
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Tsunehiro Aki
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yukihiko Matsumura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan.,Division of Energy and Environmental Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Yutaka Nakashimada
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yoshiko Okamura
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan. .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|