1
|
Li Y, Xu Y, Yu X, Su S, Wu B, Su Y, Guo L. Long non-coding RNA NEAT1 promotes colorectal cancer progression via interacting with SIRT1. Sci Rep 2025; 15:5673. [PMID: 39955367 PMCID: PMC11830096 DOI: 10.1038/s41598-025-90416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Nuclear-enriched abundant transcript 1 (NEAT1), a long noncoding RNA, is found to be significantly dysregulated in different types of cancer, including colorectal cancer (CRC). Nevertheless, there is still much to learn about the precise functions and processes of NEAT1 in the progression of CRC. Using The Cancer Genome Atlas (TCGA) database and 50 CRC specimens from the First Affiliated Hospital of Dali University, we assessed the expression of NEAT1 to determine its clinical impact. Through gene set enrichment analysis (GSEA), Cancer Single-cell State Atlas (CancerSEA), and immune infiltration studies, we elucidated key functions of NEAT1. We utilized Cell Counting Kit-8 (CCK8), wound healing, and Transwell assays to investigate the role of NEAT1 in the progression of CRC. Through the use of GSEA and immunohistochemistry, additional investigations were conducted to unveil the downstream targets of NEAT1 and gain insights into their regulatory dynamics. Our in vitro studies confirmed the regulatory role of NEAT1 in CRC. Findings indicate that increased NEAT1 expression correlates with adverse outcomes in colorectal tissues. In the CRC model, reduced levels of NEAT1 lead to reduced cell proliferation, invasion, and migration. Additionally, NEAT1 influenced immune cell infiltration in CRC and functioned as an oncogene by upregulating Sirtuin 1 (SIRT1) expression. This study demonstrates that NEAT1 promotes CRC progression and metastasis through a SIRT1-mediated mechanism, suggesting its potential as a prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Yunchun Xu
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Xinya Yu
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Shuangyan Su
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Bihua Wu
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Yunpeng Su
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China
| | - Le Guo
- Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, Yunnan, P.R. China.
| |
Collapse
|
2
|
Che R, Panah M, Mirani B, Knowles K, Ostapovich A, Majumdar D, Chen X, DeSimone J, White W, Noonan M, Luo H, Alexandrov A. Identification of Human Pathways Acting on Nuclear Non-Coding RNAs Using the Mirror Forward Genetic Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.26.615073. [PMID: 39386709 PMCID: PMC11463631 DOI: 10.1101/2024.09.26.615073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite critical roles in diseases, human pathways acting on strictly nuclear non-coding RNAs have been refractory to forward genetics. To enable their forward genetic discovery, we developed a single-cell approach that "Mirrors" activities of nuclear pathways with cytoplasmic fluorescence. Application of Mirror to two nuclear pathways targeting MALAT1's 3' end, the pathway of its maturation and the other, the degradation pathway blocked by the triple-helical Element for Nuclear Expression (ENE), identified nearly all components of three complexes: Ribonuclease P and the RNA Exosome, including nuclear DIS3, EXOSC10, and C1D, as well as the Nuclear Exosome Targeting (NEXT) complex. Additionally, Mirror identified DEAD-box helicase DDX59 associated with the genetic disorder Oral-Facial-Digital syndrome (OFD), yet lacking known substrates or roles in nuclear RNA degradation. Knockout of DDX59 exhibits stabilization of the full-length MALAT1 with a stability-compromised ENE and increases levels of 3'-extended forms of small nuclear RNAs. It also exhibits extensive retention of minor introns, including in OFD-associated genes, suggesting a mechanism for DDX59 association with OFD. Mirror efficiently identifies pathways acting on strictly nuclear non-coding RNAs, including essential and indirectly-acting components, and, as a result, uncovers unexpected links to human disease.
Collapse
Affiliation(s)
- Rui Che
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Monireh Panah
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Bhoomi Mirani
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Krista Knowles
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Anastacia Ostapovich
- Dept. of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536, USA
| | - Debarati Majumdar
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| | - Xiaotong Chen
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Joseph DeSimone
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - William White
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Megan Noonan
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Hong Luo
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Andrei Alexandrov
- Dept. of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
- Clemson University Center for Human Genetics, Greenwood, SC 29646, USA
| |
Collapse
|
3
|
Kilgas S, Syed A, Toolan-Kerr P, Swift ML, Roychoudhury S, Sarkar A, Wilkins S, Quigley M, Poetsch AR, Botuyan MV, Cui G, Mer G, Ule J, Drané P, Chowdhury D. NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity. Nat Commun 2024; 15:8438. [PMID: 39349456 PMCID: PMC11443056 DOI: 10.1038/s41467-024-52862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Wilkins
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Mikayla Quigley
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Anna R Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, Germany
| | | | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Pascal Drané
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Truchi M, Lacoux C, Gille C, Fassy J, Magnone V, Lopes Goncalves R, Girard-Riboulleau C, Manosalva-Pena I, Gautier-Isola M, Lebrigand K, Barbry P, Spicuglia S, Vassaux G, Rezzonico R, Barlaud M, Mari B. Detecting subtle transcriptomic perturbations induced by lncRNAs knock-down in single-cell CRISPRi screening using a new sparse supervised autoencoder neural network. FRONTIERS IN BIOINFORMATICS 2024; 4:1340339. [PMID: 38501112 PMCID: PMC10945021 DOI: 10.3389/fbinf.2024.1340339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.
Collapse
Affiliation(s)
- Marin Truchi
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Caroline Lacoux
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Cyprien Gille
- Université Côte d’Azur, I3S, CNRS UMR7271, Nice, France
| | - Julien Fassy
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Virginie Magnone
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | | | | | - Iris Manosalva-Pena
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Marine Gautier-Isola
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Kevin Lebrigand
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Pascal Barbry
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Georges Vassaux
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Roger Rezzonico
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | | | - Bernard Mari
- Université Côte d’Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| |
Collapse
|
5
|
Fierro C, Gatti V, La Banca V, De Domenico S, Scalera S, Corleone G, Fanciulli M, De Nicola F, Mauriello A, Montanaro M, Calin GA, Melino G, Peschiaroli A. The long non-coding RNA NEAT1 is a ΔNp63 target gene modulating epidermal differentiation. Nat Commun 2023; 14:3795. [PMID: 37365156 DOI: 10.1038/s41467-023-39011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor ΔNp63 regulates epithelial stem cell function and maintains the integrity of stratified epithelial tissues by acting as transcriptional repressor or activator towards a distinct subset of protein-coding genes and microRNAs. However, our knowledge of the functional link between ∆Np63 transcriptional activity and long non-coding RNAs (lncRNAs) expression is quite limited. Here, we show that in proliferating human keratinocytes ∆Np63 represses the expression of the lncRNA NEAT1 by recruiting the histone deacetylase HDAC1 to the proximal promoter of NEAT1 genomic locus. Upon induction of differentiation, ∆Np63 down-regulation is associated by a marked increase of NEAT1 RNA levels, resulting in an increased assembly of paraspeckles foci both in vitro and in human skin tissues. RNA-seq analysis associated with global DNA binding profile (ChIRP-seq) revealed that NEAT1 associates with the promoter of key epithelial transcription factors sustaining their expression during epidermal differentiation. These molecular events might explain the inability of NEAT1-depleted keratinocytes to undergo the proper formation of epidermal layers. Collectively, these data uncover the lncRNA NEAT1 as an additional player of the intricate network orchestrating epidermal morphogenesis.
Collapse
Affiliation(s)
- Claudia Fierro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
- Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCSS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Veronica La Banca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Stefano Scalera
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
6
|
Esposito R, Lanzós A, Uroda T, Ramnarayanan S, Büchi I, Polidori T, Guillen-Ramirez H, Mihaljevic A, Merlin BM, Mela L, Zoni E, Hovhannisyan L, McCluggage F, Medo M, Basile G, Meise DF, Zwyssig S, Wenger C, Schwarz K, Vancura A, Bosch-Guiteras N, Andrades Á, Tham AM, Roemmele M, Medina PP, Ochsenbein AF, Riether C, Kruithof-de Julio M, Zimmer Y, Medová M, Stroka D, Fox A, Johnson R. Tumour mutations in long noncoding RNAs enhance cell fitness. Nat Commun 2023; 14:3342. [PMID: 37291246 PMCID: PMC10250536 DOI: 10.1038/s41467-023-39160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Tina Uroda
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sunandini Ramnarayanan
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Isabel Büchi
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Hugo Guillen-Ramirez
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ante Mihaljevic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bernard Mefi Merlin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Lia Mela
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Eugenio Zoni
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Finn McCluggage
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Matúš Medo
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Giulia Basile
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Dominik F Meise
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Sandra Zwyssig
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Corina Wenger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Kyriakos Schwarz
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Núria Bosch-Guiteras
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Álvaro Andrades
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Ai Ming Tham
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michaela Roemmele
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Archa Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
7
|
Zhou X, He Y, Pan X, Quan H, He B, Li Y, Bai G, Li N, Zhang Z, Zhang H, Li J, Yuan X. DNMT1-mediated lncRNA IFFD controls the follicular development via targeting GLI1 by sponging miR-370. Cell Death Differ 2023; 30:576-588. [PMID: 36566296 PMCID: PMC9950381 DOI: 10.1038/s41418-022-01103-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
DNA methylation and long noncoding RNAs (lncRNAs) exhibit an indispensable role in follicular development. However, the specific mechanisms regarding lncRNAs mediated by DNA methylation in follicular development remain unclearly. In this study, we found that inhibiting the expression of DNMT1 promoted granulosa cells (GCs) apoptosis to inhibit follicular development. A novel follicular development-associated lncRNA named inhibitory factor of follicular development (IFFD) was mediated by DNMT1 and showed to arrest follicular development by inhibiting GCs proliferation and estrogen (E2) secretion but promoting GCs apoptosis. Mechanistically, the deactivated Cas9-TET1 demonstrated that the hypomethylation in -1261/-1254 region of IFFD promoted the transcription of IFFD by recruiting SP1. IFFD induced the expression of GLI family zinc finger 1 through competitive binding miR-370, thereby up-regulating the expression of CASP3 to promote GCs apoptosis, as well as downregulating the expressions of PCNA and CYP19A1 to inhibit GCs proliferation and E2 secretion. Collectively, DNMT1-mediated IFFD might be a novel target for the regulation of follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongguang Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L, Workman JL. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep 2023; 24:e55345. [PMID: 36354291 PMCID: PMC9827562 DOI: 10.15252/embr.202255345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Paraspeckles are subnuclear RNA-protein structures that are implicated in important processes including cellular stress response, differentiation, and cancer progression. However, it is unclear how paraspeckles impart their physiological effect at the molecular level. Through biochemical analyses, we show that paraspeckles interact with the SWI/SNF chromatin-remodeling complex. This is specifically mediated by the direct interaction of the long-non-coding RNA NEAT1 of the paraspeckles with ARID1B of the cBAF-type SWI/SNF complex. Strikingly, ARID1B depletion, in addition to resulting in loss of interaction with the SWI/SNF complex, decreases the binding of paraspeckle proteins to chromatin modifiers, transcription factors, and histones. Functionally, the loss of ARID1B and NEAT1 influences the transcription and the alternative splicing of a common set of genes. Our findings reveal that dynamic granules such as the paraspeckles may leverage the specificity of epigenetic modifiers to impart their regulatory effect, thus providing a molecular basis for their function.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | | - Ying Zhang
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | - Hua Li
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | |
Collapse
|
9
|
An H, Elvers KT, Gillespie JA, Jones K, Atack JR, Grubisha O, Shelkovnikova TA. A toolkit for the identification of NEAT1_2/paraspeckle modulators. Nucleic Acids Res 2022; 50:e119. [PMID: 36099417 PMCID: PMC9723620 DOI: 10.1093/nar/gkac771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Paraspeckles are ribonucleoprotein granules assembled by NEAT1_2 lncRNA, an isoform of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1). Dysregulation of NEAT1_2/paraspeckles has been linked to multiple human diseases making them an attractive drug target. However currently NEAT1_2/paraspeckle-focused translational research and drug discovery are hindered by a limited toolkit. To fill this gap, we developed and validated a set of tools for the identification of NEAT1_2 binders and modulators comprised of biochemical and cell-based assays. The NEAT1_2 triple helix stability element was utilized as the target in the biochemical assays, and the cellular assay ('ParaQuant') was based on high-content imaging of NEAT1_2 in fixed cells. As a proof of principle, these assays were used to screen a 1,200-compound FDA-approved drug library and a 170-compound kinase inhibitor library and to confirm the screening hits. The assays are simple to establish, use only commercially-available reagents and are scalable for higher throughput. In particular, ParaQuant is a cost-efficient assay suitable for any cells growing in adherent culture and amenable to multiplexing. Using ParaQuant, we identified dual PI3K/mTOR inhibitors as potent negative modulators of paraspeckles. The tools we describe herein should boost paraspeckle studies and help guide the search, validation and optimization of NEAT1_2/paraspeckle-targeted small molecules.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Kimberley Jones
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - John R Atack
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tatyana A Shelkovnikova
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
10
|
RBM10 regulates alternative splicing of lncRNA Neat1 to inhibit the invasion and metastasis of NSCLC. Cancer Cell Int 2022; 22:338. [PMCID: PMC9636673 DOI: 10.1186/s12935-022-02758-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Non-small cell lung cancer (NSCLC) accounts for more than 85% of the total cases with lung cancer. NSCLC is characterized by easy metastasis, which often spreads to bones, brains and livers. RNA-binding motif protein 10 (RBM10) is an alternative splicing (AS) regulator frequently mutated in NSCLC. We found that there were multiple peak binding sites between RBM10 and long non-coding RNA nuclear enriched abundant transcript 1 (LncRNA Neat1) by crosslinking-immunprecipitation and high-throughput sequencing (Clip-Seq). LncRNA Neat1 plays an indispensable role in promoting cancer in a variety of tumors and produces two splicing variants: Neat1_1 and Neat1_2. This study aims to explore the mechanism of RBM10 and LncRNA Neat1 in invasion and metastasis of NSCLC.
Methods
Through histological and cytological experiments, we assessed the expression level of RBM10 protein expression. The interaction between RBM10 and Neat1 was evaluated via Clip-Seq and RNA immunoprecipitation assay. The effect of RBM10 on Neat1 and its splicing variants was identified by RT-qPCR. The effect of RBM10 and Neat1 on invasive and metastasis phenotypes of NSCLC was analyzed using transwell invasion assay and scratch test. Additionally, downstream signaling pathway of RBM10 were identified by immunofluorescence and western blot.
Results
RBM10 exhibited low levels of expression in NSCLC tissues and cells. RBM10 inhibited the invasion and metastasis of NSCLC and recruited Neat1 and Neat1_2. Overexpression of RBM10 simultaneously inhibited Neat1 and Neat1_2, and promoted the expression of Neat1_1. On the other hand, silencing RBM10 promoted Neat1 and Neat1_2, and inhibited the expression of Neat1_1. From this, we concluded that RBM10 regulated AS of Neat1, and the tumor-promoting effect of Neat1 was mainly attributed to Neat1_2. RBM10 had a negative correlation with Neat1_2. In addition, RBM10 upregulated the expression of PTEN and downregulated the phosphorylation of PI3K/AKT/mTOR through Neat1_2, which ultimately inhibited the invasion and metastasis of NSCLC.
Conclusion
The RBM10 regulated AS of Neat1 to cause the imbalance of Neat1_1 and Neat1_2, and RBM10 suppressed the activation of the PTEN/PI3K/AKT/mTOR signal by downregulating Neat1_2, finally affected the invasion and metastasis of NSCLC.
Collapse
|
11
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
12
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda,*Correspondence: Deusdedit Tusubira, ; orcid.org/0000-0002-4698-424X
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom,Kehinde Ross, ; orcid.org/0000-0003-0252-1152
| |
Collapse
|
13
|
Metformin Treatment Modulates Long Non-Coding RNA Isoforms Expression in Human Cells. Noncoding RNA 2022; 8:ncrna8050068. [PMID: 36287120 PMCID: PMC9607547 DOI: 10.3390/ncrna8050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.
Collapse
|
14
|
The Long and the Short of It: NEAT1 and Cancer Cell Metabolism. Cancers (Basel) 2022; 14:cancers14184388. [PMID: 36139550 PMCID: PMC9497099 DOI: 10.3390/cancers14184388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Altered metabolism is a hallmark of most cancers. The way that cancer cells regulate their energy production to fuel constant proliferation has been of interest with the hope that it may be exploited therapeutically. The long noncoding RNA, NEAT1, is often dysregulated in tumours. NEAT1 RNA can be transcribed as two isoforms with different lengths, with each variant responsible for different functions. This review explores how the isoforms contribute to cancer metabolism. Abstract The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3′-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.
Collapse
|
15
|
Delli Ponti R, Broglia L, Vandelli A, Armaos A, Torrent Burgas M, Sanchez de Groot N, Tartaglia GG. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in non-coding RNAs. IUBMB Life 2022; 75:411-426. [PMID: 36057100 DOI: 10.1002/iub.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Abstract
RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress-granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also non-coding RNAs. Here, we built the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic non-coding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to alteration of interaction sites with proteins involved in phase-separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore
| | - Laura Broglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
16
|
Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ 2022; 29:1850-1863. [PMID: 35338333 PMCID: PMC9433379 DOI: 10.1038/s41418-022-00970-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, a novel form of regulated cell death induced by iron-dependent lipid peroxidation, plays an essential role in the development and drug resistance of tumors. Long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the regulation of cell cycle, proliferation, apoptosis, and migration of tumor cells. However, the function and molecular mechanism of NEAT1 in regulating ferroptosis in tumors remain unclear. Here, we found that ferroptosis inducers erastin and RSL3 increased NEAT1 expression by promoting the binding of p53 to the NEAT1 promoter. Induced NEAT1 promoted the expression of MIOX by competitively binding to miR-362-3p. MIOX increased ROS production and decreased the intracellular levels of NADPH and GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis. Importantly, overexpression of NEAT1 increased the anti-tumor activity of erastin and RSL3 by enhancing ferroptosis both in vitro and in vivo. Collectively, these data suggest that NEAT1 plays a novel and indispensable role in ferroptosis by regulating miR-362-3p and MIOX. Considering the clinical findings that HCC patients are insensitive to chemotherapy and immunotherapy, ferroptosis induction may be a promising therapeutic strategy for HCC patients with high NEAT1 expression.
Collapse
|
17
|
Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer 2022; 126:551-561. [PMID: 34671127 PMCID: PMC8854383 DOI: 10.1038/s41416-021-01588-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
NEAT1 is a highly abundant nuclear architectural long non-coding RNA. There are two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, of which the latter is an essential scaffold for the assembly of a class of nuclear ribonucleoprotein bodies called paraspeckles. Paraspeckle formation is elevated by a wide variety of cellular stressors and in certain developmental processes, either through transcriptional upregulation of the NEAT1 gene or through a switch from NEAT1_1 to NEAT1_2 isoform production. In such conditions, paraspeckles modulate cellular processes by sequestering proteins or RNA molecules. NEAT1 is abnormally expressed in many cancers and a growing body of evidence suggests that, in many cases, high NEAT1 levels are associated with therapy resistance and poor clinical outcome. Here we review the current knowledge of NEAT1 expression and functions in breast cancer, highlighting its established role in postnatal mammary gland development. We will discuss possible isoform-specific roles of NEAT1_1 and NEAT1_2 in different breast cancer subtypes, which critically needs to be considered when studying NEAT1 and breast cancer.
Collapse
|
18
|
Schell B, Legrand P, Fribourg S. Crystal structure of SFPQ-NONO heterodimer. Biochimie 2022; 198:1-7. [PMID: 35245601 DOI: 10.1016/j.biochi.2022.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
The Drosophila behavior/human splicing (DBHS) protein family is composed of the three members SFPQ, NONO and PSPC1. These proteins share a strong sequence and structural homology within the core-structured domains forming obligate homo- and heterodimers. This feature may lead to the simultaneous existence of six different dimeric complexes that sustain their function in many cellular processes such as pre-mRNA splicing, innate immunity, transcriptional regulation. In order to perform a complete structural analysis of all possible DBHS dimers, we have solved the crystal structure of the missing DBHS heterodimer SFPQ-NONO at 3.0 Å resolution. We identify subtle changes in amino acid composition and local secondary structure of the NOPS region orientation that may modulate affinity between complexes. Interestingly this area is found mutated in aggressive skin cancers and adenocarcinomas.
Collapse
Affiliation(s)
- Bianca Schell
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France; Universität Konstanz, 78457, Konstanz, Germany
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, 91192, France
| | - Sébastien Fribourg
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|
19
|
Park MK, Zhang L, Min KW, Cho JH, Yeh CC, Moon H, Hormaechea-Agulla D, Mun H, Ko S, Lee JW, Jathar S, Smith AS, Yao Y, Giang NT, Vu HH, Yan VC, Bridges MC, Kourtidis A, Muller F, Chang JH, Song SJ, Nakagawa S, Hirose T, Yoon JH, Song MS. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab 2021; 33:2380-2397.e9. [PMID: 34879239 PMCID: PMC8813003 DOI: 10.1016/j.cmet.2021.11.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chih-Chen Yeh
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyesu Moon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Sonali Jathar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Laboratory of lncRNA Biology, National Center for Cell Science, Pune, Maharashtra 411007, India
| | - Aubrey S Smith
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nguyen Thu Giang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong Ha Vu
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary C Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Wang M, Chen Y, Bi X, Luo X, Hu Z, Liu Y, Shi X, Weng W, Mo B, Lu Y, Pan Y. LncRNA NEAT1_1 suppresses tumor-like biologic behaviors of fibroblast-like synoviocytes by targeting the miR-221-3p/uPAR axis in rheumatoid arthritis. J Leukoc Biol 2021; 111:641-653. [PMID: 34254354 DOI: 10.1002/jlb.3a0121-067rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the predominant effector cells in the pathological progression of rheumatoid arthritis (RA). Therefore, elucidating the underlying molecular mechanism of the biologic behaviors in RA-FLSs will be helpful in developing the potent targets for the treatment of RA. We have previously documented that the tumor-like biologic behaviors of RA-FLSs are exacerbated by urokinase-type plasminogen activator receptor (uPAR), a specifically up-regulated receptor in RA-FLSs. Here, we investigate the further mechanism of uPAR and clarify its function in RA-FLSs. We demonstrate that miR-221-3p positively correlates to uPAR and regulates uPAR level in RA-FLSs. Simultaneously, one long noncoding RNA, nuclear paraspeckle assembly transcript 1_1 (NEAT1_1) is identified, which can predictively target miR-221-3p at three sites, indicating a strong possibility of being a competing endogenous RNA in RA-FLSs. Interestingly, NEAT1_1 and miR-221-3p can colocate in the nucleus and cytoplasm in RA-FLSs. Importantly, NEAT1_1 can act as a rheostat for the miR-221-3p/uPAR axis and the downstream JAK signaling. In line with the biologic function, NEAT1_1 negatively regulates the tumor-like characters, and cytokine secretions of RA-FLSs. Collectively, our data provide new insight into the mechanisms of NEAT1_1 in modulating RA-FLSs tumor-like behaviors. The targeting of NEAT1_1 and miR-221-3p/uPAR axis may have a promising therapeutic role in patients with RA.
Collapse
Affiliation(s)
- Manli Wang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuoyu Hu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhen Weng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Biyao Mo
- Division of Rheumatology, Department of Internal Medicine, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
22
|
Stone JK, Vukadin L, Ahn EYE. eNEMAL, an enhancer RNA transcribed from a distal MALAT1 enhancer, promotes NEAT1 long isoform expression. PLoS One 2021; 16:e0251515. [PMID: 34019552 PMCID: PMC8139514 DOI: 10.1371/journal.pone.0251515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Emerging evidence has shown that active enhancers are abundantly transcribed, generating long non-coding RNAs, called enhancer RNAs (eRNAs). While putative eRNAs are often observed from RNA sequencing, the roles of most eRNAs remain largely unknown. Previously, we identified putative enhancer regions at the MALAT1 locus that form chromatin-chromatin interactions under hypoxia, and one of these enhancers is located about 30 kb downstream of the NEAT1 gene and -20 kb upstream of the MALAT1 gene (MALAT1–20 kb enhancer). Here, we report that a novel eRNA, named eRNA of the NEAT1-MALAT1-Locus (eNEMAL), is transcribed from the MALAT1–20 kb enhancer and conserved in primates. We found that eNEMAL is upregulated in response to hypoxia in multiple breast cancer cell lines, but not in non-tumorigenic MCF10A cells. Overexpression and knockdown of eNEMAL revealed that alteration of eNEMAL level does not affect MALAT1 expression. Instead, we found that eNEMAL upregulates the long isoform of NEAT1 (NEAT1_2) without increasing the total NEAT1 transcript level in MCF7 breast cancer cells, suggesting that eNEMAL has a repressive effect on the 3’-end polyadenylation process required for generating the short isoform of NEAT1 (NEAT1_1). Altogether, we demonstrated that an eRNA transcribed from a MALAT1 enhancer regulates NEAT1 isoform expression, implicating the MALAT1–20 kb enhancer and its transcript eNEMAL in co-regulation of MALAT1 and NEAT1 in response to hypoxia in breast cancer cells.
Collapse
Affiliation(s)
- Joshua K. Stone
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Lana Vukadin
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eun-Young Erin Ahn
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
23
|
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2021; 41:3884-3899. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
Collapse
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, CC11 (Cardiovascular Medicine), Charite-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682, USA
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Center for Translational Medicine, Jefferson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA.,Molecular and Translational Cardiology, Department of Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, MOU2, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College London, National Heart and Lung Institute, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
24
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
25
|
Naveed A, Cooper JA, Li R, Hubbard A, Chen J, Liu T, Wilton SD, Fletcher S, Fox AH. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell Mol Life Sci 2021; 78:2213-2230. [PMID: 32914209 PMCID: PMC11073103 DOI: 10.1007/s00018-020-03632-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.
Collapse
Affiliation(s)
- Alina Naveed
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jack A Cooper
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ruohan Li
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jingwei Chen
- Children's Cancer Institute Australia, Randwick, NSW, 2031, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, Randwick, NSW, 2031, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Archa H Fox
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
26
|
Sun Q, Zhang Y, Wang S, Yang F, Cai H, Xing Y, Chen Z, Chen J. NEAT1 Decreasing Suppresses Parkinson's Disease Progression via Acting as miR-1301-3p Sponge. J Mol Neurosci 2021; 71:369-378. [PMID: 32712773 DOI: 10.1007/s12031-020-01660-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNA (lncRNA) plays a crucial role in multiple disorders, while the role of it in Parkinson's disease (PD) is still unclear. Here, the increased lncRNA NEAT1 was discovered in MPP+-induced SH-SY5Y cells. Then, we proved that NEAT1 decreasing suppressed MPP+-induced neuronal apoptosis, upregulation of α-syn and activation of NLRP3 inflammasome. Rescue experiments shown that the inhibition of NEAT1 decreasing to MPP+-induced activation of NLRP3 inflammasome and subsequent neuronal apoptosis can be reversed by overexpressed α-syn. Subsequently, we indicated the interaction between NEAT1 and miR-1301-3p, as well as between NEAT1 and miR-5047. Interesting, we found that NEAT1 decreasing repressed the expression of GJB1, a downstream target of miR-1301-3p and miR-5047, through promoting miR-1301-3p rather than miR-5047 expression. Finally, we transfected miR-1301-3p inhibitor to MPP+-induced SH-SY5Y cells following si-NEAT1, and found that downregulation of NEAT1 repressed α-syn-mediated the activation of NLRP3 inflammasome through regulating miR-1301-3p/GJB1 signaling pathway. Overall, our data demonstrated that NEAT1 decreasing effectively suppressed MPP+-induced neuronal apoptosis. Mechanismly, downregulation of NEAT1 repressed α-syn-induced activation of NLRP3 inflammasome via inhibiting the expression of GJB1 by targeting miR-1301-3p. Our study supported a new and reliable evidence for lncRNA NEAT1 as a potential target for PD treatment.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Neurology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei Province, China
| | - Yueliang Zhang
- Department of Neurology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei Province, China
| | - Songlin Wang
- Department of Neurology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei Province, China
| | - Fang Yang
- Department of Oncology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Hongxia Cai
- Department of Obstetrics and Gynecology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yu Xing
- Department of Medical Image Center, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Zengfeng Chen
- Chronic Disease Rehabilitation Centre 1, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jun Chen
- Department of Neurology, TaiHe Hospital, Hubei University of Medicine, No. 32 Renmin South Road, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
27
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 2020; 19:171. [PMID: 33308223 PMCID: PMC7733260 DOI: 10.1186/s12943-020-01293-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in mammalian cells. However, the disease relevant function of m6A on specific oncogenic long non-coding RNAs (ncRNAs) is not well understood. Methods We analyzed the m6A status using patients samples and bone metastatic PDXs. Through m6A high-throughput sequencing, we identified the m6A sites on NEAT1–1 in prostate bone metastatic PDXs. Mass spec assay showed interaction among NEAT1–1, CYCLINL1 and CDK19. RNA EMSA, RNA pull-down, mutagenesis, CLIP, western blot, ChIP and ChIRP assays were used to investigate the molecular mechanisms underlying the functions of m6A on NEAT1–1. Loss-of function and rescued experiments were executed to detect the biological roles of m6A on NEAT1–1 in the PDX cell phenotypes in vivo. Results In this study, we identified 4 credible m6A sites on long ncRNA NEAT1–1. High m6A level of NEAT1–1 was related to bone metastasis of prostate cancer and m6A level of NEAT1–1 was a powerful predictor of eventual death. Transcribed NEAT1–1 served as a bridge to facility the binding between CYCLINL1 and CDK19 and promoted the Pol II ser2 phosphorylation. Importantly, depletion of NEAT1–1or decreased m6A of NEAT1–1 impaired Pol II Ser-2p level in the promoter of RUNX2. Overexpression of NEAT1–1 induced cancer cell metastasis to lung and bone; xenograft growth and shortened the survival of mice, but NEAT1–1 with m6A site mutation failed to do these. Conclusion Collectively, the findings indicate that m6A on ncRNA NEAT1–1 takes critical role in regulating Pol II ser2 phosphorylation and may be novel specific target for bone metastasis cancer therapy and diagnosis. New complex CYCLINL1/CDK19/NEAT1–1 might provide new insight into the potential mechanism of the pathogenesis and development of bone metastatic prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01293-4.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
| | - Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chong Zen
- Department of Urology, Central South University, Changsha, 410011, China
| | - Wei Xiong
- Department of Urology, Central South University, Changsha, 410011, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China.
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
NEAT1 and Paraspeckles in Cancer Development and Chemoresistance. Noncoding RNA 2020; 6:ncrna6040043. [PMID: 33143162 PMCID: PMC7712271 DOI: 10.3390/ncrna6040043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNA were previously thought to be biologically useless molecules arising from simple transcriptional noise. These are now known to be an integral part of cellular biology and pathology. The wide range of RNA molecules have a diverse range of structures, functions, and mechanisms of action. However, structural long non-coding RNAs (lncRNAs) are a particular class of ncRNA that are proving themselves more and more important in cellular biology, as the exact structures that such RNAs form and stabilise become more understood. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a specific structural RNA emerging as a critical component in the progress and development of cancer. NEAT1 forms part of multiple biological pathways, acting through a diverse group of mechanisms. The most important of these is the formation of the paraspeckle, through which it can influence the stability of a tumour to develop resistance to drugs. This review will thus cover the range of effects by which NEAT1 interacts with cancer progression in order to describe the various roles of NEAT1 in chemoresistance, as well as to identify drug targets that protein research alone could not provide.
Collapse
|
29
|
Ban Y, Cui C. Silencing of Long Non-Coding RNA (lncRNA) Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) Protects PC-12 Cells from LPS-Induced Injury via Targeting miR-29a. Med Sci Monit 2020; 26:e923914. [PMID: 32776916 PMCID: PMC7439599 DOI: 10.12659/msm.923914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a debilitating neuropathological condition that significantly affects the quality of life. The present study is basic research examining the underlying mechanisms of NEAT1 and miR-29a in regulating LPS-induced PC-12 cell injury. Material/Methods The model of cell injury was induced by the treatment of PC-12 cells with LPS. The expressions of NEAT1, miR-29a, and inflammatory cytokines were measured by real-time quantitative polymerase chain reactions (RT-qPCR). Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry, respectively. Finally, the target between miR-29a and NEAT1 as well as miR-29a and BCL2L11 was investigated by luciferase and RNA pull-down assays. Results Knockdown of NEAT1 can inhibit inflammatory cytokine expression and PC-12 cell apoptosis and promote PC-12 cell proliferation by targeting miR-29a. However, the variation caused by NEAT1 knockdown can be reversed by the silencing of miR-29a and the overexpression of BCL2L11, which is the direct target gene of miR-29a. Conclusions High NEAT1 levels can increase LPS-induced injury in PC-12 cells through the miR-29a/BCL2L11 pathway. lncRNA NEAT1 may, therefore, be a promising target for SCI treatment.
Collapse
Affiliation(s)
- Yunchao Ban
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Cui Cui
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
30
|
Barra J, Gaidosh GS, Blumenthal E, Beckedorff F, Tayari MM, Kirstein N, Karakach TK, Jensen TH, Impens F, Gevaert K, Leucci E, Shiekhattar R, Marine JC. Integrator restrains paraspeckles assembly by promoting isoform switching of the lncRNA NEAT1. SCIENCE ADVANCES 2020; 6:eaaz9072. [PMID: 32923585 PMCID: PMC7455494 DOI: 10.1126/sciadv.aaz9072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/14/2020] [Indexed: 05/15/2023]
Abstract
RNA 3' end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3' end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically.
Collapse
Affiliation(s)
- Jasmine Barra
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium
| | - Gabriel S. Gaidosh
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Mina M. Tayari
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Nina Kirstein
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Tobias K. Karakach
- Bioinformatics Core Laboratory, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- VIB Proteomics Core, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Taiana E, Ronchetti D, Todoerti K, Nobili L, Tassone P, Amodio N, Neri A. LncRNA NEAT1 in Paraspeckles: A Structural Scaffold for Cellular DNA Damage Response Systems? Noncoding RNA 2020; 6:ncrna6030026. [PMID: 32630183 PMCID: PMC7549348 DOI: 10.3390/ncrna6030026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) reported to be frequently deregulated in various types of cancers and neurodegenerative processes. NEAT1 is an indispensable structural component of paraspeckles (PSs), which are dynamic and membraneless nuclear bodies that affect different cellular functions, including stress response. Furthermore, increasing evidence supports the crucial role of NEAT1 and essential structural proteins of PSs (PSPs) in the regulation of the DNA damage repair (DDR) system. This review aims to provide an overview of the current knowledge on the involvement of NEAT1 and PSPs in DDR, which might strengthen the rationale underlying future NEAT1-based therapeutic options in tumor and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (D.R.); (L.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy;
- Correspondence: (E.T.); (A.N.); Tel.: +39-02-5032-0420 (E.T. & A.N.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (D.R.); (L.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy;
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy;
| | - Lucia Nobili
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (D.R.); (L.N.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (P.T.); (N.A.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (D.R.); (L.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy;
- Correspondence: (E.T.); (A.N.); Tel.: +39-02-5032-0420 (E.T. & A.N.)
| |
Collapse
|
32
|
Zhang Q, Cheng Q, Xia M, Huang X, He X, Liao J. Hypoxia-Induced lncRNA-NEAT1 Sustains the Growth of Hepatocellular Carcinoma via Regulation of miR-199a-3p/UCK2. Front Oncol 2020; 10:998. [PMID: 32670881 PMCID: PMC7327087 DOI: 10.3389/fonc.2020.00998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has emerged as a novel player in hepatocellular carcinoma (HCC). Hypoxia is a common characteristic of the microenvironment of HCC. This study aimed to investigate whether lncRNA-NEAT1 is induced by hypoxia in HCC, and the mechanism that underlies LncRNA-NEAT1 function. Methods: The expression changes of lncRNA-NEAT1 in HCC cell lines under hypoxic conditions were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The regulatory effect of HIF-1α on lncRNA-NEAT1 was confirmed with chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The function of lncRNA-NEAT1 on HCC cell growth under hypoxic conditions was determined by CCK-8 assay and flow cytometry. lncRNA -NEAT1 was predicted to serve as a competing endogenous RNA (ceRNA) within microRNA (miRNA)/mRNA axes based on microarray data, public HCC-related datasets and integrative bioinformatics analysis, and the miR-199a-3p/UCK2 axis was selected and validated by qRT-PCR, western blotting, RNA immunoprecipitation, and luciferase reporter analyses. The role of miR-199a-3p/UCK2 in HCC and its functional association with lncRNA-NEAT1 were assessed both in vitro and in vivo. Results: LncRNA-NEAT1 expression was significantly induced by hypoxia in SNU-182 and HUH7 cells. HIF-1α was shown to regulate lncRNA-NEAT1 transcription. Under hypoxic conditions, lncRNA-NEAT1 maintained the growth of HCC cells and inhibited apoptosis and cell cycle arrest. LncRNA-NEAT1 was predicted to regulate a panel of HCC-associated miRNA-mRNA pairs consisting of 8 miRNAs and 13 mRNAs. LncRNA-NEAT1 was shown to function as a ceRNA of miR-199a-3p/UCK2 both in HCC cells under hypoxic conditions and in an animal model. Conclusion: LncRNA-NEAT1 is a hypoxia-responsive lncRNA in HCC cell lines Insilico evidence suggested that LncRNA-NEAT1 may sustainthe growth of HCC cells by regulating HCC-associated mRNAs that interact with tumor-suppressive miRNAs. The lncRNA-NEAT1/miR-199a-3p/UCK2 pathway may contribute to the progression of HCC cell lines in a hypoxic microenvironment and therefore may represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Qian Cheng
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | | | | | - Xiaoyan He
- Department of Pathology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Liao
- Department of Gastroenterology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
NEAT1 Long Isoform Is Highly Expressed in Chronic Lymphocytic Leukemia Irrespectively of Cytogenetic Groups or Clinical Outcome. Noncoding RNA 2020; 6:ncrna6010011. [PMID: 32182990 PMCID: PMC7151605 DOI: 10.3390/ncrna6010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
The biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in chronic lymphocytic leukemia (CLL) are still open questions. Herein, we investigated the significance of the lncRNA NEAT1 in CLL. We examined NEAT1 expression in 310 newly diagnosed Binet A patients, in normal CD19+ B-cells, and other types of B-cell malignancies. Although global NEAT1 expression level was not statistically different in CLL cells compared to normal B cells, the median ratio of NEAT1_2 long isoform and global NEAT1 expression in CLL samples was significantly higher than in other groups. NEAT1_2 was more expressed in patients carrying mutated IGHV genes. Concerning cytogenetic aberrations, NEAT1_2 expression in CLL with trisomy 12 was lower with respect to patients without alterations. Although global NEAT1 expression appeared not to be associated with clinical outcome, patients with the lowest NEAT1_2 expression displayed the shortest time to first treatment; however, a multivariate regression analysis showed that the NEAT1_2 risk model was not independent from other known prognostic factors, particularly the IGHV mutational status. Overall, our data prompt future studies to investigate whether the increased amount of the long NEAT1_2 isoform detected in CLL cells may have a specific role in the pathology of the disease.
Collapse
|
34
|
Isobe M, Toya H, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S. Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. RNA (NEW YORK, N.Y.) 2020; 26:251-264. [PMID: 31822595 PMCID: PMC7025509 DOI: 10.1261/rna.072587.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/04/2019] [Indexed: 05/27/2023]
Abstract
Neat1 is a long noncoding RNA (lncRNA) that serves as an architectural component of the nuclear bodies known as paraspeckles. Two isoforms of Neat1, the short isoform Neat1_1 and the long isoform Neat1_2, are generated from the same gene locus by alternative 3' processing. Neat1_1 is the most abundant and the best conserved isoform expressed in various cell types, whereas Neat1_2 is expressed in a small population of particular cell types, including the tip cells of the intestinal epithelium. To investigate the physiological significance of isoform switching, we created mutant mice that solely expressed Neat1_2 by deleting the upstream polyadenylation (poly-A) signal (PAS) required for the production of Neat1_1. We observed the loss of Neat1_1 and strong up-regulation of Neat1_2 in various tissues and cells and the subsequent hyperformation of paraspeckles, especially in cells that normally express Neat1_2. However, the mutant mice were born at the expected Mendelian ratios and did not exhibit obvious external and histological abnormalities. These observations suggested that the hyperformation of paraspeckles does not interfere with the development and growth of these animals under normal laboratory conditions.
Collapse
Affiliation(s)
- Momo Isobe
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
35
|
Isobe M, Toya H, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S. Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. RNA (NEW YORK, N.Y.) 2020. [PMID: 31822595 DOI: 10.1101/698068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neat1 is a long noncoding RNA (lncRNA) that serves as an architectural component of the nuclear bodies known as paraspeckles. Two isoforms of Neat1, the short isoform Neat1_1 and the long isoform Neat1_2, are generated from the same gene locus by alternative 3' processing. Neat1_1 is the most abundant and the best conserved isoform expressed in various cell types, whereas Neat1_2 is expressed in a small population of particular cell types, including the tip cells of the intestinal epithelium. To investigate the physiological significance of isoform switching, we created mutant mice that solely expressed Neat1_2 by deleting the upstream polyadenylation (poly-A) signal (PAS) required for the production of Neat1_1. We observed the loss of Neat1_1 and strong up-regulation of Neat1_2 in various tissues and cells and the subsequent hyperformation of paraspeckles, especially in cells that normally express Neat1_2. However, the mutant mice were born at the expected Mendelian ratios and did not exhibit obvious external and histological abnormalities. These observations suggested that the hyperformation of paraspeckles does not interfere with the development and growth of these animals under normal laboratory conditions.
Collapse
Affiliation(s)
- Momo Isobe
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
36
|
Yamazaki T, Nakagawa S, Hirose T. Architectural RNAs for Membraneless Nuclear Body Formation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:227-237. [PMID: 32019862 DOI: 10.1101/sqb.2019.84.039404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are fundamental regulators of various cellular processes. A subset of lncRNAs, termed architectural RNAs (arcRNAs), function in the formation and maintenance of phase-separated membraneless organelles in multiple eukaryotic species. These membraneless organelles represent an important type of compartmentalization in the crowded cellular environment and have several distinct features. The NEAT1_2 lncRNA is a well-characterized arcRNA that functions as an essential scaffold of paraspeckle nuclear bodies. Here, we describe the biogenesis of paraspeckles on arcRNAs through phase separation, focusing on the specific functions of multiple NEAT1_2 RNA domains and their partner RNA-binding proteins. Finally, we present an updated model of paraspeckle formation and discuss future perspectives of research into arcRNA-instructed architectures of phase-separated nuclear bodies.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| |
Collapse
|
37
|
Knutsen E, Lellahi SM, Aure MR, Nord S, Fismen S, Larsen KB, Gabriel MT, Hedberg A, Bjørklund SS, Bofin AM, Mælandsmo GM, Sørlie T, Mortensen ES, Perander M. The expression of the long NEAT1_2 isoform is associated with human epidermal growth factor receptor 2-positive breast cancers. Sci Rep 2020; 10:1277. [PMID: 31992741 PMCID: PMC6987222 DOI: 10.1038/s41598-020-57759-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
The long non-coding RNA NEAT1 locus is transcribed into two overlapping isoforms, NEAT1_1 and NEAT1_2, of which the latter is essential for the assembly of nuclear paraspeckles. NEAT1 is abnormally expressed in a wide variety of human cancers. Emerging evidence suggests that the two isoforms have distinct functions in gene expression regulation, and recently it was shown that NEAT1_2, but not NEAT1_1, expression predicts poor clinical outcome in cancer. Here, we report that NEAT1_2 expression correlates with HER2-positive breast cancers and high-grade disease. We provide evidence that NEAT1_1 and NEAT1_2 have distinct expression pattern among different intrinsic breast cancer subtypes. Finally, we show that NEAT1_2 expression and paraspeckle formation increase upon lactation in humans, confirming what has previously been demonstrated in mice.
Collapse
Affiliation(s)
- Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Seyed Mohammad Lellahi
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Silje Fismen
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Marta Tellez Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annica Hedberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Sunniva Stordal Bjørklund
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Elin Synnøve Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|