1
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
2
|
Zou Y, Guo Z, Ge XY, Qiu Y. RNA Modifications in Pathogenic Viruses: Existence, Mechanism, and Impacts. Microorganisms 2024; 12:2373. [PMID: 39597761 PMCID: PMC11596894 DOI: 10.3390/microorganisms12112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is a key posttranscriptional process playing various biological roles, and one which has been reported to exist extensively in cellular RNAs. Interestingly, recent studies have shown that viral RNAs also contain a variety of RNA modifications, which are regulated dynamically by host modification machinery and play critical roles in different stages of the viral life cycle. In this review, we summarize the reports of four typical modifications reported on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), and N1-methyladenosine (m1A), describe the molecular mechanisms of these modification processes, and illustrate their impacts on viral replication, pathogenicity, and innate immune responses. Notably, we find that RNA modifications in different viruses share some common features and mechanisms in their generation, regulation, and function, highlighting the potential for viral RNA modifications and the related host machinery to serve as the targets or bases for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
| | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| |
Collapse
|
3
|
Wang H, Feng J, Fu Z, Xu T, Liu J, Yang S, Li Y, Deng J, Zhang Y, Guo M, Wang X, Zhang Z, Huang Z, Lan K, Zhou L, Chen Y. Epitranscriptomic m 5C methylation of SARS-CoV-2 RNA regulates viral replication and the virulence of progeny viruses in the new infection. SCIENCE ADVANCES 2024; 10:eadn9519. [PMID: 39110796 PMCID: PMC11305390 DOI: 10.1126/sciadv.adn9519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
While the significance of N6-methyladenosine (m6A) in viral regulation has been extensively studied, the functions of 5-methylcytosine (m5C) modification in viral biology remain largely unexplored. In this study, we demonstrate that m5C is more abundant than m6A in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a comprehensive profile of the m5C landscape of SARS-CoV-2 RNA. Knockout of NSUN2 reduces m5C levels in SARS-CoV-2 virion RNA and enhances viral replication. Nsun2 deficiency mice exhibited higher viral burden and more severe lung tissue damages. Combined RNA-Bis-seq and m5C-MeRIP-seq identified the NSUN2-dependent m5C-methylated cytosines across the positive-sense genomic RNA of SARS-CoV-2, and the mutations of these cytosines enhance RNA stability. The progeny SARS-CoV-2 virions from Nsun2 deficiency mice with low levels of m5C modification exhibited a stronger replication ability. Overall, our findings uncover the vital role played by NSUN2-mediated m5C modification during SARS-CoV-2 replication and propose a host antiviral strategy via epitranscriptomic addition of m5C methylation to SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jikai Deng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Paudel S, Lee N. Epstein-Barr virus noncoding RNA EBER1 promotes the expression of a ribosomal protein paralog to boost oxidative phosphorylation. J Med Virol 2024; 96:e29869. [PMID: 39165093 PMCID: PMC11361555 DOI: 10.1002/jmv.29869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.
Collapse
Affiliation(s)
- Sita Paudel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Ning K, Zhao J, Feng Z, Park SY, McFarlin S, Cheng F, Yan Z, Wang J, Qiu J. N6-methyladenosine modification of a parvovirus-encoded small noncoding RNA facilitates viral DNA replication through recruiting Y-family DNA polymerases. Proc Natl Acad Sci U S A 2024; 121:e2320782121. [PMID: 38875150 PMCID: PMC11194592 DOI: 10.1073/pnas.2320782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.
Collapse
Affiliation(s)
- Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Junxing Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS66045
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA52242
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS66045
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of KansasMedical Center, Kansas City, KS66160
| |
Collapse
|
6
|
Paudel S, Lee N. Epstein-Barr virus noncoding RNA EBER1 promotes the expression of a ribosomal protein paralog to boost oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599158. [PMID: 38915488 PMCID: PMC11195164 DOI: 10.1101/2024.06.15.599158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.
Collapse
Affiliation(s)
- Sita Paudel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Xiong Y, Li Y, Qian W, Zhang Q. RNA m5C methylation modification: a potential therapeutic target for SARS-CoV-2-associated myocarditis. Front Immunol 2024; 15:1380697. [PMID: 38715608 PMCID: PMC11074473 DOI: 10.3389/fimmu.2024.1380697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yanan Li
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiwei Qian
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Sinha S, Singh K, Ravi Kumar YS, Roy R, Phadnis S, Meena V, Bhattacharyya S, Verma B. Dengue virus pathogenesis and host molecular machineries. J Biomed Sci 2024; 31:43. [PMID: 38649998 PMCID: PMC11036733 DOI: 10.1186/s12929-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.
Collapse
Affiliation(s)
- Saumya Sinha
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kinjal Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, MSR Nagar, Bengaluru, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
9
|
Ding S, Liu H, Liu L, Ma L, Chen Z, Zhu M, Liu L, Zhang X, Hao H, Zuo L, Yang J, Wu X, Zhou P, Huang F, Zhu F, Guan W. Epigenetic addition of m 5C to HBV transcripts promotes viral replication and evasion of innate antiviral responses. Cell Death Dis 2024; 15:39. [PMID: 38216565 PMCID: PMC10786922 DOI: 10.1038/s41419-023-06412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Eukaryotic five-methylcytosine (m5C) is an important regulator of viral RNA splicing, stability, and translation. However, its role in HBV replication remains largely unknown. In this study, functional m5C sites are identified in hepatitis B virus (HBV) mRNA. The m5C modification at nt 1291 is not only indispensable for Aly/REF export factor (ALYREF) recognition to promote viral mRNA export and HBx translation but also for the inhibition of RIG-I binding to suppress interferon-β (IFN-β) production. Moreover, NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the addition of m5C to HBV mRNA and is transcriptionally downregulated by the viral protein HBx, which suppresses the binding of EGR1 to the NSUN2 promoter. Additionally, NSUN2 expression correlates with m5C modification of type I IFN mRNA in host cells, thus, positively regulating IFN expression. Hence, the delicate regulation of NSUN2 expression induces m5C modification of HBV mRNA while decreasing the levels of m5C in host IFN mRNA, making it a vital component of the HBV life cycle. These findings provide new molecular insights into the mechanism of HBV-mediated IFN inhibition and may inform the development of new IFN-α based therapies.
Collapse
Affiliation(s)
- Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, Hubei, 430071, China.
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China.
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
10
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
12
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
13
|
Henry BA, Marchand V, Schlegel BT, Helm M, Motorin Y, Lee N. Pseudouridylation of Epstein-Barr virus noncoding RNA EBER2 facilitates lytic replication. RNA (NEW YORK, N.Y.) 2022; 28:1542-1552. [PMID: 36100352 PMCID: PMC9745832 DOI: 10.1261/rna.079219.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Epstein-Barr virus (EBV) expresses two highly abundant noncoding RNAs called EBV-encoded RNA 1 (EBER1) and EBER2, which are preserved in all clinical isolates of EBV, thus underscoring their essential function in the viral life cycle. Recent epitranscriptomics studies have uncovered a vast array of distinct RNA modifications within cellular as well as viral noncoding RNAs that are instrumental in executing their function. Here we show that EBER2 is marked by pseudouridylation, and by using HydraPsiSeq the modification site was mapped to a single nucleotide within the 3' region of EBER2. The writer enzyme was identified to be the snoRNA-dependent pseudouridine synthase Dyskerin, which is the catalytic subunit of H/ACA small nucleolar ribonucleoprotein complexes, and is guided to EBER2 by SNORA22. Similar to other noncoding RNAs for which pseudouridylation has a positive effect on RNA stability, loss of EBER2 pseudouridylation results in a decrease in RNA levels. Furthermore, pseudouridylation of EBER2 is required for the prolific accumulation of progeny viral genomes, suggesting that this single modification in EBER2 is important for efficient viral lytic replication. Taken together, our findings add to the list of RNA modifications that are essential for noncoding RNAs to implement their physiological roles.
Collapse
Affiliation(s)
- Belle A Henry
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, F-54000 Nancy, France
| | - Brent T Schlegel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | - Mark Helm
- Johannes Gutenberg University Mainz, Institute of Pharmacy and Biochemistry, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, F-54000 Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, F-54000 Nancy, France
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
14
|
Zhang Y, Zhang LS, Dai Q, Chen P, Lu M, Kairis EL, Murugaiah V, Xu J, Shukla RK, Liang X, Zou Z, Cormet-Boyaka E, Qiu J, Peeples ME, Sharma A, He C, Li J. 5-methylcytosine (m 5C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc Natl Acad Sci U S A 2022; 119:e2123338119. [PMID: 36240321 PMCID: PMC9586267 DOI: 10.1073/pnas.2123338119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Li-Sheng Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Elizabeth L. Kairis
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Valarmathy Murugaiah
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Jiayu Xu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205
| | - Amit Sharma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
16
|
Dellar ER, Hill C, Melling GE, Carter DR, Baena‐Lopez LA. Unpacking extracellular vesicles: RNA cargo loading and function. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e40. [PMID: 38939528 PMCID: PMC11080855 DOI: 10.1002/jex2.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed structures produced by prokaryotic and eukaryotic cells. EVs carry a range of biological cargoes, including RNA, protein, and lipids, which may have both metabolic significance and signalling potential. EV release has been suggested to play a critical role in maintaining intracellular homeostasis by eliminating unnecessary biological material from EV producing cells, and as a delivery system to enable cellular communication between both neighbouring and distant cells without physical contact. In this review, we give an overview of what is known about the relative enrichment of the different types of RNA that have been associated with EVs in the most recent research efforts. We then examine the selective and non-selective incorporation of these different RNA biotypes into EVs, the molecular systems of RNA sorting into EVs that have been elucidated so far, and the role of this process in EV-producing cells. Finally, we also discuss the model systems providing evidence for EV-mediated delivery of RNA to recipient cells, and the implications of this evidence for the relevance of this RNA delivery process in both physiological and pathological scenarios.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
| | - Genevieve E. Melling
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Institute of Clinical SciencesSchool of Biomedical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - David R.F Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
| | | |
Collapse
|
17
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
18
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
19
|
Abstract
Epstein-Barr virus (EBV) was the first human cancer-causing virus to be discovered over fifty years ago. Given its relatively large genome size for a virus and hence the capacity to store more than mere protein-coding information, EBV also harbours genetic material for producing an array of distinct noncoding (nc)RNAs. The double-stranded nature of its DNA genome allows the utilization of the whole gamut of ncRNA types, including both RNA polymerase II and III transcripts, in devising a sophisticated strategy to ensure its replication upon infection in host cells and evasion of host immune responses. Owing to the development of sensitive technologies in recent years, mostly entailing next-generation sequencing, the list of ncRNA types generated by EBV has expanded now to include two RNAs (EBER1 and EBER2) best categorized as long ncRNAs, dozens of microRNAs, one small nucleolar RNA, stable intronic sequence RNAs, and the most recently discovered circular RNAs. With the application of cutting-edge technology, the molecular mechanisms of some of these noncoding transcripts are beginning to emerge, while others remain yet to be elucidated. As viruses often take advantage of existing molecular pathways established by the host, it is likely that further novel concepts of the greatly unexplored noncoding world can be learned from studying the many EBV ncRNAs.
Collapse
Affiliation(s)
- Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Ruggieri A, Helm M, Chatel-Chaix L. An epigenetic 'extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biol 2021; 18:696-708. [PMID: 33356825 DOI: 10.1080/15476286.2020.1868150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Beyond their high clinical relevance worldwide, flaviviruses (comprising dengue and Zika viruses) are of particular interest to understand the spatiotemporal control of RNA metabolism. Indeed, their positive single-stranded viral RNA genome (vRNA) undergoes in the cytoplasm replication, translation and encapsidation, three steps of the flavivirus life cycle that are coordinated through a fine-tuned equilibrium. Over the last years, RNA methylation has emerged as a powerful mechanism to regulate messenger RNA metabolism at the posttranscriptional level. Not surprisingly, flaviviruses exploit RNA epigenetic strategies to control crucial steps of their replication cycle as well as to evade sensing by the innate immune system. This review summarizes the current knowledge about vRNA methylation events and their impacts on flavivirus replication and pathogenesis. We also address the important challenges that the field of epitranscriptomics faces in reliably and accurately identifying RNA methylation sites, which should be considered in future studies on viral RNA modifications.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research University of Heidelberg, Heidelberg, Germany
| | - Mark Helm
- Johannes Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
21
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
22
|
Xue C, Zhao Y, Li L. Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer. Biomark Res 2020; 8:43. [PMID: 32944246 PMCID: PMC7490858 DOI: 10.1186/s40364-020-00225-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
As an important posttranscriptional modification of RNA, 5-methylcytosine (m5C) has attracted increasing interest recently, with accumulating evidence suggesting the involvement of RNA m5C modification in multiple cellular processes as well as tumorigenesis. Cooperatively, advances in m5C detection techniques have enabled transcriptome mapping of RNA methylation at single-nucleotide resolution, thus stimulating m5C-based investigations. In this review, we summarize currently available approaches for detecting m5C distribution in RNA as well as the advantages and disadvantages of these techniques. Moreover, we elucidate the regulatory mechanisms of RNA m5C modification by introducing the molecular structure, catalytic substrates, cellular distributions and biological functions of RNA m5C regulators. The functional consequences of m5C modification on mRNAs, tRNAs, rRNAs and other RNA species, including viral RNAs and vault RNAs, are also discussed. Finally, we review the role of RNA m5C modification in cancer pathogenesis and progression, in hopes of providing new insights into cancer treatment.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003 Zhejiang China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003 Zhejiang China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003 Zhejiang China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
23
|
Liu L, Song B, Ma J, Song Y, Zhang SY, Tang Y, Wu X, Wei Z, Chen K, Su J, Rong R, Lu Z, de Magalhães JP, Rigden DJ, Zhang L, Zhang SW, Huang Y, Lei X, Liu H, Meng J. Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Comput Struct Biotechnol J 2020; 18:1587-1604. [PMID: 32670500 PMCID: PMC7334300 DOI: 10.1016/j.csbj.2020.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional RNA modification occurs on all types of RNA and plays a vital role in regulating every aspect of RNA function. Thanks to the development of high-throughput sequencing technologies, transcriptome-wide profiling of RNA modifications has been made possible. With the accumulation of a large number of high-throughput datasets, bioinformatics approaches have become increasing critical for unraveling the epitranscriptome. We review here the recent progress in bioinformatics approaches for deciphering the epitranscriptomes, including epitranscriptome data analysis techniques, RNA modification databases, disease-association inference, general functional annotation, and studies on RNA modification site prediction. We also discuss the limitations of existing approaches and offer some future perspectives.
Collapse
Affiliation(s)
- Lian Liu
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Bowen Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Jiani Ma
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yi Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Xiangyu Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Zhiliang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - João Pedro de Magalhães
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Shao-Wu Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiujuan Lei
- School of Computer Sciences, Shannxi Normal University, Xi’an, Shaanxi 710119, China
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|