1
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan LB, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals. Genome Res 2024; 34:498-513. [PMID: 38508693 PMCID: PMC11067881 DOI: 10.1101/gr.278382.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liam B Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jawa Tengah 57169, Indonesia
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
- Center for Organismal Studies, University of Heidelberg, 69117 Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NIH Intramural Sequencing Center, Rockville, Maryland 20852, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, 1030 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, Kansas 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway H91 W2TY, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
2
|
Schnitzler CE, Chang ES, Waletich J, Quiroga-Artigas G, Wong WY, Nguyen AD, Barreira SN, Doonan L, Gonzalez P, Koren S, Gahan JM, Sanders SM, Bradshaw B, DuBuc TQ, Febrimarsa, de Jong D, Nawrocki EP, Larson A, Klasfeld S, Gornik SG, Moreland RT, Wolfsberg TG, Phillippy AM, Mullikin JC, Simakov O, Cartwright P, Nicotra M, Frank U, Baxevanis AD. The genome of the colonial hydroid Hydractinia reveals their stem cells utilize a toolkit of evolutionarily shared genes with all animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554815. [PMID: 37786714 PMCID: PMC10541594 DOI: 10.1101/2023.08.25.554815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.
Collapse
Affiliation(s)
- Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - E Sally Chang
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Gonzalo Quiroga-Artigas
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - Wai Yee Wong
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Anh-Dao Nguyen
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia N Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liam Doonan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Paul Gonzalez
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey Koren
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Gahan
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Steven M Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brian Bradshaw
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Swarthmore College, Swarthmore, PA 19081, USA
| | - Febrimarsa
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Larson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Samantha Klasfeld
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian G Gornik
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - R Travis Moreland
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyra G Wolfsberg
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M Phillippy
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- NIH Intramural Sequencing Center, Rockville, MD 20852, USA
| | - Oleg Simakov
- Department of Molecular Evolution and Development, Faculty of Life Science, University of Vienna, A-1090 Vienna, Austria
| | - Paulyn Cartwright
- Department of Evolution and Ecology, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Uri Frank
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Francis WR, Eitel M, Vargas S, Garcia-Escudero CA, Conci N, Deister F, Mah JL, Guiglielmoni N, Krebs S, Blum H, Leys SP, Wörheide G. The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230423. [PMID: 37351491 PMCID: PMC10282587 DOI: 10.1098/rsos.230423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.
Collapse
Affiliation(s)
- Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Catalina A. Garcia-Escudero
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Deister
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jasmine L. Mah
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Nadège Guiglielmoni
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
4
|
Gabr A, Stephens TG, Bhattacharya D. Hypothesis: Trans-splicing Generates Evolutionary Novelty in the Photosynthetic Amoeba Paulinella. JOURNAL OF PHYCOLOGY 2022; 58:392-405. [PMID: 35255163 PMCID: PMC9311404 DOI: 10.1111/jpy.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 05/19/2023]
Abstract
Plastid primary endosymbiosis has occurred twice, once in the Archaeplastida ancestor and once in the Paulinella (Rhizaria) lineage. Both events precipitated massive evolutionary changes, including the recruitment and activation of genes that are horizontally acquired (HGT) and the redeployment of existing genes and pathways in novel contexts. Here we address the latter aspect in Paulinella micropora KR01 (hereafter, KR01) that has independently evolved spliced leader (SL) trans-splicing (SLTS) of nuclear-derived transcripts. We investigated the role of this process in gene regulation, novel gene origination, and endosymbiont integration. Our analysis shows that 20% of KR01 genes give rise to transcripts with at least one (but in some cases, multiple) sites of SL addition. This process, which often occurs at canonical cis-splicing acceptor sites (internal introns), results in shorter transcripts that may produce 5'-truncated proteins with novel functions. SL-truncated transcripts fall into four categories that may show: (i) altered protein localization, (ii) altered protein function, structure, or regulation, (iii) loss of valid alternative start codons, preventing translation, or (iv) multiple SL addition sites at the 5'-terminus. The SL RNA genes required for SLTS are putatively absent in the heterotrophic sister lineage of photosynthetic Paulinella species. Moreover, a high proportion of transcripts derived from genes of endosymbiotic gene transfer (EGT) and HGT origin contain SL sequences. We hypothesize that truncation of transcripts by SL addition may facilitate the generation and expression of novel gene variants and that SLTS may have enhanced the activation and fixation of foreign genes in the host genome of the photosynthetic lineages, playing a key role in primary endosymbiont integration.
Collapse
Affiliation(s)
- Arwa Gabr
- Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular GeneticsRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Debashish Bhattacharya
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| |
Collapse
|
5
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
6
|
Schultz DT, Francis WR, McBroome JD, Christianson LM, Haddock SHD, Green RE. A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis. G3 (BETHESDA, MD.) 2021; 11:jkab302. [PMID: 34545398 PMCID: PMC8527503 DOI: 10.1093/g3journal/jkab302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Here, we present a karyotype, a chromosome-scale genome assembly, and a genome annotation from the ctenophore Hormiphora californensis (Ctenophora: Cydippida: Pleurobrachiidae). The assembly spans 110 Mb in 44 scaffolds and 99.47% of the bases are contained in 13 scaffolds. Chromosome micrographs and Hi-C heatmaps support a karyotype of 13 diploid chromosomes. Hi-C data reveal three large heterozygous inversions on chromosome 1, and one heterozygous inversion shares the same gene order found in the genome of the ctenophore Pleurobrachia bachei. We find evidence that H. californensis and P. bachei share thirteen homologous chromosomes, and the same karyotype of 1n = 13. The manually curated PacBio Iso-Seq-based genome annotation reveals complex gene structures, including nested genes and trans-spliced leader sequences. This chromosome-scale assembly is a useful resource for ctenophore biology and will aid future studies of metazoan evolution and phylogenetics.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Warren R Francis
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Jakob D McBroome
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
7
|
Islas-Flores T, Galán-Vásquez E, Villanueva MA. Screening a Spliced Leader-Based Symbiodinium microadriaticum cDNA Library Using the Yeast-Two Hybrid System Reveals a Hemerythrin-Like Protein as a Putative SmicRACK1 Ligand. Microorganisms 2021; 9:microorganisms9040791. [PMID: 33918967 PMCID: PMC8070245 DOI: 10.3390/microorganisms9040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The dinoflagellate Symbiodiniaceae family plays a central role in the health of the coral reef ecosystem via the symbiosis that establishes with its inhabiting cnidarians and supports the host metabolism. In the last few decades, coral reefs have been threatened by pollution and rising temperatures which have led to coral loss. These events have raised interest in studying Symbiodiniaceae and their hosts; however, progress in understanding their metabolism, signal transduction pathways, and physiology in general, has been slow because dinoflagellates present peculiar characteristics. We took advantage of one of these peculiarities; namely, the post-transcriptional addition of a Dino Spliced Leader (Dino-SL) to the 5' end of the nuclear mRNAs, and used it to generate cDNA libraries from Symbiodinium microadriaticum. We compared sequences from two Yeast-Two Hybrid System cDNA Libraries, one based on the Dino-SL sequence, and the other based on the SMART technology (Switching Mechanism at 5' end of RNA Transcript) which exploits the template switching function of the reverse transcriptase. Upon comparison of the performance of both libraries, we obtained a significantly higher yield, number and length of sequences, number of transcripts, and better 5' representation from the Dino-SL based library than from the SMART library. In addition, we confirmed that the cDNAs from the Dino-SL library were adequately expressed in the yeast cells used for the Yeast-Two Hybrid System which resulted in successful screening for putative SmicRACK1 ligands, which yielded a putative hemerythrin-like protein.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, UNAM, Circuito Escolar 3000, Ciudad Universitaria, Ciudad de México CP 04510, México;
| | - Marco A. Villanueva
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Prolongación Avenida Niños Héroes S/N, Puerto Morelos, Quintana Roo 77580, México
- Correspondence: (T.I.-F.); (M.A.V.); Tel.: +52-998-871-0009 (T.I.-F. & M.A.V.)
| |
Collapse
|
8
|
Wenzel MA, Müller B, Pettitt J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data. BMC Bioinformatics 2021; 22:140. [PMID: 33752599 PMCID: PMC7986045 DOI: 10.1186/s12859-021-04009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.
Collapse
Affiliation(s)
- Marius A Wenzel
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Berndt Müller
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jonathan Pettitt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
9
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
10
|
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, Jager M, Condamine T, Pottin K, Romano S, Steger J, Sinigaglia C, Barreau C, Quiroga Artigas G, Ruggiero A, Fourrage C, Kraus JEM, Poulain J, Aury JM, Wincker P, Quéinnec E, Technau U, Manuel M, Momose T, Houliston E, Copley RR. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 2019; 3:801-810. [PMID: 30858591 DOI: 10.1038/s41559-019-0833-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Coralie Horin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sophie Peron
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Muriel Jager
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Thomas Condamine
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Karen Pottin
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Séverine Romano
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Julia Steger
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Chiara Sinigaglia
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242-INRA USC 1370, Lyon cedex 07, France
| | - Carine Barreau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Antonella Ruggiero
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, Montpellier Cedex 5, France
| | - Cécile Fourrage
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Service de Génétique UMR 781, Hôpital Necker-APHP, Paris, France
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Quéinnec
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Michaël Manuel
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| |
Collapse
|
11
|
Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, Holstein T, Steele RE, Jacobs DK, Greenspan RJ. The genome of the jellyfish Aurelia and the evolution of animal complexity. Nat Ecol Evol 2018; 3:96-104. [PMID: 30510179 DOI: 10.1038/s41559-018-0719-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives-the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized.
Collapse
Affiliation(s)
- David A Gold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA.
| | - Takeo Katsuki
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
| | - Yang Li
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Xifeng Yan
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - David Ibberson
- Deep Sequencing Core Facility, Cell Networks, Heidelberg University, Heidelberg, Germany
| | - Thomas Holstein
- Department of Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Robert E Steele
- Department of Biological Chemistry and Developmental Biology Center, University of California Irvine, Irvine, CA, USA
| | - David K Jacobs
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, USA
| | - Ralph J Greenspan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. .,Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Matsuo M, Katahata A, Satoh S, Matsuzaki M, Nomura M, Ishida KI, Inagaki Y, Obokata J. Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS One 2018; 13:e0200961. [PMID: 30024971 PMCID: PMC6053224 DOI: 10.1371/journal.pone.0200961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023] Open
Abstract
Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5′ end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5′ end sequence of 28–33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.
Collapse
Affiliation(s)
- Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Atsushi Katahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mami Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichiro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Impact of cycling cells and cell cycle regulation on Hydra regeneration. Dev Biol 2018; 433:240-253. [DOI: 10.1016/j.ydbio.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023]
|
14
|
On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing. J Mol Evol 2017; 85:37-45. [DOI: 10.1007/s00239-017-9803-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023]
|
15
|
Wenger Y, Buzgariu W, Galliot B. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150040. [PMID: 26598723 PMCID: PMC4685579 DOI: 10.1098/rstb.2015.0040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution.
Collapse
Affiliation(s)
- Y Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - W Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - B Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
A functional difference between native and horizontally acquired genes in bdelloid rotifers. Gene 2016; 590:186-91. [PMID: 27312952 DOI: 10.1016/j.gene.2016.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.
Collapse
|
17
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
18
|
Yang F, Xu D, Zhuang Y, Yi X, Huang Y, Chen H, Lin S, Campbell DA, Sturm NR, Liu G, Zhang H. Spliced leader RNA trans-splicing discovered in copepods. Sci Rep 2015; 5:17411. [PMID: 26621068 PMCID: PMC4664967 DOI: 10.1038/srep17411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.
Collapse
Affiliation(s)
- Feifei Yang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Donghui Xu
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yunyun Zhuang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyan Yi
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yousong Huang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongju Chen
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA
| | - David A Campbell
- Department of Microbiology, Immunology &Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology &Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Guangxing Liu
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huan Zhang
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.,Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA
| |
Collapse
|
19
|
Dillon LAL, Okrah K, Hughitt VK, Suresh R, Li Y, Fernandes MC, Belew AT, Corrada Bravo H, Mosser DM, El-Sayed NM. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res 2015; 43:6799-813. [PMID: 26150419 PMCID: PMC4538839 DOI: 10.1093/nar/gkv656] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Protozoan parasites of the genus Leishmania are the etiological agents of leishmaniasis, a group of diseases with a worldwide incidence of 0.9–1.6 million cases per year. We used RNA-seq to conduct a high-resolution transcriptomic analysis of the global changes in gene expression and RNA processing events that occur as L. major transforms from non-infective procyclic promastigotes to infective metacyclic promastigotes. Careful statistical analysis across multiple biological replicates and the removal of batch effects provided a high quality framework for comprehensively analyzing differential gene expression and transcriptome remodeling in this pathogen as it acquires its infectivity. We also identified precise 5′ and 3′ UTR boundaries for a majority of Leishmania genes and detected widespread alternative trans-splicing and polyadenylation. An investigation of possible correlations between stage-specific preferential trans-splicing or polyadenylation sites and differentially expressed genes revealed a lack of systematic association, establishing that differences in expression levels cannot be attributed to stage-regulated alternative RNA processing. Our findings build on and improve existing expression datasets and provide a substantially more detailed view of L. major biology that will inform the field and potentially provide a stronger basis for drug discovery and vaccine development efforts.
Collapse
Affiliation(s)
- Laura A L Dillon
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Kwame Okrah
- Department of Mathematics, University of Maryland, College Park, MD 20742, USA
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Rahul Suresh
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Yuan Li
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Maria Cecilia Fernandes
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - A Trey Belew
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Hector Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, 3128 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Matylla-Kulinska K, Tafer H, Weiss A, Schroeder R. Functional repeat-derived RNAs often originate from retrotransposon-propagated ncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:591-600. [PMID: 25045147 PMCID: PMC4233971 DOI: 10.1002/wrna.1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
The human genome is scattered with repetitive sequences, and the ENCODE project revealed that 60–70% of the genomic DNA is transcribed into RNA. As a consequence, the human transcriptome contains a large portion of repeat-derived RNAs (repRNAs). Here, we present a hypothesis for the evolution of novel functional repeat-derived RNAs from non-coding RNAs (ncRNAs) by retrotransposition. Upon amplification, the ncRNAs can diversify in sequence and subsequently evolve new activities, which can result in novel functions. Non-coding transcripts derived from highly repetitive regions can therefore serve as a reservoir for the evolution of novel functional RNAs. We base our hypothetical model on observations reported for short interspersed nuclear elements derived from 7SL RNA and tRNAs, α satellites derived from snoRNAs and SL RNAs derived from U1 small nuclear RNA. Furthermore, we present novel putative human repeat-derived ncRNAs obtained by the comparison of the Dfam and Rfam databases, as well as several examples in other species. We hypothesize that novel functional ncRNAs can derive also from other repetitive regions and propose Genomic SELEX as a tool for their identification.
Collapse
Affiliation(s)
- Katarzyna Matylla-Kulinska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
22
|
Wenger Y, Galliot B. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome. BMC Genomics 2013; 14:204. [PMID: 23530871 PMCID: PMC3764976 DOI: 10.1186/1471-2164-14-204] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/14/2013] [Indexed: 01/11/2023] Open
Abstract
Background Evolutionary studies benefit from deep sequencing technologies that generate
genomic and transcriptomic sequences from a variety of organisms. Genome
sequencing and RNAseq have complementary strengths. In this study, we
present the assembly of the most complete Hydra transcriptome to
date along with a comparative analysis of the specific features of RNAseq
and genome-predicted transcriptomes currently available in the freshwater
hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we
combined Illumina and 454 Titanium reads, giving the primacy to Illumina
over 454 reads to correct homopolymer errors. This strategy yielded an
RNAseq transcriptome that contains 48’909 unique sequences including
splice variants, representing approximately 24’450 distinct genes.
Comparative analysis to the available genome-predicted transcriptomes
identified 10’597 novel Hydra transcripts that encode 529
evolutionarily-conserved proteins. The annotation of 170 human orthologs
points to critical functions in protein biosynthesis, FGF and TOR signaling,
vesicle transport, immunity, cell cycle regulation, cell death,
mitochondrial metabolism, transcription and chromatin regulation. However, a
majority of these novel transcripts encodes short ORFs, at least 767 of them
corresponding to pseudogenes. This RNAseq transcriptome also lacks
11’270 predicted transcripts that correspond either to silent genes or
to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454
reads and we produced, with genome assistance, an extensive and accurate
Hydra transcriptome. The comparative analysis of the RNAseq
transcriptome with genome-predicted transcriptomes lead to the
identification of large populations of novel as well as missing transcripts
that might reflect Hydra-specific evolutionary events.
Collapse
Affiliation(s)
- Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
23
|
Drouin G, Tsang C. 5S rRNA Gene Arrangements in Protists: A Case of Nonadaptive Evolution. J Mol Evol 2012; 74:342-51. [DOI: 10.1007/s00239-012-9512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
|
24
|
Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists. Comp Funct Genomics 2012; 2012:134839. [PMID: 22778692 PMCID: PMC3388326 DOI: 10.1155/2012/134839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/09/2012] [Indexed: 01/01/2023] Open
Abstract
The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.
Collapse
|
25
|
Dash B, Phillips TD. Molecular characterization of a catalase from Hydra vulgaris. Gene 2012; 501:144-52. [PMID: 22521743 DOI: 10.1016/j.gene.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
Abstract
Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3'- and 5'- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
26
|
Selective forces for the origin of spliceosomes. J Mol Evol 2012; 74:226-31. [PMID: 22407435 DOI: 10.1007/s00239-012-9494-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/24/2012] [Indexed: 01/29/2023]
Abstract
It has been proposed that eukaryotic spliceosomes evolved from bacterial group II introns via constructive neutral changes. However, a more likely interpretation is that spliceosomes and group II introns share a common undefined RNA ancestor--a proto-spliceosome. Although, the constructive neutral evolution may have probably played some roles in the development of complexity including the evolution of modern spliceosomes, in fact, the origin, losses and the retention of spliceosomes can be explained straight-forwardly mainly by positive and negative selection: (1) proto-spliceosomes evolved in the RNA world as a mechanism to excise functional RNAs from an RNA genome and to join non-coding information (ancestral to exons) possibly designed to be degraded. (2) The complexity of proto-spliceosomes increased with the invention of protein synthesis in the RNP world and they were adopted for (a) the addition of translation signal to RNAs via trans-splicing, and for (b) the exon-shuffling such as to join together exons coding separate protein domains, to translate them as a single unit and thus to facilitate the molecular interaction of protein domains needed to be assembled to functional catalytic complexes. (3) Finally, the spliceosomes were adopted for cis-splicing of (mainly) non-coding information (contemporary introns) to yield translatable mRNAs. (4) Spliceosome-negative organisms (i.e., prokaryotes) have been selected in the DNA-protein world to save a lot of energy. (5) Spliceosome-positive organisms (i.e., eukaryotes) have been selected, because they have been completely spliceosome-dependent.
Collapse
|
27
|
Dana CE, Glauber KM, Chan TA, Bridge DM, Steele RE. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution. PLoS One 2012; 7:e31643. [PMID: 22328943 PMCID: PMC3273482 DOI: 10.1371/journal.pone.0031643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/10/2012] [Indexed: 12/19/2022] Open
Abstract
Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp) that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.
Collapse
Affiliation(s)
- Catherine E. Dana
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Kristine M. Glauber
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Titus A. Chan
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Diane M. Bridge
- Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania, United States of America
| | - Robert E. Steele
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
29
|
Zhan LL, Ding Z, Qian YH, Zeng QT. Convergent Intron Loss of MRP1 in Drosophila and Mosquito Species. J Hered 2011; 103:147-51. [DOI: 10.1093/jhered/esr095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
30
|
Abstract
Trans-splicing is the joining together of portions of two separate pre-mRNA molecules. The two distinct categories of spliceosomal trans-splicing are genic trans-splicing, which joins exons of different pre-mRNA transcripts, and spliced leader (SL) trans-splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis-splicing. Genic trans-splicing events producing protein-coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans-splicing can be associated with cancers and translocations. SL trans-splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans-splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans-splicing, as operon resolution can only account for a small proportion of the total amount of SL trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- University of Colorado Denver, Department of Biochemistry and Molecular Genetics; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology
| | | |
Collapse
|
31
|
Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 2010; 28:1687-702. [PMID: 21183612 DOI: 10.1093/molbev/msq349] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Distinguishing self from nonself and the onset of defense effector mechanisms upon recognition of pathogens are essential for the survival of all life forms in the animal kingdom. The family of nucleotide -binding and oligomeriszation domain-like receptors (NLRs) was first identified in vertebrates and comprises a group of pivotal sensor protein of the innate immune system for microbial cell wall components or danger signals. Here, we provide first evidence that early diverging metazoans have large and complex NLR repertoires. The cnidarian NACHT/NB-ARC genes include novel combinations of domains, and the number of one specific type (NB-ARC and tetratricopeptide repeat containing) in Hydra is particularly large. We characterize the transcript structure and expression patterns of a selected HyNLR, HyNLR type 1 and describe putative interaction partners. In a heterologous expression system, we show induced proximity recruitment of an effector caspase (HyDD-Caspase) to the HyNLR type 1 protein upon oligomerization indicating a potential role of caspase activation downstream of NLR activation in Hydra. These results add substantially to our understanding of the ancestral innate immune repertoire as well as providing the first insights into putative cytoplasmic defense mechanisms at the base of animal evolution.
Collapse
Affiliation(s)
- Christina Lange
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Steele RE, David CN, Technau U. A genomic view of 500 million years of cnidarian evolution. Trends Genet 2010; 27:7-13. [PMID: 21047698 DOI: 10.1016/j.tig.2010.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/23/2010] [Accepted: 10/08/2010] [Indexed: 01/29/2023]
Abstract
Cnidarians (corals, anemones, jellyfish and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, researchers are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content and gene conservation. It is now known what cnidarian genomes, given 500 million years, are capable of; as we discuss here, the next challenge is to understand how this genomic history has led to the striking diversity seen in this group.
Collapse
Affiliation(s)
- Robert E Steele
- Department of Biological Chemistry and the Developmental Biology Center, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
33
|
Harrison N, Kalbfleisch A, Connolly B, Pettitt J, Müller B. SL2-like spliced leader RNAs in the basal nematode Prionchulus punctatus: New insight into the evolution of nematode SL2 RNAs. RNA (NEW YORK, N.Y.) 2010; 16:1500-7. [PMID: 20566669 PMCID: PMC2905750 DOI: 10.1261/rna.2155010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spliced-leader (SL) trans-splicing has been found in all molecularly characterized nematode species to date, and it is likely to be a nematode synapomorphy. Most information regarding SL trans-splicing has come from the study of nematodes from a single monophyletic group, the Rhabditida, all of which employ SL RNAs that are identical to, or variants of, the SL1 RNA first characterized in Caenorhabditis elegans. In contrast, the more distantly related Trichinella spiralis, belonging to the subclass Dorylaimia, utilizes a distinct set of SL RNAs that display considerable sequence diversity. To investigate whether this is true of other members of the Dorylaimia, we have characterized SL RNAs from Prionchulus punctatus. Surprisingly, this revealed the presence of a set of SLs that show clear sequence similarity to the SL2 family of spliced leaders, which have previously only been found within the rhabditine group (which includes C. elegans). Expression of one of the P. punctatus SL RNAs in C. elegans reveals that it can compete specifically with the endogenous C. elegans SL2 spliced leaders, being spliced to the pre-mRNAs derived from downstream genes in operons, but does not compete with the SL1 spliced leaders. This discovery raises the possibility that SL2-like spliced leaders were present in the last common ancestor of the nematode phylum.
Collapse
Affiliation(s)
- Neale Harrison
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|