1
|
Patro I, Sahoo A, Nayak BR, Das R, Majumder S, Panigrahi GK. Nonsense-Mediated mRNA Decay: Mechanistic Insights and Physiological Significance. Mol Biotechnol 2023:10.1007/s12033-023-00927-4. [PMID: 37930508 DOI: 10.1007/s12033-023-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation. It essentially ensures recognition and removal of aberrant transcripts. Therefore, the NMD protects the cellular system by restricting the synthesis of truncated proteins, potentially by eliminating the faulty mRNAs. NMD is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation as well. Primarily, the NMD machinery scans and differentiates the aberrant and non-aberrant transcripts. A myriad of cellular dysfunctions arise due to production of truncated proteins, so the NMD core proteins, the up-frameshift factors (UPFs) recognizes the faulty mRNAs and further recruits factors resulting in the mRNA degradation. NMD exhibits astounding variability in its ability in regulating cellular mechanisms including both pathological and physiological events. But, the detailed underlying molecular mechanisms in NMD remains blurred and require extensive investigation to gain insights on cellular homeostasis. The complexity in understanding of NMD pathway arises due to the involvement of numerous proteins, molecular interactions and their functioning in different steps of this process. Moreover methods such as alternative splicing generates numerous isoforms of mRNA, so it makes difficulties in understanding the impact of alternative splicing on the efficiency of NMD functioning. Role of NMD in cancer development is very complex. Studies have shown that in some cases cancer cells use NMD pathway as a tool to exploit the NMD mechanism to maintain tumor microenvironment. A greater level of understanding about the intricate mechanism of how tumor used NMD pathway for their benefits, a strategy can be developed for targeting and inhibiting NMD factors involved in pro-tumor activity. There are very little amount of information available about the NMD pathway, how it discriminate mRNAs that are targeted by NMD from those that are not. This review highlights our current understanding of NMD, specifically the regulatory mechanisms and attempts to outline less explored questions that warrant further investigations. Taken as a whole, a detailed molecular understanding of the NMD mechanism could lead to wide-ranging applications for improving cellular homeostasis and paving out strategies in combating pathological disorders leaping forward toward achieving United Nations sustainable development goals (SDG 3: Good health and well-being).
Collapse
Affiliation(s)
- Ipsita Patro
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Annapurna Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| | - Bilash Ranjan Nayak
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Rutupurna Das
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Sanjoy Majumder
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Gagan Kumar Panigrahi
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. Bioinformatics 2023; 39:btad556. [PMID: 37688563 PMCID: PMC10534055 DOI: 10.1093/bioinformatics/btad556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
SUMMARY DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, United States
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260,United States
| |
Collapse
|
3
|
Klonowski J, Liang Q, Coban-Akdemir Z, Lo C, Kostka D. aenmd: Annotating escape from nonsense-mediated decay for transcripts with protein-truncating variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533185. [PMID: 36993377 PMCID: PMC10055276 DOI: 10.1101/2023.03.17.533185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce a transcript's degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these that could exert DN/GOF effects via NMD escape. Availability and implementation: aenmd is implemented in the R programming language. Code is available on GitHub as an R package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).
Collapse
Affiliation(s)
- Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qianqian Liang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeynep Coban-Akdemir
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational & Systems Biology and Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Nogueira G, Fernandes R, García-Moreno JF, Romão L. Nonsense-mediated RNA decay and its bipolar function in cancer. Mol Cancer 2021; 20:72. [PMID: 33926465 PMCID: PMC8082775 DOI: 10.1186/s12943-021-01364-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Nonsense-mediated decay (NMD) was first described as a quality-control mechanism that targets and rapidly degrades aberrant mRNAs carrying premature termination codons (PTCs). However, it was found that NMD also degrades a significant number of normal transcripts, thus arising as a mechanism of gene expression regulation. Based on these important functions, NMD regulates several biological processes and is involved in the pathophysiology of a plethora of human genetic diseases, including cancer. The present review aims to discuss the paradoxical, pro- and anti-tumorigenic roles of NMD, and how cancer cells have exploited both functions to potentiate the disease. Considering recent genetic and bioinformatic studies, we also provide a comprehensive overview of the present knowledge of the advantages and disadvantages of different NMD modulation-based approaches in cancer therapy, reflecting on the challenges imposed by the complexity of this disease. Furthermore, we discuss significant advances in the recent years providing new perspectives on the implications of aberrant NMD-escaping frameshifted transcripts in personalized immunotherapy design and predictive biomarker optimization. A better understanding of how NMD differentially impacts tumor cells according to their own genetic identity will certainly allow for the application of novel and more effective personalized treatments in the near future.
Collapse
Affiliation(s)
- Gonçalo Nogueira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Rafael Fernandes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Juan F García-Moreno
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal. .,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
6
|
Analysis of somatic microsatellite indels identifies driver events in human tumors. Nat Biotechnol 2017; 35:951-959. [DOI: 10.1038/nbt.3966] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/18/2017] [Indexed: 01/03/2023]
|
7
|
Ścieżyńska A, Ruszkowska E, Szulborski K, Rydz K, Wierzbowska J, Kosińska J, Rękas M, Płoski R, Szaflik JP, Ołdak M. Processing of OPA1 with a novel N-terminal mutation in patients with autosomal dominant optic atrophy: Escape from nonsense-mediated decay. PLoS One 2017; 12:e0183866. [PMID: 28841713 PMCID: PMC5571936 DOI: 10.1371/journal.pone.0183866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is the most common dominantly inherited optic neuropathy. In the majority of patients it is caused by OPA1 mutations and those predicted to introduce a premature termination codon (PTC) are frequently detected. Transcripts containing PTC may be degraded by nonsense-mediated mRNA decay (NMD), however very little is known about an effect of OPA1 mutations on NMD activation. Here, using a combination of linkage analysis and DNA sequencing, we have identified a novel c.91C>T OPA1 mutation with a putative premature stop codon (Q31*), which segregated with ADOA in two Polish families. At the mRNA level we found no changes in the amount of OPA1 transcript among mutation carriers vs. non-carriers. Specific allele quantification revealed a considerable level of the OPA1 mutant transcript. Our study identifies a novel pathogenic OPA1 mutation and shows that it is located in the transcript region not prone for NMD activation. The data emphasizes the importance of analyzing how mutated genes are being processed in the cell. This gives an insight into the molecular mechanism of a genetic disease and promotes development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Ewelina Ruszkowska
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Szulborski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Rydz
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Wierzbowska
- Department of Ophthalmology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
8
|
Ajiboye AS, Esopi D, Yegnasubramanian S, Denmeade SR. Androgen Receptor Splice Variants Are Not Substrates of Nonsense-Mediated Decay. Prostate 2017; 77:829-837. [PMID: 28224650 PMCID: PMC5400682 DOI: 10.1002/pros.23323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/23/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Androgen receptor (AR) splice variants have been clinically associated with progressive cancer, castration-resistance, and resistance to AR antagonists and androgen synthesis inhibitors. AR variants can be generated by genomic alterations and alternative splicing, and their expression is androgen-regulated. There has been a suggestion that AR variants bearing premature termination codons and coding for truncated proteins should be regulated by the nonsense-mediated decay (NMD) mRNA surveillance pathway, suggesting that either the NMD pathway is dysfunctional in variant-expressing cell lines or that variants are somehow able to evade degradation by NMD. METHODS We first used siRNA knockdown of the NMD regulator, UPF1, in an NMD reporter assay to determine if this surveillance pathway is functioning normally in AR variant-expressing cell lines. We then used UPF1 knockdown to determine if expression of the AR variants ARV3 and ARV7 is affected by inhibition of NMD. Next, we analyzed androgen regulation of UPF1 and used transcript expression analysis to determine if there is any association between UPF1 expression, resistance, and ARV3 or ARV7 expression. RESULTS We found that the NMD pathway functions normally in the AR variant-expressing cell line 22Rv1 and that inhibition of NMD does not increase expression of ARV3 or ARV7. Furthermore, we found that expression of UPF1 is not androgen-regulated. We also found that UFP1 expression levels do not differentiate castration-sensitive from resistant cell line and that UPF1 expression does not correlate with expression of ARV3 or ARV7 in cells in which these variants are highly expressed. CONCLUSION This study eliminates a possible mechanism of regulation of certain AR variants. Future research into the regulation of AR variants should focus on other mechanisms to better understand the origin of these variants and to possibly inhibit their expression for the resensitization of resistant cancers. Prostate 77:829-837, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A. Seun Ajiboye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David Esopi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Samuel R. Denmeade
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
9
|
Pereira FJC, Teixeira A, Kong J, Barbosa C, Silva AL, Marques-Ramos A, Liebhaber SA, Romão L. Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity. Nucleic Acids Res 2015; 43:6528-44. [PMID: 26068473 PMCID: PMC4513866 DOI: 10.1093/nar/gkv588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/23/2015] [Indexed: 11/25/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature termination codons (PTCs). The level of sensitivity of a PTC-containing mRNA to NMD is multifactorial. We have previously shown that human β-globin mRNAs carrying PTCs in close proximity to the translation initiation AUG codon escape NMD. This was called the ‘AUG-proximity effect’. The present analysis of nonsense codons in the human α-globin mRNA illustrates that the determinants of the AUG-proximity effect are in fact quite complex, reflecting the ability of the ribosome to re-initiate translation 3′ to the PTC and the specific sequence and secondary structure of the translated ORF. These data support a model in which the time taken to translate the short ORF, impacted by distance, sequence, and structure, not only modulates translation re-initiation, but also impacts on the exact boundary of AUG-proximity protection from NMD.
Collapse
Affiliation(s)
- Francisco J C Pereira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Jian Kong
- Departments of Genetics and Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cristina Barbosa
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Stephen A Liebhaber
- Departments of Genetics and Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Shum EY, Espinoza JL, Ramaiah M, Wilkinson MF. Identification of novel post-transcriptional features in olfactory receptor family mRNAs. Nucleic Acids Res 2015; 43:9314-26. [PMID: 25908788 PMCID: PMC4627058 DOI: 10.1093/nar/gkv324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023] Open
Abstract
Olfactory receptor (Olfr) genes comprise the largest gene family in mice. Despite their importance in olfaction, how most Olfr mRNAs are regulated remains unexplored. Using RNA-seq analysis coupled with analysis of pre-existing databases, we found that Olfr mRNAs have several atypical features suggesting that post-transcriptional regulation impacts their expression. First, Olfr mRNAs, as a group, have dramatically higher average AU-content and lower predicted secondary structure than do control mRNAs. Second, Olfr mRNAs have a higher density of AU-rich elements (AREs) in their 3'UTR and upstream open reading frames (uORFs) in their 5 UTR than do control mRNAs. Third, Olfr mRNAs have shorter 3' UTR regions and with fewer predicted miRNA-binding sites. All of these novel properties correlated with higher Olfr expression. We also identified striking differences in the post-transcriptional features of the mRNAs from the two major classes of Olfr genes, a finding consistent with their independent evolutionary origin. Together, our results suggest that the Olfr gene family has encountered unusual selective forces in neural cells that have driven them to acquire unique post-transcriptional regulatory features. In support of this possibility, we found that while Olfr mRNAs are degraded by a deadenylation-dependent mechanism, they are largely protected from this decay in neural lineage cells.
Collapse
Affiliation(s)
- Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Catania F, McGrath CL, Doak TG, Lynch M. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential. Genome Biol Evol 2013; 5:1200-11. [PMID: 23737328 PMCID: PMC3698930 DOI: 10.1093/gbe/evt087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic--often coding--DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | | |
Collapse
|
12
|
Qadah T, Finlayson J, Joly P, Ghassemifar R. Molecular and cellular analysis of a novel HBA2 mutation (HBA2: c.94A > G) shows activation of a cryptic splice site and generation of a premature termination codon. Hemoglobin 2013; 38:13-8. [PMID: 24274170 DOI: 10.3109/03630269.2013.858639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we describe the clinical features and provide experimental analyses of a novel point mutation affecting the penultimate nucleotide of the first exon of the HBA2 (HBA2: c.94A > G) gene identified in a 26-year-old female who also carries a heterozygous Hb E (HBB: c.79G > A) variant. The aim of the study was to investigate the impact of this point mutation on the transcriptional activity of the HBA2 gene using a combination of an initial in silico prediction followed by in vitro mutagenesis and transcriptional activity assessment. The analyses revealed that the HBA2: c.94A > G point mutation causes the activation of a cryptic splice site located 49 bp upstream of the exon1-intron1 boundary in both HBA2 long and short isoforms, thus generating a frameshift and a premature termination codon between codons 48 and 49 in the second exon. A rapid degradation of the aberrantly spliced transcripts by the nonsense mediated decay (NMD) surveillance system is highly indicative of an α-thalassemia (α-thal) phenotype. However, the abnormal mRNA may not be entirely degraded since the proband presents a slight splenomegaly that could be the sign of extra vascular hemolysis.
Collapse
Affiliation(s)
- Talal Qadah
- Department of Haematology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre , Nedlands , Western Australia
| | | | | | | |
Collapse
|
13
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
14
|
Abstract
Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.
Collapse
Affiliation(s)
- Cristina Barbosa
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Peixeiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
15
|
A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 2013; 45:1690-700. [PMID: 23624144 PMCID: PMC7172355 DOI: 10.1016/j.biocel.2013.04.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Post-transcriptional control makes a major contribution to the overall regulation of gene expression pathway. Within the cytoplasm this is mediated by a combination of regulatory RNA motifs within the 5′ and 3′ untranslated regions of mRNAs and their interacting protein/RNA partners. One of the most common regulatory RNA elements in mammalian transcripts (present in approximately 40% of all mRNAs) are upstream open reading frames (uORFs). However, despite the prevalence of these RNA elements how they function is not well understood. In general, they act to repress translation of the physiological ORF under control conditions, and under certain pathophysiological stresses this repression can be alleviated. It is known that re-initiation following the translation of an uORF is utilised in some situations however there are numerous alternative mechanisms that control the synthesis of a protein whose mRNA contains uORFs. Moreover, the trans-acting factors that are also involved in this process are not well defined. In this review we summarise our current understanding of this area and highlight some common features of these RNA motifs that have been discovered to date.
Collapse
|
16
|
Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:612-23. [PMID: 23435113 DOI: 10.1016/j.bbagrm.2013.02.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
17
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
18
|
Martins R, Proença D, Silva B, Barbosa C, Silva AL, Faustino P, Romão L. Alternative polyadenylation and nonsense-mediated decay coordinately regulate the human HFE mRNA levels. PLoS One 2012; 7:e35461. [PMID: 22530027 PMCID: PMC3329446 DOI: 10.1371/journal.pone.0035461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 03/18/2012] [Indexed: 01/06/2023] Open
Abstract
Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its protein expression according to the physiological cellular requirements.
Collapse
Affiliation(s)
- Rute Martins
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Daniela Proença
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Bruno Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Cristina Barbosa
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Paula Faustino
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG - Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
19
|
Harte RA, Farrell CM, Loveland JE, Suner MM, Wilming L, Aken B, Barrell D, Frankish A, Wallin C, Searle S, Diekhans M, Harrow J, Pruitt KD. Tracking and coordinating an international curation effort for the CCDS Project. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas008. [PMID: 22434842 PMCID: PMC3308164 DOI: 10.1093/database/bas008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Consensus Coding Sequence (CCDS) collaboration involves curators at multiple centers with a goal of producing a conservative set of high quality, protein-coding region annotations for the human and mouse reference genome assemblies. The CCDS data set reflects a ‘gold standard’ definition of best supported protein annotations, and corresponding genes, which pass a standard series of quality assurance checks and are supported by manual curation. This data set supports use of genome annotation information by human and mouse researchers for effective experimental design, analysis and interpretation. The CCDS project consists of analysis of automated whole-genome annotation builds to identify identical CDS annotations, quality assurance testing and manual curation support. Identical CDS annotations are tracked with a CCDS identifier (ID) and any future change to the annotated CDS structure must be agreed upon by the collaborating members. CCDS curation guidelines were developed to address some aspects of curation in order to improve initial annotation consistency and to reduce time spent in discussing proposed annotation updates. Here, we present the current status of the CCDS database and details on our procedures to track and coordinate our efforts. We also present the relevant background and reasoning behind the curation standards that we have developed for CCDS database treatment of transcripts that are nonsense-mediated decay (NMD) candidates, for transcripts containing upstream open reading frames, for identifying the most likely translation start codons and for the annotation of readthrough transcripts. Examples are provided to illustrate the application of these guidelines. Database URL: http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi
Collapse
Affiliation(s)
- Rachel A Harte
- Center for Biomolecular Science and Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gianakopoulos PJ, Zhang Y, Pencea N, Orlic-Milacic M, Mittal K, Windpassinger C, White SJ, Kroisel PM, Chow EWC, Saunders CJ, Minassian BA, Vincent JB. Mutations in MECP2 exon 1 in classical Rett patients disrupt MECP2_e1 transcription, but not transcription of MECP2_e2. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:210-6. [PMID: 22213695 DOI: 10.1002/ajmg.b.32015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/05/2011] [Indexed: 11/07/2022]
Abstract
The overwhelming majority of Rett syndrome cases are caused by mutations in the gene MECP2. MECP2 has two isoforms, termed MECP2_e1 and MECP2_e2, which differ in their N-terminal amino acid sequences. A growing body of evidence has indicated that MECP2_e1 may be the etiologically relevant isoform in Rett Syndrome based on its expression profile in the brain and because, strikingly, no mutations have been discovered that affect MECP2_e2 exclusively. In this study we sought to characterize four classical Rett patients with mutations that putatively affect only the MECP2_e1 isoform. Our hypothesis was that the classical Rett phenotype seen here is the result of disrupted MECP2_e1 expression, but with MECP2_e2 expression unaltered. We used quantitative reverse transcriptase PCR to assay mRNA expression for each isoform independently, and used cytospinning methods to assay total MECP2 in peripheral blood lymphocytes (PBL). In the two Rett patients with identical 11 bp deletions within the coding portion of exon 1, MECP2_e2 levels were unaffected, whilst a significant reduction of MECP2_e1 levels was detected. In two Rett patients harboring mutations in the exon 1 start codon, MECP2_e1 and MECP2_e2 mRNA amounts were unaffected. In summary, we have shown that patients with exon 1 mutations transcribe normal levels of MECP2_e2 mRNA, and most PBL are positive for MeCP2 protein, despite them theoretically being unable to produce the MECP2_e1 isoform, and yet still exhibit the classical RTT phenotype. Altogether, our work further supports our hypothesis that MECP2_e1 is the predominant isoform involved in the neuropathology of Rett syndrome.
Collapse
Affiliation(s)
- Peter J Gianakopoulos
- Molecular Neuropsychiatry and Development Lab, Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peixeiro I, Inácio Â, Barbosa C, Silva AL, Liebhaber SA, Romão L. Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res 2011; 40:1160-73. [PMID: 21989405 PMCID: PMC3273812 DOI: 10.1093/nar/gkr820] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and rapidly degrades mRNAs containing premature termination codons (PTC). The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have previously reported that mRNAs containing PTCs in close proximity to the translation initiation codon (AUG-proximal PTCs) can substantially evade NMD. Here, we explore the mechanistic basis for this NMD resistance. We demonstrate that translation termination at an AUG-proximal PTC lacks the ribosome stalling that is evident in an NMD-sensitive PTC. This difference is associated with demonstrated interactions of the cytoplasmic poly(A)-binding protein 1, PABPC1, with the cap-binding complex subunit, eIF4G and the 40S recruitment factor eIF3 as well as the ribosome release factor, eRF3. These interactions, in combination, underlie critical 3′–5′ linkage of translation initiation with efficient termination at the AUG-proximal PTC and contribute to an NMD-resistant PTC definition at an early phase of translation elongation.
Collapse
Affiliation(s)
- Isabel Peixeiro
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Guziewicz KE, Slavik J, Lindauer SJP, Aguirre GD, Zangerl B. Molecular consequences of BEST1 gene mutations in canine multifocal retinopathy predict functional implications for human bestrophinopathies. Invest Ophthalmol Vis Sci 2011; 52:4497-505. [PMID: 21498618 DOI: 10.1167/iovs.10-6385] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Bestrophin-1 gene (BEST1) mutations are responsible for a broad spectrum of human retinal phenotypes, jointly called bestrophinopathies. Canine multifocal retinopathy (cmr), caused by mutations in the dog gene ortholog, shares numerous phenotypic features with human BEST1-associated disorders. The purpose of this study was the assessment of molecular consequences and pathogenic outcomes of the cmr1 (C(73)T/R(25)X) premature termination and the cmr2 (G(482)A/G(161)D) missense mutation of the canine model compared with the C(87)G/Y(29)X mutation observed in human patients. METHODS Dogs carrying the BEST1 mutation were introduced into a breeding colony and used to produce either carrier or affected offspring. Eyes were collected immediately after euthanatization at the disease-relevant ages and were harvested for expression studies. In parallel, an in vitro cell culture model system was developed and compared with in vivo RESULTS RESULTS The results demonstrate that cmr1 and human C(87)G-mutated transcripts bypass the nonsense-mediated mRNA decay machinery, suggesting the AUG proximity effect as an underlying transcriptional mechanism. The truncated protein, however, is not detectable in either species. The in vitro model accurately recapitulates transcriptional and translational expression events observed in vivo and, thus, implies loss of bestrophin-1 function in cmr1-dogs and Y(29)X-affected patients. Immunofluorescence microscopy of cmr2 mutant showed mislocalization of the protein. CONCLUSIONS Molecular evaluation of cmr mutations in vivo and in vitro constitutes the next step toward elucidating genotype-phenotype interactions concerning human bestrophinopathies and emphasizes the importance of the canine models for studying the complexity of the BEST1 disease mechanism.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6010, USA
| | | | | | | | | |
Collapse
|
23
|
Berkhout B, Arts K, Abbink TEM. Ribosomal scanning on the 5'-untranslated region of the human immunodeficiency virus RNA genome. Nucleic Acids Res 2011; 39:5232-44. [PMID: 21393254 PMCID: PMC3130279 DOI: 10.1093/nar/gkr113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Translation initiation on most eukaryotic mRNAs occurs via a cap-dependent scanning mechanism and its efficiency is modulated by their 5'-untranslated regions (5'-UTR). The human immunodeficiency virus type 1 (HIV-1) 5'-UTR contains a stable TAR hairpin directly at its 5'-end, which possibly masks the cap structure. In addition, the 5'-UTR is relatively long and contains several stable RNA structures that are essential for viral replication. These characteristics may interfere with ribosomal scanning and suggest that translation is initiated via internal entry of ribosomes. Literature on the HIV-1 5'-UTR-driven translation initiation mechanism is controversial. Both scanning and internal initiation have been shown to occur in various experimental systems. To gain further insight in the translation initiation process, we determined which part of the 5'-UTR is scanned. To do so, we introduced upstream AUGs at various positions across the 5'-UTR and determined the effect on expression of a downstream reporter gene that was placed under control of the gag start codon. This strategy allowed us to determine the window of ribosomal scanning on the HIV-1 5'-UTR.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Peixeiro I, Silva AL, Romão L. Control of human beta-globin mRNA stability and its impact on beta-thalassemia phenotype. Haematologica 2011; 96:905-13. [PMID: 21357703 DOI: 10.3324/haematol.2010.039206] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) stability is a critical determinant that affects gene expression. Many pathways have evolved to modulate mRNA stability in response to developmental, physiological and/or environmental stimuli. Eukaryotic mRNAs have a considerable range of half-lives, from as short as a few minutes to as long as several days. Human globin mRNAs constitute an example of highly stable mRNAs. However, a wide variety of naturally occurring mutations that result in the clinical syndrome of thalassemia can trigger accelerated mRNA decay thus controlling mRNA quality prior to translation. Distinct surveillance mechanisms have been described as being targeted for specific defective globin mRNAs. Here, we review mRNA stability mechanisms implicated in the control of β-globin gene expression and the surveillance pathways that prevent translation of aberrant β-globin mRNAs. In addition, we emphasize the importance of these pathways in modulating the severity of the β-thalassemia phenotype.
Collapse
Affiliation(s)
- Isabel Peixeiro
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | |
Collapse
|
25
|
Ly JP, Onay T, Sison K, Sivaskandarajah G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE. The Sweet Pee model for Sglt2 mutation. J Am Soc Nephrol 2011; 22:113-23. [PMID: 21209254 DOI: 10.1681/asn.2010080888] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inhibiting renal glucose transport is a potential pharmacologic approach to treat diabetes. The renal tubular sodium-glucose transporter 2 (SGLT2) reabsorbs approximately 90% of the filtered glucose load. An animal model with sglt2 dysfunction could provide information regarding the potential long-term safety and efficacy of SGLT2 inhibitors, which are currently under clinical investigation. Here, we describe Sweet Pee, a mouse model that carries a nonsense mutation in the Slc5a2 gene, which results in the loss of sglt2 protein function. The phenotype of Sweet Pee mutants was remarkably similar to patients with mutations in the Scl5a2 gene. The Sweet Pee mutants had improved glucose tolerance, higher urinary excretion of calcium and magnesium, and growth retardation. Renal physiologic studies demonstrated a prominent distal osmotic diuresis without enhanced natriuresis. Sweet Pee mutants did not exhibit increased KIM-1 or NGAL, markers of acute tubular injury. After induction of diabetes, Sweet Pee mice had better overall glycemic control than wild-type control mice, but had a higher risk for infection and an increased mortality rate (70% in homozygous mutants versus 10% in controls at 20 weeks). In summary, the Sweet Pee model allows study of the long-term benefits and risks associated with inhibition of SGLT2 for the management of diabetes. Our model suggests that inhibiting SGLT2 may improve glucose control but may confer increased risks for infection, malnutrition, volume contraction, and mortality.
Collapse
Affiliation(s)
- Joseph P Ly
- The Samuel Lunenfeld Research Institute, TCP Building, Room 5-1015-2, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 2010; 11:565. [PMID: 20946641 PMCID: PMC3091714 DOI: 10.1186/1471-2164-11-565] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Collapse
Affiliation(s)
- Nicholas J McGlincy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
27
|
Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, Akua T, Avramov M, Frankel N, Berezin I, Gottlieb D, Elazar M, David-Assael O, Tcherkas V, Mizrachi K, Shaul O. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1031-42. [PMID: 19754518 DOI: 10.1111/j.1365-313x.2009.04021.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Approximately 20% of plant genes possess upstream open-reading frames (uORFs). The effect of uORFs on gene expression has mainly been studied at the translational level. Very little is known about the impact of plant uORFs on transcript content through the nonsense-mediated mRNA decay (NMD) pathway, which degrades transcripts bearing premature termination codons (PTCs). Here we examine the impact of the uORF of the Arabidopsis AtMHX gene on transcript accumulation. The suggestion that this uORF exposes transcripts containing it to NMD is supported by (i) the increase in transcript levels upon eliminating the uORF from constructs containing it, (ii) experiments with a modified uORF-peptide, which excluded peptide-specific degradation mechanisms, (iii) the increase in levels of the native AtMHX transcript upon treatment with cycloheximide, which inhibits translation and blocks NMD, and (iv) the sensitivity of transcripts containing the uORF of AtMHX to the presence of introns. We also showed that introns can increase NMD efficiency not only in transcripts having relatively short 3' untranslated regions (UTRs), but also in uORF-containing transcripts. AtMHX transcript levels were almost unaltered in mutants of the NMD factors UPF3 and UPF1. Possible reasons, including the existence of a NMD-compensatory mechanism, are discussed. Interestingly, the levels of UPF3 transcript were higher in upf1 mutants, suggesting a compensatory mechanism that links weak function of the NMD machinery to increased expression of UPF3. Our findings highlight that uORFs, which are abundant in plants, can not only inhibit translation but also strongly affect transcript accumulation.
Collapse
Affiliation(s)
- Helen Saul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nyikó T, Sonkoly B, Mérai Z, Benkovics AH, Silhavy D. Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. PLANT MOLECULAR BIOLOGY 2009; 71:367-78. [PMID: 19653106 DOI: 10.1007/s11103-009-9528-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 07/13/2009] [Indexed: 05/02/2023]
Abstract
Nonsense-mediated decay (NMD) is a quality control mechanism that identifies and degrades aberrant mRNAs containing premature termination codons (PTC). NMD also regulates the expression of many wild-type genes. In plants, NMD identifies a stop codon as a PTC and initiates the rapid degradation of the transcript if the 3'untranslated region (UTR) is unusually long or if it harbors an intron. Approximately 20% of plant transcripts have an upstream ORF (uORF) in the 5'UTR. In theory, if a uORF is translated, the 3'UTR downstream of the uORF will be long and harbor introns, thus these transcripts might be degraded by NMD. Therefore, if uORFs can trigger NMD, uORF containing transcripts would be a major group of NMD regulated wild-type plant mRNAs. The aim of this study was to clarify whether plant uORFs could activate NMD. Here we demonstrate that plant uORFs induce NMD in a size-dependent manner, a 50 amino acid (aa) long uORF triggered NMD efficiently, whereas similar but shorter (31 and 15 aa long) uORFs failed to activate NMD response. We have found that only ~2% of annotated Arabidopsis genes contain a first uORF that is longer than 35 aa, thus we propose that NMD regulates only a small fraction of uORF containing transcripts. However, as mRNAs having uORF that is longer than the critical size are strongly overrepresented within the up-regulated transcripts of NMD deficient plants, it is likely that this subset of natural NMD targets induces NMD because of containing a relatively long translatable uORF.
Collapse
Affiliation(s)
- Tünde Nyikó
- Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
29
|
Gurvich OL, Maiti B, Weiss RB, Aggarwal G, Howard MT, Flanigan KM. DMD exon 1 truncating point mutations: amelioration of phenotype by alternative translation initiation in exon 6. Hum Mutat 2009; 30:633-40. [PMID: 19206170 DOI: 10.1002/humu.20913] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the DMD gene result in two common phenotypes associated with progressive muscle weakness: the more severe Duchenne muscular dystrophy (DMD) and the milder Becker muscular dystrophy (BMD). We have previously identified a nonsense mutation (c.9G>A; p.Trp3X) within the first exon of the DMD gene, encoding the unique N-terminus of the 427-kDa muscle isoform of the dystrophin protein. Although this mutation would be expected to result in severe disease, the clinical phenotype is very mild BMD, with ambulation preserved into the seventh decade. We identify the molecular mechanism responsible for the amelioration of disease severity to be initiation of translation at two proximate AUG codons within exon 6. Analysis of large mutational data sets suggests that this may be a general mechanism of phenotypic rescue for point mutations within at least the first two exons of the DMD gene. Our results directly demonstrate, for the first time, the use of alternate translational initiation codons within the DMD gene, and suggest that dystrophin protein lacking amino acids encoded by the first five exons retains significant function.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The systems for mRNA surveillance, capping, and cleavage/polyadenylation are proposed to play pivotal roles in the physical establishment and distribution of spliceosomal introns along a transcript.
Collapse
|
31
|
Abstract
Translation and mRNA decay are coupled processes; the link is most obvious in the case of NMD (nonsense-mediated mRNA decay). NMD is a mechanism that drastically reduces the level of mRNA harbouring PTCs (premature translation termination codons). The defining event in NMD is premature translation termination and the key question is: what distinguishes premature from normal translation termination? Surprisingly, in mammalian cells, PTC recognition is linked to pre-mRNA splicing. Here, we review the current understanding in view of recent developments.
Collapse
|
32
|
Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region. PLoS Biol 2008; 6:e92. [PMID: 18447580 PMCID: PMC2689704 DOI: 10.1371/journal.pbio.0060092] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 03/04/2008] [Indexed: 12/23/2022] Open
Abstract
Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. “Normal” termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation. Correct expression of the genetic information is essential for life, and several quality control systems have evolved to ensure accurate protein synthesis. One of these processes, termed nonsense-mediated mRNA decay (NMD), detects inappropriate termination of mRNA translation at premature termination codons (PTCs) and triggers degradation of the aberrant mRNA. Although the occurrence of NMD is well documented in yeast, worms, flies, mammals, and plants, the mechanism by which a termination event is defined as premature is still unclear, and different models have been proposed for different species. For mammals, the current prevailing view is that a termination codon is identified as premature and elicits NMD when it is located upstream of the 3′-most exon junction complex. However, well-documented examples of NMD triggered by PTCs in the last exon challenge this “mammalian NMD model.” Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel, translation-dependent mechanism for posttranscriptional gene regulation. The physical distance to the poly(A) tail is a crucial determinant to define a termination codon as premature in human cells. This indicates evolutionary conservation of the basic mechanism of nonsense-mediated mRNA decay and provides a novel mechanism for translation-dependent posttranscriptional gene regulation.
Collapse
|
33
|
Stalder L, Mühlemann O. The meaning of nonsense. Trends Cell Biol 2008; 18:315-21. [PMID: 18524595 DOI: 10.1016/j.tcb.2008.04.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
To ensure the accuracy of gene expression, eukaryotes have evolved several surveillance mechanisms. One of the best-studied quality control mechanisms is nonsense-mediated mRNA decay (NMD), which recognizes and degrades transcripts harboring a premature translation-termination codon (PTC), thereby preventing the production of faulty proteins. NMD regulates approximately 10% of human mRNAs, and its physiological importance is manifested by the fact that approximately 30% of disease-associated mutations generate PTCs. Although different mechanisms of PTC recognition have been proposed for different species, recent studies in Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, plants and mammals suggest a conserved model. Here, we summarize the latest results and discuss an emerging model for NMD and its implications for the regulation of gene expression.
Collapse
Affiliation(s)
- Lukas Stalder
- Institute of Cell Biology, University of Berne, Baltzerstrabetae 4, 3012 Berne, Switzerland
| | | |
Collapse
|
34
|
Silva AL, Ribeiro P, Inácio A, Liebhaber SA, Romão L. Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA (NEW YORK, N.Y.) 2008; 14:563-76. [PMID: 18230761 PMCID: PMC2248256 DOI: 10.1261/rna.815108] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
mRNA surveillance pathways selectively clear defective mRNAs from the cell. As such, these pathways serve as important modifiers of genetic disorders. Nonsense-mediated decay (NMD), the most intensively studied surveillance pathway, recognizes mRNAs with premature termination codons (PTCs). In mammalian systems the location of a PTC more than 50 nucleotides 5' to the terminal exon-exon junction is a critical determinant of NMD. However, mRNAs with nonsense codons that fulfill this requirement but are located very early in the open reading frame can effectively evade NMD. The unexpected resistance of such mRNAs with AUG-proximal PTCs to accelerated decay suggests that important determinants of NMD remain to be identified. Here, we report that an NMD-sensitive mRNA can be stabilized by artificially tethering the cytoplasmic poly(A) binding protein 1, PABPC1, at a PTC-proximal position. Remarkably, the data further suggest that NMD of an mRNA with an AUG-proximal PTC can also be repressed by PABPC1, which might be brought into proximity with the PTC during cap-dependent translation and 43S scanning. These results reveal a novel parameter of NMD in mammalian cells that can account for the stability of mRNAs with AUG-proximal PTCs. These findings serve to expand current mechanistic models of NMD and mRNA translation.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
35
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Lykke-Andersen S, Piñol-Roma S, Kjems J. Alternative splicing of the ADAR1 transcript in a region that functions either as a 5'-UTR or an ORF. RNA (NEW YORK, N.Y.) 2007; 13:1732-44. [PMID: 17698644 PMCID: PMC1986812 DOI: 10.1261/rna.567807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The ADAR enzymes mediate the hydrolytic deamination of adenosines in specific RNA substrates and thereby diversify both the transcriptome and the proteome in metazoan species. Three promoters drive the transcription from the ADAR1 gene yielding the ADAR1-A, -B, and -C transcripts, which, in turn, lead to the production of two protein isoforms, namely, iADAR1 and cADAR1. In this study, we establish the presence of a previously unidentified alternative intron within the 5'-end of the common second exon of mRNAs encoding ADAR1 in primate species-a region that can function either as a 5'-UTR or an ORF. In addition, it is shown that the relative expression of the three promoter-specific ADAR1 transcripts is tissue specific and that the novel intron is excised from all transcripts, but at different relative levels indicating a specific regulation of the alternative splicing. Finally, possible functional consequences of the splicing are investigated. From these studies, we conclude that the alternatively spliced ADAR1-A transcript is immune to nonsense-mediated decay although it is a potential substrate. Moreover, this transcript is associated with translating ribosomes, which suggests that a truncated version of iADAR1 is expressed.
Collapse
|
37
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
38
|
Spellman R, Llorian M, Smith CW. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 2007; 27:420-34. [PMID: 17679092 PMCID: PMC1940037 DOI: 10.1016/j.molcel.2007.06.016] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/11/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
Among the targets of the repressive splicing regulator, polypyrimidine tract binding protein (PTB) is its own pre-mRNA, where PTB-induced exon 11 skipping produces an RNA substrate for nonsense-mediated decay (NMD). To identify additional PTB-regulated alternative splicing events, we used quantitative proteomic analysis of HeLa cells after knockdown of PTB. Apart from loss of PTB, the only change was upregulation of the neuronally restricted nPTB, resulting from decreased skipping of nPTB exon 10, a splicing event that leads to NMD of nPTB mRNA. Compared with knockdown of PTB alone, simultaneous knockdown of PTB and nPTB led to larger changes in alternative splicing of known and newly identified PTB-regulated splicing events. Strikingly, the hematopoietic PTB paralog ROD1 also switched from a nonproductive splicing pathway upon PTB/nPTB knockdown. Our data indicate crossregulation between PTB and its paralogs via nonproductive alternative splicing and a large degree of functional overlap between PTB and nPTB.
Collapse
Affiliation(s)
- Rachel Spellman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christopher W.J. Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- Corresponding author
| |
Collapse
|
39
|
Kong J, Liebhaber SA. A cell type-restricted mRNA surveillance pathway triggered by ribosome extension into the 3' untranslated region. Nat Struct Mol Biol 2007; 14:670-6. [PMID: 17572684 DOI: 10.1038/nsmb1256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/27/2007] [Indexed: 11/09/2022]
Abstract
The accuracy of eukaryotic gene expression is monitored at multiple levels. Surveillance pathways have been identified that degrade messenger RNAs containing nonsense mutations, harboring stalled ribosomes or lacking termination codons. Here we report a previously uncharacterized surveillance pathway triggered by ribosome extension into the 3' untranslated region. This ribosome extension-mediated decay, REMD, accounts for marked repression of protein synthesis from a human alpha-globin gene containing a prevalent antitermination mutation. REMD can be mechanistically distinguished from other surveillance pathways by its functional linkage to accelerated deadenylation, by its independence from the NMD factor Upf1 and by cell-type restriction. This unusual pathway of mRNA surveillance is likely to act as a modifier of additional genetic defects and may reflect post-transcriptional controls particular to erythroid and other differentiated cell lineages.
Collapse
Affiliation(s)
- Jian Kong
- Department of Genetics and Department of Medicine, University of Pennsylvania School of Medicine, 415 Curie Blvd., CRB 430, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
40
|
Inácio A, Silva AL, Morgado A, Pereira FJC, Lavinha J, Romão L. Comment on 'Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease'. Eur J Hum Genet 2007; 15:533-4; author reply 534. [PMID: 17342150 DOI: 10.1038/sj.ejhg.5201808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|