1
|
Ye X, Li Z, Ye S, Liang X, Bao C, He M, Wang H, Xia L, Cao X. Accurate identification of 8-oxoguanine in RNA with single-nucleotide resolution using ligase-dependent qPCR. Org Biomol Chem 2024; 22:5629-5635. [PMID: 38912549 DOI: 10.1039/d4ob00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.
Collapse
Affiliation(s)
- Xidong Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zengguang Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shangde Ye
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xinqi Liang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chenyu Bao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Mingyang He
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hailan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xin Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
3
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
5
|
Site-specific quantification of 5-carboxylcytosine in DNA by chemical conversion coupled with ligation-based PCR. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
7
|
Li W, Wang F, Chen Y, Weng X, Zhou X. A sensitive and radiolabeling-free method for pseudouridine detection. Anal Biochem 2019; 581:113350. [PMID: 31255565 DOI: 10.1016/j.ab.2019.113350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/28/2023]
Abstract
Existing methodologies for detecting Pseudouridine (Ψ) mostly use CMCT labeling or radiolabeling. Described herein is a sensitive and quantitative method for Ψ detection that does not need this labelling. This approach combines the selectivity of a 10-23 DNAzyme, which can distinguish Ψ from uridine (U), with rolling circle amplification (RCA) to increase the sensitivity of the assay.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, 430072, PR China
| |
Collapse
|
8
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
9
|
Motorin Y, Marchand V. Detection and Analysis of RNA Ribose 2'-O-Methylations: Challenges and Solutions. Genes (Basel) 2018; 9:genes9120642. [PMID: 30567409 PMCID: PMC6316082 DOI: 10.3390/genes9120642] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Ribose 2'-O-methylation is certainly one of the most common RNA modifications found in almost any type of cellular RNA. It decorates transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs) (and most probably small nucleolar RNAs, snoRNAs), as well as regulatory RNAs like microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and finally, eukaryotic messenger RNAs (mRNAs). Due to this exceptional widespread of RNA 2'-O-methylation, considerable efforts were made in order to precisely map these numerous modifications. Extensive studies of RNA 2'-O-methylation were also stimulated by the discovery of C/D-box snoRNA-guided machinery, which insures site-specific modification of hundreds 2'-O-methylated residues in archaeal and eukaryotic rRNAs and some other RNAs. In this brief review we discussed both traditional approaches of RNA biochemistry and also modern deep sequencing-based methods, used for detection/mapping and quantification of RNA 2'-O-methylations.
Collapse
Affiliation(s)
- Yuri Motorin
- UMR7365 IMoPA, Biopôle, CNRS-Lorraine University, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.
| | - Virginie Marchand
- UMS2008 IBSLor, Biopôle, CNRS-Lorraine University-INSERM, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
10
|
Visualizing the Role of 2'-OH rRNA Methylations in the Human Ribosome Structure. Biomolecules 2018; 8:biom8040125. [PMID: 30366442 PMCID: PMC6316459 DOI: 10.3390/biom8040125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023] Open
Abstract
Chemical modifications of RNA have recently gained new attention in biological sciences. They occur notably on messenger RNA (mRNA) and ribosomal RNA (rRNA) and are important for various cellular functions, but their molecular mechanism of action is yet to be understood in detail. Ribosomes are large ribonucleoprotein assemblies, which synthesize proteins in all organisms. Human ribosomes, for example, carry more than 200 modified nucleotides, which are introduced during biogenesis. Chemically modified nucleotides may appear to be only scarcely different from canonical nucleotides, but modifications such as methylations can in fact modulate their chemical and topological properties in the RNA and alter or modulate the overall translation efficiency of the ribosomes resulting in dysfunction of the translation machinery. Recent functional analysis and high-resolution ribosome structures have revealed a large repertoire of modification sites comprising different modification types. In this review, we focus on 2′-O-methylations (2′-O-Me) and discuss the structural insights gained through our recent cryo electron microscopy (cryo-EM) high-resolution structural analysis of the human ribosome, such as their locations and their influence on the secondary and tertiary structures of human rRNAs. The detailed analysis presented here reveals that ribose conformations of the rRNA backbone differ when the 2′-OH hydroxyl position is methylated, with 3′-endo conformations being the default and the 2′-endo conformations being characteristic in that the associated base is flipped-out. We compare currently known 2′-O-Me sites in human rRNAs evaluated using RiboMethSeq and cryo-EM structural analysis and discuss their involvement in several human diseases.
Collapse
|
11
|
Filippova JA, Semenov DV, Juravlev ES, Komissarov AB, Richter VA, Stepanov GA. Modern Approaches for Identification of Modified Nucleotides in RNA. BIOCHEMISTRY (MOSCOW) 2018; 82:1217-1233. [PMID: 29223150 DOI: 10.1134/s0006297917110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review considers approaches for detection of modified monomers in the RNA structure of living organisms. Recently, some data on dynamic alterations in the pool of modifications of the key RNA species that depend on external factors affecting the cells and physiological conditions of the whole organism have been accumulated. The recent studies have presented experimental data on relationship between the mechanisms of formation of modified/minor nucleotides of RNA in mammalian cells and the development of various pathologies. The development of novel methods for detection of chemical modifications of RNA nucleotides in the cells of living organisms and accumulation of knowledge on the contribution of modified monomers to metabolism and functioning of individual RNA species establish the basis for creation of novel diagnostic and therapeutic approaches. This review includes a short description of routine methods for determination of modified nucleotides in RNA and considers in detail modern approaches that enable not only detection but also quantitative assessment of the modification level of various nucleotides in individual RNA species.
Collapse
Affiliation(s)
- J A Filippova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
12
|
Lei Z, Yi C. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences; Peking-Tsinghua Center for Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
13
|
Lei Z, Yi C. A Radiolabeling-Free, qPCR-Based Method for Locus-Specific Pseudouridine Detection. Angew Chem Int Ed Engl 2017; 56:14878-14882. [DOI: 10.1002/anie.201708276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences; Peking-Tsinghua Center for Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
14
|
|
15
|
Li X, Ma S, Yi C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol 2016; 33:108-16. [PMID: 27348156 DOI: 10.1016/j.cbpa.2016.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
More than 100 different types of chemical modifications to RNA have been documented so far. Historically, most of these modifications were found in rRNA, tRNA and snRNA; recently, new methods aided by high-throughput sequencing have enabled identification of chemical modifications to mRNA, leading to the emerging field of 'RNA epigenetics'. One such example is pseudouridine, which has long been known as a RNA modification in abundant non-coding RNA (ncRNA) and has recently been found to be present in mRNAas well. This review first summarizes biogenesis and known functions of pseudouridine in ncRNAs. We then focus on progress in pseudouridine detection, especially the chemical-assisted, transcriptome-wide sequencing tools that revealed the dynamic nature of mRNA pseudouridylation. Such enabling tools are expected to facilitate future functional studies of pseudouridine.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shiqing Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Huang C, Karijolich J, Yu YT. Detection and quantification of RNA 2'-O-methylation and pseudouridylation. Methods 2016; 103:68-76. [PMID: 26853326 DOI: 10.1016/j.ymeth.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022] Open
Abstract
RNA-guided RNA modification is a naturally occurring process that introduces 2'-O-methylation and pseudouridylation into rRNA, spliceosomal snRNA and several other types of RNA. The Box C/D ribonucleoproteins (RNP) and Box H/ACA RNP, each containing one unique guide RNA (Box C/D RNA or Box H/ACA RNA) and a set of core proteins, are responsible for 2'-O-methylation and pseudouridylation respectively. Box C/D RNA and Box H/ACA RNA provide the modification specificity through base pairing with their RNA substrate. These post-transcriptional modifications could profoundly alter the properties and functions of substrate RNAs. Thus it is desirable to establish reliable and standardized modification methods to study biological functions of modified nucleotides in RNAs. Here, we present several sensitive and efficient methods and protocols for detecting and quantifying post-transcriptional 2'-O-methylation and pseudouridylation.
Collapse
Affiliation(s)
- Chao Huang
- Department of Process Development, Bristol-Myers Squibb Company, 6000 Thompson Road, East Syracuse, NY 13027, USA.
| | - John Karijolich
- Department of Plant and Microbial Biology, University of California, 565 Li Ka Shing Center #3370, Berkeley, CA 94720-337, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Chen YA, Obliosca JM, Liu YL, Liu C, Gwozdz ML, Yeh HC. NanoCluster Beacons Enable Detection of a Single N⁶-Methyladenine. J Am Chem Soc 2015; 137:10476-9. [PMID: 26261877 DOI: 10.1021/jacs.5b06038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While N(6)-methyladenine (m(6)A) is a common modification in prokaryotic and lower eukaryotic genomes and has many biological functions, there is no simple and cost-effective way to identify a single N(6)-methyladenine in a nucleic acid target. Here we introduce a robust, simple, enzyme-free and hybridization-based method using a new silver cluster probe, termed methyladenine-specific NanoCluster Beacon (maNCB), which can detect single m(6)A in DNA targets based on the fluorescence emission spectra of silver clusters. Not only can maNCB identify m(6)A at the single-base level but it also can quantify the extent of adenine methylation in heterogeneous samples. Our method is superior to high-resolution melting analysis as we can pinpoint the location of m(6)A in the target.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Judy M Obliosca
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Yen-Liang Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Mary L Gwozdz
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
18
|
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl 2014; 54:451-5. [PMID: 25417815 DOI: 10.1002/anie.201408362] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/07/2022]
Abstract
Ribose methylations are the most abundant chemical modifications of ribosomal RNA and are critical for ribosome assembly and fidelity of translation. Many aspects of ribose methylations have been difficult to study due to lack of efficient mapping methods. Here, we present a sequencing-based method (RiboMeth-seq) and its application to yeast ribosomes, presently the best-studied eukaryotic model system. We demonstrate detection of the known as well as new modifications, reveal partial modifications and unexpected communication between modification events, and determine the order of modification at several sites during ribosome biogenesis. Surprisingly, the method also provides information on a subset of other modifications. Hence, RiboMeth-seq enables a detailed evaluation of the importance of RNA modifications in the cells most sophisticated molecular machine. RiboMeth-seq can be adapted to other RNA classes, for example, mRNA, to reveal new biology involving RNA modifications.
Collapse
Affiliation(s)
- Ulf Birkedal
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark)
| | | | | | | | | | | |
Collapse
|
19
|
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. Profiling of Ribose Methylations in RNA by High-Throughput Sequencing. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Lee KW, Bogenhagen DF. Assignment of 2'-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 2014; 289:24936-24942. [PMID: 25074936 DOI: 10.21074/jbc.c24114.581868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Advances in proteomics and large scale studies of potential mitochondrial proteins have led to the identification of many novel mitochondrial proteins in need of further characterization. Among these novel proteins are three mammalian rRNA methyltransferase family members RNMTL1, MRM1, and MRM2. MRM1 and MRM2 have bacterial and yeast homologs, whereas RNMTL1 appears to have evolved later in higher eukaryotes. We recently confirmed the localization of the three proteins to mitochondria, specifically in the vicinity of mtDNA nucleoids. In this study, we took advantage of the ability of 2'-O-ribose modification to block site-specific cleavage of RNA by DNAzymes to show that MRM1, MRM2, and RNMTL1 are responsible for modification of human large subunit rRNA at residues G(1145), U(1369), and G(1370), respectively.
Collapse
Affiliation(s)
- Ken-Wing Lee
- From the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F Bogenhagen
- From the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
21
|
Lee KW, Bogenhagen DF. Assignment of 2'-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 2014; 289:24936-42. [PMID: 25074936 DOI: 10.1074/jbc.c114.581868] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Advances in proteomics and large scale studies of potential mitochondrial proteins have led to the identification of many novel mitochondrial proteins in need of further characterization. Among these novel proteins are three mammalian rRNA methyltransferase family members RNMTL1, MRM1, and MRM2. MRM1 and MRM2 have bacterial and yeast homologs, whereas RNMTL1 appears to have evolved later in higher eukaryotes. We recently confirmed the localization of the three proteins to mitochondria, specifically in the vicinity of mtDNA nucleoids. In this study, we took advantage of the ability of 2'-O-ribose modification to block site-specific cleavage of RNA by DNAzymes to show that MRM1, MRM2, and RNMTL1 are responsible for modification of human large subunit rRNA at residues G(1145), U(1369), and G(1370), respectively.
Collapse
Affiliation(s)
- Ken-Wing Lee
- From the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F Bogenhagen
- From the Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
22
|
Lohman GJS, Zhang Y, Zhelkovsky AM, Cantor EJ, Evans TC. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase. Nucleic Acids Res 2013; 42:1831-44. [PMID: 24203707 PMCID: PMC3919565 DOI: 10.1093/nar/gkt1032] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) < 1 nM at 25 °C under conditions where T4 DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.
Collapse
Affiliation(s)
- Gregory J S Lohman
- DNA Enzymes Division, New England BioLabs, Inc., Ipswich, MA 01938-2723, USA, RNA Biology Division, New England BioLabs, Inc., Ipswich, MA 01938-2723, USA and Applications Development, New England BioLabs, Inc., Ipswich, MA 01938-2723, USA
| | | | | | | | | |
Collapse
|
23
|
Dong ZW, Shao P, Diao LT, Zhou H, Yu CH, Qu LH. RTL-P: a sensitive approach for detecting sites of 2'-O-methylation in RNA molecules. Nucleic Acids Res 2012; 40:e157. [PMID: 22833606 PMCID: PMC3488209 DOI: 10.1093/nar/gks698] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2′-O-methylation is present within various cellular RNAs and is essential to RNA biogenesis and functionality. Several methods have been developed for the identification and localization of 2′-O-methylated sites in RNAs; however, the detection of RNA modifications, especially in low-abundance RNAs and small non-coding RNAs with a 2′-O-methylation at the 3′-end, remains a difficult task. Here, we introduce a new method to detect 2′-O-methylated sites in diverse RNA species, referred to as RTL-P [Reverse Transcription at Low deoxy-ribonucleoside triphosphate (dNTP) concentrations followed by polymerase chain reaction (PCR)] that demonstrates precise mapping and superior sensitivity compared with previous techniques. The main procedures of RTL-P include a site-specific primer extension by reverse transcriptase at a low dNTP concentration and a semi-quantitative PCR amplification step. No radiolabeled or fluorescent primers are required. By designing specific RT primers, we used RTL-P to detect both previously identified and novel 2′-O-methylated sites in human and yeast ribosomal RNAs (rRNAs), as well as mouse piwi-interacting RNAs (piRNAs). These results demonstrate the powerful application of RTL-P for the systematic analysis of fully or partially methylated residues in diverse RNA species, including low-abundance RNAs or small non-coding RNAs such as piRNAs and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Zhi-Wei Dong
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Korlach J, Turner SW. Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 2012; 22:251-61. [PMID: 22575758 DOI: 10.1016/j.sbi.2012.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/01/2022]
Abstract
DNA sequencing has provided a wealth of information about biological systems, but thus far has focused on the four canonical bases, and 5-methylcytosine through comparison of the genomic DNA sequence to a transformed four-base sequence obtained after treatment with bisulfite. However, numerous other chemical modifications to the nucleotides are known to control fundamental life functions, influence virulence of pathogens, and are associated with many diseases. These modifications cannot be accessed with traditional sequencing methods. In this opinion, we highlight several emerging single-molecule sequencing techniques that have the potential to directly detect many types of DNA modifications as an integral part of the sequencing protocol.
Collapse
Affiliation(s)
- Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, United States.
| | | |
Collapse
|
25
|
Yu AT, Ge J, Yu YT. Pseudouridines in spliceosomal snRNAs. Protein Cell 2011; 2:712-25. [PMID: 21976061 PMCID: PMC4722041 DOI: 10.1007/s13238-011-1087-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Spliceosomal RNAs are a family of small nuclear RNAs (snRNAs) that are essential for pre-mRNA splicing. All vertebrate spliceosomal snRNAs are extensively pseudouridylated after transcription. Pseudouridines in spliceosomal snRNAs are generally clustered in regions that are functionally important during splicing. Many of these modified nucleotides are conserved across species lines. Recent studies have demonstrated that spliceosomal snRNA pseudouridylation is catalyzed by two different mechanisms: an RNA-dependent mechanism and an RNA-independent mechanism. The functions of the pseudouridines in spliceosomal snRNAs (U2 snRNA in particular) have also been extensively studied. Experimental data indicate that virtually all pseudouridines in U2 snRNA are functionally important. Besides the currently known pseudouridines (constitutive modifications), recent work has also indicated that pseudouridylation can be induced at novel positions under stress conditions, thus strongly suggesting that pseudouridylation is also a regulatory modification.
Collapse
Affiliation(s)
- Andrew T. Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
26
|
Affiliation(s)
- M. V. Kovalchuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
27
|
Dai Q, Saikia M, Li NS, Pan T, Piccirilli JA. Efficient chemical synthesis of AppDNA by adenylation of immobilized DNA-5'-monophosphate. Org Lett 2010; 11:1067-70. [PMID: 19191584 DOI: 10.1021/ol802815g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AppDNA is an intermediate in enzyme-catalyzed DNA ligation reactions, and its efficient enzymatic synthesis requires a donor-template duplex of at least 11 base pairs in length. An efficient chemical synthesis of AppDNA with the coupling of an adenosine 5'-phosphorimidazolidate to an immobilized DNA-5'-monophosphate as the key step is described. The adenylation efficiencies of DNA-5'-monophosphate were excellent for oligonucleotides containing less than 11 nucleotides and at least 50% for oligonucleotides containing 15-25 nucleotides.
Collapse
Affiliation(s)
- Qing Dai
- Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Nickens DG, Bardiya N, Patterson JT, Burke DH. Template-directed ligation of tethered mononucleotides by t4 DNA ligase for kinase ribozyme selection. PLoS One 2010; 5:e12368. [PMID: 20811490 PMCID: PMC2927549 DOI: 10.1371/journal.pone.0012368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/27/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 5' or 2' OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated. METHODOLOGY/PRINCIPAL FINDINGS This study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a tethered monodeoxynucleoside has acquired a 5' phosphate. The ligation reaction therefore mimics the partition step of a selection for nucleoside kinase (deoxy)ribozymes. Ligation with tethered substrates was considerably slower than with nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides across from the flexible tether, according to the trends: A(2)>A(1)>A(3)>A(4)>A(0)>A(6)>A(8)>A(10) and T(2)>T(3)>T(4)>T(6) approximately T(1)>T(8)>T(10). Bridging T's generally gave higher yield of ligated product than bridging A's. ATP concentrations above 33 microM accumulated adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated enzyme. Under optimized conditions, T4 DNA ligase efficiently (>90%) joined a correctly paired, or TratioG wobble-paired, substrate on the 3' side of the ligation junction while discriminating approximately 100-fold against most mispaired substrates. Tethered dC and dG gave the highest ligation rates and yields, followed by tethered deoxyinosine (dI) and dT, with the slowest reactions for tethered dA. The same kinetic trends were observed in ligase-mediated capture in complex reaction mixtures with multiple substrates. The "universal" analog 5-nitroindole (dNI) did not support ligation when used as the tethered nucleotide. CONCLUSIONS/SIGNIFICANCE Our results reveal a novel activity for T4 DNA ligase (template-directed ligation of a tethered mononucleotide) and establish this partition scheme as being suitable for the selection of ribozymes that phosphorylate mononucleoside substrates.
Collapse
Affiliation(s)
- David G. Nickens
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nirmala Bardiya
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - James T. Patterson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Donald H. Burke
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
29
|
Targeted 2'-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo. Mol Cell Biol 2010; 30:4368-78. [PMID: 20647541 DOI: 10.1128/mcb.00384-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Telomerase RNA is an essential component of telomerase, a ribonucleoprotein enzyme that maintains chromosome ends in most eukaryotes. Here we employ a novel approach, namely, RNA-guided RNA modification, to assess whether introducing 2'-O methylation into telomerase RNA can influence telomerase activity in vivo. We generate specific 2'-O methylation sites in and adjacent to the triple helix (within the conserved pseudoknot structure) of Saccharomyces cerevisiae telomerase RNA (TLC1). We show that 2'-O methylation at U809 reduces telomerase activity, resulting in telomere shortening, whereas 2'-O methylation at A804 or A805 leads to moderate telomere lengthening. Importantly, we also show that targeted 2'-O methylation does not affect TLC1 levels and that 2'-O-methylated TLC1 appears to be efficiently assembled into telomerase ribonucleoprotein. Our results demonstrate that RNA-guided RNA modification is a highly useful approach for modulating telomerase activity.
Collapse
|
30
|
Abstract
RNA modifications impact numerous cellular processes such as pre-mRNA splicing and protein synthesis. The elucidation of the mechanisms by which these modifications impact cellular processes necessitates the ability to both detect and quantify the presence of these modifications within RNA molecules. Here, we present a detailed procedure that allows the detection and quantification of RNA base modifications. This procedure involves a number of techniques, including oligonucleotide-affinity selection, site-specific cleavage and radiolabeling, nuclease digestion, and thin layer chromatography.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
31
|
Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 2010; 37:7268-80. [PMID: 19783824 PMCID: PMC2790902 DOI: 10.1093/nar/gkp787] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased proliferation and elevated levels of protein synthesis are characteristics of transformed and tumor cells. Though components of the translation machinery are often misregulated in cancers, what role tRNA plays in cancer cells has not been explored. We compare genome-wide tRNA expression in cancer-derived versus non-cancer-derived breast cell lines, as well as tRNA expression in breast tumors versus normal breast tissues. In cancer-derived versus non-cancer-derived cell lines, nuclear-encoded tRNAs increase by up to 3-fold and mitochondrial-encoded tRNAs increase by up to 5-fold. In tumors versus normal breast tissues, both nuclear- and mitochondrial-encoded tRNAs increase up to 10-fold. This tRNA over-expression is selective and coordinates with the properties of cognate amino acids. Nuclear- and mitochondrial-encoded tRNAs exhibit distinct expression patterns, indicating that tRNAs can be used as biomarkers for breast cancer. We also performed association analysis for codon usage-tRNA expression for the cell lines. tRNA isoacceptor expression levels are not geared towards optimal translation of house-keeping or cell line specific genes. Instead, tRNA isoacceptor expression levels may favor the translation of cancer-related genes having regulatory roles. Our results suggest a functional consequence of tRNA over-expression in tumor cells. tRNA isoacceptor over-expression may increase the translational efficiency of genes relevant to cancer development and progression.
Collapse
Affiliation(s)
- Mariana Pavon-Eternod
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
32
|
Anomalous electrophoretic migration of newly synthesized ribosomal RNAs and their precursors from cells with DKC1 mutations. FEBS Lett 2009; 583:3086-90. [PMID: 19729012 DOI: 10.1016/j.febslet.2009.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/17/2009] [Accepted: 08/25/2009] [Indexed: 01/29/2023]
Abstract
Mutations in the X-linked gene, DKC1, encoding dyskerin, cause dyskeratosis congenita by leading to decreased telomerase activity and causing short telomeres. Dyskerin is also a pseudouridine synthase that modifies nascent ribosomal and other RNAs and it is not known if this function is affected by the mutations. Here we show that newly synthesized ribosomal RNA, extracted from human and mouse cells with pathogenic mutations, shows anomalous mobility in agarose gels under certain denaturation conditions. The anomalously migrating RNA is turned over rapidly. Analysis of ribosomal RNA in these cells suggests the altered mobility is due to inefficient pseudouridylation.
Collapse
|
33
|
Hengesbach M, Meusburger M, Lyko F, Helm M. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA (NEW YORK, N.Y.) 2008; 14:180-187. [PMID: 17998290 PMCID: PMC2151034 DOI: 10.1261/rna.742708] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/15/2007] [Indexed: 05/25/2023]
Abstract
Post-transcriptional ribonucleotide modifications are widespread and abundant processes that have not been analyzed adequately due to the lack of appropriate detection methods. Here, two methods for the analysis of modified nucleotides in RNA are presented that are based on the quantitative and site-specific DNAzyme-mediated cleavage of the target RNA at or near the site of modification. Quantitative RNA cleavage is achieved by cycling the DNAzyme and its RNA substrate through repeated periods of heating and cooling. In a first approach, DNAzyme-directed cleavage directly 5' of the residue in question allows radioactive labeling of the newly freed 5'-OH. After complete enzymatic hydrolysis, the modification status can be assessed by two-dimensional thin layer chromatography. In a second approach, oligoribonucleotide fragments comprising the modification site are excised from the full-length RNA in an endonucleolytic fashion, using a tandem DNAzyme. The excised fragment is isolated by electrophoresis and submitted to further conventional analysis. These results establish DNAzymes as valuable tools for the site-specific and highly sensitive detection of ribonucleotide modifications.
Collapse
Affiliation(s)
- Martin Hengesbach
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Dai Q, Fong R, Saikia M, Stephenson D, Yu YT, Pan T, Piccirilli JA. Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine. Nucleic Acids Res 2007; 35:6322-9. [PMID: 17881375 PMCID: PMC2094055 DOI: 10.1093/nar/gkm657] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Over 100 chemical types of RNA modifications have been identified in thousands of sites in all three domains of life. Recent data suggest that modifications function synergistically to mediate biological function, and that cells may coordinately modulate modification levels for regulatory purposes. However, this area of RNA biology remains largely unexplored due to the lack of robust, high-throughput methods to quantify the extent of modification at specific sites. Recently, we developed a facile enzymatic ligation-based method for detection and quantitation of methylated 2′-hydroxyl groups within RNA. Here we exploit the principles of molecular recognition and nucleic acid chemistry to establish the experimental parameters for ligation-based detection and quantitation of pseudouridine (Ψ) and N6-methyladenosine (m6A), two abundant modifications in eukaryotic rRNA/tRNA and mRNA, respectively. Detection of pseudouridylation at several sites in the large subunit rRNA derived from yeast demonstrates the feasibility of the approach for analysis of pseudouridylation in biological RNA samples.
Collapse
Affiliation(s)
- Qing Dai
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert Fong
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mridusmita Saikia
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David Stephenson
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-tao Yu
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, Department of Chemistry and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
- *To whom correspondence should be addressed. +1 773 702 9312+1 773 702 0271 Correspondence may also be addressed to Tao Pan. +1 773 702 4179+1 773 702 0439; E-mail:
| |
Collapse
|