1
|
Popova A, Jain N, Dong X, Abdollah-Nia F, Britton R, Williamson J. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. Nucleic Acids Res 2024; 52:11203-11217. [PMID: 39036956 PMCID: PMC11472175 DOI: 10.1093/nar/gkae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
- INSITRO, 279 E Grand Ave., South San Francisco, CA 94080, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Leppik M, Pomerants L, Põldes A, Mihkelson P, Remme J, Tamm T. Loss of Conserved rRNA Modifications in the Peptidyl Transferase Center Leads to Diminished Protein Synthesis and Cell Growth in Budding Yeast. Int J Mol Sci 2024; 25:5194. [PMID: 38791231 PMCID: PMC11121408 DOI: 10.3390/ijms25105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia; (M.L.); (L.P.); (A.P.); (P.M.); (J.R.)
| |
Collapse
|
3
|
Narayan G, Gracia Mazuca LA, Cho SS, Mohl JE, Koculi E. RNA Post-transcriptional Modifications of an Early-Stage Large-Subunit Ribosomal Intermediate. Biochemistry 2023; 62:2908-2915. [PMID: 37751522 PMCID: PMC11088935 DOI: 10.1021/acs.biochem.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Protein production by ribosomes is fundamental to life, and proper assembly of the ribosome is required for protein production. The RNA, which is post-transcriptionally modified, provides the platform for ribosome assembly. Thus, a complete understanding of ribosome assembly requires the determination of the RNA post-transcriptional modifications in all of the ribosome assembly intermediates and on each pathway. There are 26 RNA post-transcriptional modifications in 23S RNA of the mature Escherichia coli (E. coli) large ribosomal subunit. The levels of these modifications have been investigated extensively only for a small number of large subunit intermediates and under a limited number of cellular and environmental conditions. In this study, we determined the level of incorporations of 2-methyl adenosine, 3-methyl pseudouridine, 5-hydroxycytosine, and seven pseudouridines in an early-stage E. coli large-subunit assembly intermediate with a sedimentation coefficient of 27S. The 27S intermediate is one of three large subunit intermediates accumulated in E. coli cells lacking the DEAD-box RNA helicase DbpA and expressing the helicase inactive R331A DbpA construct. The majority of the investigated modifications are incorporated into the 27S large subunit intermediate to similar levels to those in the mature 50S large subunit, indicating that these early modifications or the enzymes that incorporate them play important roles in the initial events of large subunit ribosome assembly.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Escherichia coli/genetics
- Escherichia coli/metabolism
- RNA, Bacterial/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/chemistry
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Pseudouridine/metabolism
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Gyan Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis A Gracia Mazuca
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jonathon E Mohl
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eda Koculi
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
4
|
Strassler SE, Bowles IE, Dey D, Jackman JE, Conn GL. Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases. J Biol Chem 2022; 298:102393. [PMID: 35988649 PMCID: PMC9508554 DOI: 10.1016/j.jbc.2022.102393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/25/2022] Open
Abstract
The SpoU-TrmD (SPOUT) methyltransferase superfamily was designated when structural similarity was identified between the transfer RNA-modifying enzymes TrmH (SpoU) and TrmD. SPOUT methyltransferases are found in all domains of life and predominantly modify transfer RNA or ribosomal RNA substrates, though one instance of an enzyme with a protein substrate has been reported. Modifications placed by SPOUT methyltransferases play diverse roles in regulating cellular processes such as ensuring translational fidelity, altering RNA stability, and conferring bacterial resistance to antibiotics. This large collection of S-adenosyl-L-methionine-dependent methyltransferases is defined by a unique α/β fold with a deep trefoil knot in their catalytic (SPOUT) domain. Herein, we describe current knowledge of SPOUT enzyme structure, domain architecture, and key elements of catalytic function, including S-adenosyl-L-methionine co-substrate binding, beginning with a new sequence alignment that divides the SPOUT methyltransferase superfamily into four major clades. Finally, a major focus of this review will be on our growing understanding of how these diverse enzymes accomplish the molecular feat of specific substrate recognition and modification, as highlighted by recent advances in our knowledge of protein-RNA complex structures and the discovery of the dependence of one SPOUT methyltransferase on metal ion binding for catalysis. Considering the broad biological roles of RNA modifications, developing a deeper understanding of the process of substrate recognition by the SPOUT enzymes will be critical for defining many facets of fundamental RNA biology with implications for human disease.
Collapse
Affiliation(s)
- Sarah E Strassler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, Columbus, Ohio, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
5
|
Waldern JM, Smith D, Piazza CL, Bailey EJ, Schiraldi NJ, Nemati R, Fabris D, Belfort M, Novikova O. Methylation of rRNA as a host defense against rampant group II intron retrotransposition. Mob DNA 2021; 12:9. [PMID: 33678171 PMCID: PMC7938551 DOI: 10.1186/s13100-021-00237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. RESULTS To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. CONCLUSIONS Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.
Collapse
Affiliation(s)
- Justin M. Waldern
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Department of Biology, University of North Carolina, 270 Bell Tower Drive, Chapel Hill, NC 27599 USA
| | - Dorie Smith
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Carol Lyn Piazza
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - E. Jake Bailey
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Nicholas J. Schiraldi
- Academic and Research Computing Center, Information Technology Services, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Reza Nemati
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Biogen, 125 Broadway, Cambridge, MA 02142 USA
| | - Dan Fabris
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06268 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Current address: Biology Department, SUNY Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222 USA
| |
Collapse
|
6
|
Sirand-Pugnet P, Brégeon D, Béven L, Goyenvalle C, Blanchard A, Rose S, Grosjean H, Douthwaite S, Hamdane D, de Crécy-Lagard V. Reductive Evolution and Diversification of C5-Uracil Methylation in the Nucleic Acids of Mollicutes. Biomolecules 2020; 10:E587. [PMID: 32290235 PMCID: PMC7226160 DOI: 10.3390/biom10040587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Laure Béven
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Catherine Goyenvalle
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 quai Saint Bernard, CEDEX 05, F-75252 Paris, France; (D.B.); (C.G.)
| | - Alain Blanchard
- INRAE, UMR BFP, University Bordeaux, 33882 Bordeaux Villenave D’Ornon, France; (L.B.); (A.B.)
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), French Atomic Energy and Energy Commission Alternatives, CNRS, Paris-Sud University, Paris-Saclay University, Gif-sur-Yvette CEDEX, 91198 Paris, France;
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; (S.R.); (S.D.)
| | - Djemel Hamdane
- Laboratory of Biological Process Chemistry, CNRS-UMR 8229, College De France, Sorbonne University, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep 2017; 7:969. [PMID: 28428565 PMCID: PMC5430550 DOI: 10.1038/s41598-017-01186-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Eubacterial ribosomal large-subunit methyltransferase H (RlmH) methylates 23S ribosomal RNA pseudouridine 1915 (Ψ1915), which lies near the ribosomal decoding center. The smallest member of the SPOUT superfamily of methyltransferases, RlmH lacks the RNA recognition domain found in larger methyltransferases. The catalytic mechanism of RlmH enzyme is unknown. Here, we describe the structures of RlmH bound to S-adenosyl-methionine (SAM) and the methyltransferase inhibitor sinefungin. Our structural and biochemical studies reveal catalytically essential residues in the dimer-mediated asymmetrical active site. One monomer provides the SAM-binding site, whereas the conserved C-terminal tail of the second monomer provides residues essential for catalysis. Our findings elucidate the mechanism by which a small protein dimer assembles a functionally asymmetric architecture.
Collapse
|
8
|
Substrate Recognition and Modification by a Pathogen-Associated Aminoglycoside Resistance 16S rRNA Methyltransferase. Antimicrob Agents Chemother 2017; 61:AAC.00077-17. [PMID: 28289026 DOI: 10.1128/aac.00077-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
The pathogen-associated 16S rRNA methyltransferase NpmA catalyzes m1A1408 modification to block the action of structurally diverse aminoglycoside antibiotics. Here, we describe the development of a fluorescence polarization binding assay and its use, together with complementary functional assays, to dissect the mechanism of NpmA substrate recognition. These studies reveal that electrostatic interactions made by the NpmA β2/3 linker collectively are critical for docking of NpmA on a conserved 16S rRNA tertiary surface. In contrast, other NpmA regions (β5/β6 and β6/β7 linkers) contain several residues critical for optimal positioning of A1408 but are largely dispensable for 30S binding. Our data support a model for NpmA action in which 30S binding and adoption of a catalytically competent state are distinct: docking on 16S rRNA via the β2/3 linker necessarily precedes functionally critical 30S substrate-driven conformational changes elsewhere in NpmA. This model is also consistent with catalysis being completely positional in nature, as the most significant effects on activity arise from changes that impact binding or stabilization of the flipped A1408 conformation. Our results provide a molecular framework for aminoglycoside resistance methyltransferase action that may serve as a functional paradigm for related enzymes and a starting point for development of inhibitors of these resistance determinants.
Collapse
|
9
|
Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Nucleic Acids Res 2015; 43:8964-72. [PMID: 26365244 PMCID: PMC4605293 DOI: 10.1093/nar/gkv609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAIIin vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.
Collapse
Affiliation(s)
- Tatsuma Shoji
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
10
|
Liu RJ, Long T, Zhou M, Zhou XL, Wang ED. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Nucleic Acids Res 2015. [PMID: 26202969 PMCID: PMC4551947 DOI: 10.1093/nar/gkv745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TrmJ proteins from the SPOUT methyltransferase superfamily are tRNA Xm32 modification enzymes that occur in bacteria and archaea. Unlike archaeal TrmJ, bacterial TrmJ require full-length tRNA molecules as substrates. It remains unknown how bacterial TrmJs recognize substrate tRNAs and specifically catalyze a 2′-O modification at ribose 32. Herein, we demonstrate that all six Escherichia coli (Ec) tRNAs with 2′-O-methylated nucleosides at position 32 are substrates of EcTrmJ, and we show that the elbow region of tRNA, but not the amino acid acceptor stem, is needed for the methylation reaction. Our crystallographic study reveals that full-length EcTrmJ forms an unusual dimer in the asymmetric unit, with both the catalytic SPOUT domain and C-terminal extension forming separate dimeric associations. Based on these findings, we used electrophoretic mobility shift assay, isothermal titration calorimetry and enzymatic methods to identify amino acids within EcTrmJ that are involved in tRNA binding. We found that tRNA recognition by EcTrmJ involves the cooperative influences of conserved residues from both the SPOUT and extensional domains, and that this process is regulated by the flexible hinge region that connects these two domains.
Collapse
Affiliation(s)
- Ru-Juan Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tao Long
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mi Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China University of Chinese Academy of Sciences, Beijing 100039, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
11
|
Sergeeva OV, Bogdanov AA, Sergiev PV. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 2014; 117:110-8. [PMID: 25511423 DOI: 10.1016/j.biochi.2014.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
A ribosome is a ribonucleoprotein that performs the synthesis of proteins. Ribosomal RNA of all organisms includes a number of modified nucleotides, such as base or ribose methylated and pseudouridines. Methylated nucleotides are highly conserved in bacteria and some even universally. In this review we discuss available data on a set of modification sites in the most studied bacteria, Escherichia coli. While most rRNA modification enzymes are known for this organism, the function of the modified nucleotides is rarely identified.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- O V Sergeeva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143025, Russia.
| | - A A Bogdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P V Sergiev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Popova AM, Williamson JR. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 2014; 136:2058-69. [PMID: 24422502 PMCID: PMC3985470 DOI: 10.1021/ja412084b] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Post-transcriptional RNA modifications
that are introduced during
the multistep ribosome biogenesis process are essential for protein
synthesis. The current lack of a comprehensive method for a fast quantitative
analysis of rRNA modifications significantly limits our understanding
of how individual modification steps are coordinated during biogenesis
inside the cell. Here, an LC-MS approach has been developed and successfully
applied for quantitative monitoring of 29 out of 36 modified residues
in the 16S and 23S rRNA from Escherichia coli. An isotope labeling strategy is described for efficient identification
of ribose and base methylations, and a novel metabolic labeling approach
is presented to allow identification of MS-silent pseudouridine modifications.
The method was used to measure relative abundances of modified residues
in incomplete ribosomal subunits compared to a mature 15N-labeled rRNA standard, and a number of modifications in both 16S
and 23S rRNA were present in substoichiometric amounts in the preribosomal
particles. The RNA modification levels correlate well with previously
obtained profiles for the ribosomal proteins, suggesting that RNA
is modified in a schedule comparable to the association of the ribosomal
proteins. Importantly, this study establishes an efficient workflow
for a global monitoring of ribosomal modifications that will contribute
to a better understanding of mechanisms of RNA modifications and their
impact on intracellular processes in the future.
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology and ‡Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | |
Collapse
|
13
|
Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 2014; 11:1540-54. [PMID: 25616362 PMCID: PMC4615568 DOI: 10.4161/15476286.2014.992278] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA; Ingénierie Moléculaire et Physiopathologie Articulaire; BioPôle de l'Université de Lorraine; Campus Biologie-Santé; Faculté de Médecine; Vandoeuvre-les-Nancy Cedex, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| |
Collapse
|
14
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
15
|
Liu RJ, Zhou M, Fang ZP, Wang M, Zhou XL, Wang ED. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Nucleic Acids Res 2013; 41:7828-42. [PMID: 23804755 PMCID: PMC3763551 DOI: 10.1093/nar/gkt568] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike other transfer RNAs (tRNA)-modifying enzymes from the SPOUT methyltransferase superfamily, the tRNA (Um34/Cm34) methyltransferase TrmL lacks the usual extension domain for tRNA binding and consists only of a SPOUT domain. Both the catalytic and tRNA recognition mechanisms of this enzyme remain elusive. By using tRNAs purified from an Escherichia coli strain with the TrmL gene deleted, we found that TrmL can independently catalyze the methyl transfer from S-adenosyl-L-methionine to and isoacceptors without the involvement of other tRNA-binding proteins. We have solved the crystal structures of TrmL in apo form and in complex with S-adenosyl-homocysteine and identified the cofactor binding site and a possible active site. Methyltransferase activity and tRNA-binding affinity of TrmL mutants were measured to identify residues important for tRNA binding of TrmL. Our results suggest that TrmL functions as a homodimer by using the conserved C-terminal half of the SPOUT domain for catalysis, whereas residues from the less-conserved N-terminal half of the other subunit participate in tRNA recognition.
Collapse
Affiliation(s)
- Ru-Juan Liu
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
16
|
Misiura A, Pigli YZ, Boyle-Vavra S, Daum RS, Boocock MR, Rice PA. Roles of two large serine recombinases in mobilizing the methicillin-resistance cassette SCCmec. Mol Microbiol 2013; 88:1218-29. [PMID: 23651464 DOI: 10.1111/mmi.12253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 01/11/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) emerged via acquisition of a mobile element, staphylococcal cassette chromosome mec (SCCmec). Integration and excision of SCCmec is mediated by an unusual site-specific recombination system. Most variants of SCCmec encode two recombinases, CcrA and CcrB, that belong to the large serine family. Since CcrA and CcrB are always found together, we sought to address their specific roles. We show here that CcrA and CcrB can carry out both excisive and integrative recombination in Escherichia coli in the absence of any host-specific or SCCmec-encoded cofactors. CcrA and CcrB are promiscuous in their substrate choice: they act on many non-canonical pairs of recombination sites in addition to the canonical ones, which may explain tandem insertions into the SCCmec attachment site. Moreover, CcrB is always required, but CcrA is only required if one of the four half-sites is present. Recombinational activity correlates with DNA binding: CcrA recognizes only that half-site, which overlaps a conserved coding frame on the host chromosome. Therefore, we propose that CcrA serves as a specificity factor that emerged through modular evolution to enable recognition of a bacterial recombination site that is not an inverted repeat.
Collapse
Affiliation(s)
- Agnieszka Misiura
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
17
|
Leppik M, Ero R, Liiv A, Kipper K, Remme J. Different sensitivity of H69 modification enzymes RluD and RlmH to mutations in Escherichia coli 23S rRNA. Biochimie 2012; 94:1080-9. [PMID: 22586702 DOI: 10.1016/j.biochi.2012.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
18
|
Desmolaize B, Fabret C, Brégeon D, Rose S, Grosjean H, Douthwaite S. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA. Nucleic Acids Res 2011; 39:9368-75. [PMID: 21824914 PMCID: PMC3241648 DOI: 10.1093/nar/gkr626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methyltransferases that use S-adenosylmethionine (AdoMet) as a cofactor to catalyse 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, and are also found in certain Archaea. These enzymes belong to the COG2265 cluster, and the Gram-negative bacterium Escherichia coli possesses three paralogues. These comprise the methyltransferases TrmA that targets U54 in tRNAs, RlmC that modifies U747 in 23S rRNA and RlmD that is specific for U1939 in 23S rRNA. The tRNAs and rRNAs of the Gram-positive bacterium Bacillus subtilis have the same three m(5)U modifications. However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme, YefA that is a COG2265 member. A recombinant version of YefA functions in an E. coli m(5)U-null mutant adding the same two rRNA methylations. The findings suggest that during evolution, COG2265 enzymes have undergone a series of changes in target specificity and that YefA is closer to an archetypical m(5)U methyltransferase. To reflect its dual specificity, YefA is renamed RlmCD.
Collapse
Affiliation(s)
- Benoit Desmolaize
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|