1
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner JJ, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024. [PMID: 39473130 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, California, USA
- Rady Children's Hospital, San Diego, California, USA
- Sanford Consortium for Regenerative Medicine, San Diego, California, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ghule PN, Boyd JR, Kabala F, Fritz AJ, Bouffard NA, Gao C, Bright K, Macfarlane J, Seward DJ, Pegoraro G, Misteli T, Lian JB, Frietze S, Stein JL, van Wijnen AJ, Stein GS. Spatiotemporal higher-order chromatin landscape of human histone gene clusters at histone locus bodies during the cell cycle in breast cancer progression. Gene 2023; 872:147441. [PMID: 37094694 PMCID: PMC10370284 DOI: 10.1016/j.gene.2023.147441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located ∼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Fleur Kabala
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Nicole A Bouffard
- Microscopy Imaging Center, Center for Biomedical Shared Resources at the University of Vermont, 150 Firestone Building, 149 Beaumont Ave, Burlington, VT 05405, USA
| | - Cong Gao
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Kathleen Bright
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jill Macfarlane
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - David J Seward
- Department of Pathology and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes, Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Seth Frietze
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Andre J van Wijnen
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
3
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
4
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
5
|
Abstract
The current model of replication-dependent (RD) histone biosynthesis posits that RD histone gene expression is coupled to DNA replication, occurring only in S phase of the cell cycle once DNA synthesis has begun. However, several key factors in the RD histone biosynthesis pathway are up-regulated by E2F or phosphorylated by CDK2, suggesting these processes may instead begin much earlier, at the point of cell-cycle commitment. In this study, we use both fixed- and live-cell imaging of human cells to address this question, revealing a hybrid model in which RD histone biosynthesis is first initiated in G1, followed by a strong increase in histone production in S phase of the cell cycle. This suggests a mechanism by which cells that have committed to the cell cycle build up an initial small pool of RD histones to be available for the start of DNA replication, before producing most of the necessary histones required in S phase. Thus, a clear distinction exists at completion of mitosis between cells that are born with the intention of proceeding through the cell cycle and replicating their DNA and cells that have chosen to exit the cell cycle and have no immediate need for histone synthesis.
Collapse
|
6
|
Kemp JP, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Superresolution light microscopy of the Drosophila histone locus body reveals a core-shell organization associated with expression of replication-dependent histone genes. Mol Biol Cell 2021; 32:942-955. [PMID: 33788585 PMCID: PMC8108526 DOI: 10.1091/mbc.e20-10-0645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core–shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core–shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core–shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Potter-Birriel JM, Gonsalvez GB, Marzluff WF. A region of SLBP outside the mRNA-processing domain is essential for deposition of histone mRNA into the Drosophila egg. J Cell Sci 2021; 134:jcs251728. [PMID: 33408246 PMCID: PMC7888719 DOI: 10.1242/jcs.251728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Replication-dependent histone mRNAs are the only cellular mRNAs that are not polyadenylated, ending in a stemloop instead of a polyA tail, and are normally regulated coordinately with DNA replication. Stemloop-binding protein (SLBP) binds the 3' end of histone mRNA, and is required for processing and translation. During Drosophila oogenesis, large amounts of histone mRNAs and proteins are deposited in the developing oocyte. The maternally deposited histone mRNA is synthesized in stage 10B oocytes after the nurse cells complete endoreduplication. We report that in wild-type stage 10B oocytes, the histone locus bodies (HLBs), formed on the histone genes, produce histone mRNAs in the absence of phosphorylation of Mxc, which is normally required for histone gene expression in S-phase cells. Two mutants of SLBP, one with reduced expression and another with a 10-amino-acid deletion, fail to deposit sufficient histone mRNA in the oocyte, and do not transcribe the histone genes in stage 10B. Mutations in a putative SLBP nuclear localization sequence overlapping the deletion phenocopy the deletion. We conclude that a high concentration of SLBP in the nucleus of stage 10B oocytes is essential for histone gene transcription.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer Michelle Potter-Birriel
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graydon B Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 , USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Interdisciplinary Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Yang XC, Sun Y, Aik WS, Marzluff WF, Tong L, Dominski Z. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5'-3' exonuclease. RNA (NEW YORK, N.Y.) 2020; 26:1345-1359. [PMID: 32554553 PMCID: PMC7491329 DOI: 10.1261/rna.076273.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 05/24/2023]
Abstract
Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the β-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Hur W, Kemp JP, Tarzia M, Deneke VE, Marzluff WF, Duronio RJ, Di Talia S. CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and Function of Histone Locus Bodies. Dev Cell 2020; 54:379-394.e6. [PMID: 32579968 DOI: 10.1016/j.devcel.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Many membraneless organelles form through liquid-liquid phase separation, but how their size is controlled and whether size is linked to function remain poorly understood. The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of histone mRNAs. Here, we show that Drosophila HLBs form through phase separation. During embryogenesis, the size of HLBs is controlled in a precise and dynamic manner that is dependent on the cell cycle and zygotic histone gene activation. Control of HLB growth is achieved by a mechanism integrating nascent mRNAs at the histone locus, which facilitates phase separation, and the nuclear concentration of the scaffold protein multi-sex combs (Mxc), which is controlled by the activity of cyclin-dependent kinases. Reduced Cdk2 activity results in smaller HLBs and the appearance of nascent, misprocessed histone mRNAs. Thus, our experiments identify a mechanism linking nuclear body growth and size with gene expression.
Collapse
Affiliation(s)
- Woonyung Hur
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tarzia
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| | - Victoria E Deneke
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
10
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Fan J, Wang K, Du X, Wang J, Chen S, Wang Y, Shi M, Zhang L, Wu X, Zheng D, Wang C, Wang L, Tian B, Li G, Zhou Y, Cheng H. ALYREF links 3'-end processing to nuclear export of non-polyadenylated mRNAs. EMBO J 2019; 38:e99910. [PMID: 30858280 PMCID: PMC6484419 DOI: 10.15252/embj.201899910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
The RNA-binding protein ALYREF plays key roles in nuclear export and also 3'-end processing of polyadenylated mRNAs, but whether such regulation also extends to non-polyadenylated RNAs is unknown. Replication-dependent (RD)-histone mRNAs are not polyadenylated, but instead end in a stem-loop (SL) structure. Here, we demonstrate that ALYREF prevalently binds a region next to the SL on RD-histone mRNAs. SL-binding protein (SLBP) directly interacts with ALYREF and promotes its recruitment. ALYREF promotes histone pre-mRNA 3'-end processing by facilitating U7-snRNP recruitment through physical interaction with the U7-snRNP-specific component Lsm11. Furthermore, ALYREF, together with other components of the TREX complex, enhances histone mRNA export. Moreover, we show that 3'-end processing promotes ALYREF recruitment and histone mRNA export. Together, our results point to an important role of ALYREF in coordinating 3'-end processing and nuclear export of non-polyadenylated mRNAs.
Collapse
Affiliation(s)
- Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xian Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Yimin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Changshou Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
13
|
Ghule PN, Seward DJ, Fritz AJ, Boyd JR, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S-phase transition. J Cell Physiol 2018; 233:6406-6413. [PMID: 29744889 DOI: 10.1002/jcp.26741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/19/2023]
Abstract
Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 3-dimensional context of nuclear organization is reflected by two well documented observations. DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains designated histone locus bodies (HLBs), in response to activation of the growth factor dependent Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for coordinate control of DNA replication and histone gene transcription. Here we review the molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently developed experimental strategies, now enable us to explore mechanisms involved in dynamic control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) remodeling of the histone gene loci.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David J Seward
- Department of Pathology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
14
|
Aik WS, Lin MH, Tan D, Tripathy A, Marzluff WF, Dominski Z, Chou CY, Tong L. The N-terminal domains of FLASH and Lsm11 form a 2:1 heterotrimer for histone pre-mRNA 3'-end processing. PLoS One 2017; 12:e0186034. [PMID: 29020104 PMCID: PMC5636114 DOI: 10.1371/journal.pone.0186034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/23/2017] [Indexed: 11/18/2022] Open
Abstract
Unlike canonical pre-mRNAs, animal replication-dependent histone pre-mRNAs lack introns and are processed at the 3'-end by a mechanism distinct from cleavage and polyadenylation. They have a 3' stem loop and histone downstream element (HDE) that are recognized by stem-loop binding protein (SLBP) and U7 snRNP, respectively. The N-terminal domain (NTD) of Lsm11, a component of U7 snRNP, interacts with FLASH NTD and these two proteins recruit the histone cleavage complex containing the CPSF-73 endonuclease for the cleavage reaction. Here, we determined crystal structures of FLASH NTD and found that it forms a coiled-coil dimer. Using solution light scattering, we characterized the stoichiometry of the FLASH NTD-Lsm11 NTD complex and found that it is a 2:1 heterotrimer, which is supported by observations from analytical ultracentrifugation and crosslinking.
Collapse
Affiliation(s)
- Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Min-Han Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Dazhi Tan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet 2017; 33:745-759. [PMID: 28867047 DOI: 10.1016/j.tig.2017.07.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022]
Abstract
In metazoans, histone mRNAs are not polyadenylated but end in a conserved stem-loop. Stem-loop binding protein (SLBP) binds to the stem-loop and is required for all steps in histone mRNA metabolism. The genes for the five histone proteins are linked. A histone locus body (HLB) forms at each histone gene locus. It contains factors essential for transcription and processing of histone mRNAs, and couples transcription and processing. The active form of U7 snRNP contains the HLB component FLASH (FLICE-associated huge protein), the histone cleavage complex (HCC), and a subset of polyadenylation factors including the endonuclease CPSF73. Histone mRNAs are rapidly degraded when DNA replication is inhibited by a 3' to 5' pathway that requires extensive uridylation of mRNA decay intermediates.
Collapse
Affiliation(s)
- William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin P Koreski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Rieder LE, Koreski KP, Boltz KA, Kuzu G, Urban JA, Bowman SK, Zeidman A, Jordan WT, Tolstorukov MY, Marzluff WF, Duronio RJ, Larschan EN. Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev 2017; 31:1494-1508. [PMID: 28838946 PMCID: PMC5588930 DOI: 10.1101/gad.300855.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Abstract
Rieder et al. report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct histone locus body (HLB) formation in Drosophila. In addition, the CLAMP zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3–histone4 promoter direct HLB formation in Drosophila. In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Collapse
Affiliation(s)
- Leila E Rieder
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kara A Boltz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jennifer A Urban
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anna Zeidman
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William T Jordan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
17
|
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017; 14:726-738. [PMID: 28059623 DOI: 10.1080/15476286.2016.1265198] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Robert J Duronio
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,b Department of Genetics , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - William F Marzluff
- a Department of Biology , University of North Carolina , Chapel Hill , NC , USA.,c Integrative Program for Biological and Genome Sciences , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA.,e Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
18
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Sawyer IA, Dundr M. Nuclear bodies: Built to boost. J Cell Biol 2016; 213:509-11. [PMID: 27241912 PMCID: PMC4896059 DOI: 10.1083/jcb.201605049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The classic archetypal function of nuclear bodies is to accelerate specific reactions within their crowded space. In this issue, Tatomer et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201504043) provide the first direct evidence that the histone locus body acts to concentrate key factors required for the proper processing of histone pre-mRNAs.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064 Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064
| |
Collapse
|
20
|
Ozawa N, Furuhashi H, Masuko K, Numao E, Makino T, Yano T, Kurata S. Organ identity specification factor WGE localizes to the histone locus body and regulates histone expression to ensure genomic stability in Drosophila. Genes Cells 2016; 21:442-56. [PMID: 27145109 DOI: 10.1111/gtc.12354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
Abstract
Over-expression of Winged-Eye (WGE) in the Drosophila eye imaginal disc induces an eye-to-wing transformation. Endogenous WGE is required for organ development, and wge-deficient mutants exhibit growth arrest at the larval stage, suggesting that WGE is critical for normal growth. The function of WGE, however, remains unclear. Here, we analyzed the subcellular localization of WGE to gain insight into its endogenous function. Immunostaining showed that WGE localized to specific nuclear foci called the histone locus body (HLB), an evolutionarily conserved nuclear body required for S phase-specific histone mRNA production. Histone mRNA levels and protein levels in cytosolic fractions were aberrantly up-regulated in wge mutant larva, suggesting a role for WGE in regulating histone gene expression. Genetic analyses showed that wge suppresses position-effect variegation, and that WGE and a HLB component Mute appears to be synergistically involved in heterochromatin formation. Further supporting a role in chromatin regulation, wge-deficient mutants showed derepression of retrotransposons and increased γH2Av signals, a DNA damage marker. These findings suggest that WGE is a component of HLB in Drosophila with a role in heterochromatin formation and transposon silencing. We propose that WGE at HLB contributes to genomic stability and development by regulating heterochromatin structure via histone gene regulation.
Collapse
Affiliation(s)
- Nao Ozawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hirofumi Furuhashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Eriko Numao
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
21
|
Abstract
In metazoan the 3′-end processing of histone mRNAs is a conserved process involving the concerted action of many protein factors and the non-coding U7 snRNA. Recently, we identified that the processing of histone pre-mRNAs is promoted by an additional ncRNA, the Y3-derived Y3** RNA. U7 modulates the association of the U7 snRNP whereas Y3** promotes recruitment of CPSF (cleavage and polyadenylation specific factor) proteins to nascent histone transcripts at histone locus bodies (HLBs) in mammals. This enhances the 3′-end cleavage of nascent histone pre-mRNAs and modulates HLB assembly. Here we discuss new insights in the role of ncRNAs in the spatiotemporal control of histone synthesis. We propose that ncRNAs scaffold the formation of functional protein-RNA complexes and their sequential deposition on nascent histone pre-mRNAs at HLBs. These findings add to the multiple roles of ncRNAs in controlling gene expression and may provide new avenues for targeting histone synthesis in cancer.
Collapse
Affiliation(s)
- Marcel Köhn
- a Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle Wittenberg, ZAMED , Halle , Germany
| | - Stefan Hüttelmaier
- a Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin-Luther-University Halle Wittenberg, ZAMED , Halle , Germany
| |
Collapse
|
22
|
Skrajna A, Yang XC, Tarnowski K, Fituch K, Marzluff WF, Dominski Z, Dadlez M. Mapping the Interaction Network of Key Proteins Involved in Histone mRNA Generation: A Hydrogen/Deuterium Exchange Study. J Mol Biol 2016; 428:1180-1196. [PMID: 26860583 DOI: 10.1016/j.jmb.2016.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Histone pre-mRNAs are cleaved at the 3' end by a complex that contains U7 snRNP, the FLICE-associated huge protein (FLASH) and histone pre-mRNA cleavage complex (HCC) consisting of several polyadenylation factors. Within the complex, the N terminus of FLASH interacts with the N terminus of the U7 snRNP protein Lsm11, and together they recruit the HCC. FLASH through its distant C terminus independently interacts with the C-terminal SANT/Myb-like domain of nuclear protein, ataxia-telangiectasia locus (NPAT), a transcriptional co-activator required for expression of histone genes in S phase. To gain structural information on these interactions, we used mass spectrometry to monitor hydrogen/deuterium exchange in various regions of FLASH, Lsm11 and NPAT alone or in the presence of their respective binding partners. Our results indicate that the FLASH-interacting domain in Lsm11 is highly dynamic, while the more downstream region required for recruiting the HCC exchanges deuterium slowly and likely folds into a stable structure. In FLASH, a stable structure is adopted by the domain that interacts with Lsm11 and this domain is further stabilized by binding Lsm11. Notably, both hydrogen/deuterium exchange experiments and in vitro binding assays demonstrate that Lsm11, in addition to interacting with the N-terminal region of FLASH, also contacts the C-terminal SANT/Myb-like domain of FLASH, the same region that binds NPAT. However, while NPAT stabilizes this domain, Lsm11 causes its partial relaxation. These competing reactions may play a role in regulating histone gene expression in vivo.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao-Cui Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krzysztof Tarnowski
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kinga Fituch
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
23
|
Köhn M, Ihling C, Sinz A, Krohn K, Hüttelmaier S. The Y3** ncRNA promotes the 3' end processing of histone mRNAs. Genes Dev 2016; 29:1998-2003. [PMID: 26443846 PMCID: PMC4604341 DOI: 10.1101/gad.266486.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, Köhn et al. investigated how the cleavage and polyadenylation specificity factor (CPSF) is recruited to nascent histone pre-mRNAs during 3′ end processing of canonical histone mRNAs. They showed that the noncoding Y3/Y3** RNAs modulate the 3′ end processing of canonical histone mRNAs by binding to CPSF, thereby delineating a novel mechanism involved in the regulation of histone pre-mRNA processing. We demonstrate that the Y3/Y3** noncoding RNAs (ncRNAs) bind to the CPSF (cleavage and polyadenylation specificity factor) and that Y3** associates with the 3′ untranslated region (UTR) of histone pre-mRNAs. The depletion of Y3** impairs the 3′ end processing of histone pre-mRNAs as well as the formation and protein dynamics of histone locus bodies (HLBs), the site of histone mRNA synthesis and processing. HLB morphology is also disturbed by knockdown of the CPSF but not the U7-snRNP components. In conclusion, we propose that the Y3** ncRNA promotes the 3′ end processing of histone pre-mRNAs by enhancing the recruitment of the CPSF to histone pre-mRNAs at HLBs.
Collapse
Affiliation(s)
- Marcel Köhn
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt 06120, Germany
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt 06120, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt 06120, Germany
| | - Knut Krohn
- Interdisziplinäres Zentrum für Klinische Forschung, Core Unit DNA-Technologies, University Leipzig, Saxony 04103, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt 06120, Germany
| |
Collapse
|
24
|
Tatomer DC, Rizzardi LF, Curry KP, Witkowski AM, Marzluff WF, Duronio RJ. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus 2015; 5:613-25. [PMID: 25493544 DOI: 10.4161/19491034.2014.990860] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.
Collapse
Key Words
- CTD, RNA polymerase II C-terminal domain
- Drosophila
- HCC, histone cleavage complex
- HDE, histone downstream element
- HLB, histone locus body
- Madm, MLF1-adaptor molecule
- PAP, poly (A) polymerase
- PAS, poly A signal
- RNA processing, Symplekin
- Rp49, ribosomal protein L32
- SL, stem loop
- SLBP, stem loop binding protein
- Sym, Symplekin
- cas, castor
- gene expression
- histone mRNA
- nuclear bodies
- sop, ribosomal protein S2
- yps, ypsilon schachtel
Collapse
Affiliation(s)
- Deirdre C Tatomer
- a Department of Biology ; University of North Carolina ; Chapel Hill , NC USA
| | | | | | | | | | | |
Collapse
|
25
|
Michalski D, Steiniger M. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex. RNA (NEW YORK, N.Y.) 2015; 21:1404-18. [PMID: 26081560 PMCID: PMC4509931 DOI: 10.1261/rna.049551.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 05/07/2023]
Abstract
A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3' end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272-1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3' end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3' end processing similar to RNAi-depletion of histone-specific 3' end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3' end processing of histone mRNAs.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | - Mindy Steiniger
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
26
|
Yang XC, Sabath I, Kunduru L, van Wijnen AJ, Marzluff WF, Dominski Z. A conserved interaction that is essential for the biogenesis of histone locus bodies. J Biol Chem 2014; 289:33767-82. [PMID: 25339177 DOI: 10.1074/jbc.m114.616466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs.
Collapse
Affiliation(s)
- Xiao-cui Yang
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Ivan Sabath
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Lalitha Kunduru
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Andre J van Wijnen
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - William F Marzluff
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| | - Zbigniew Dominski
- From the Department of Biochemistry and Biophysics, Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
27
|
CstF64: cell cycle regulation and functional role in 3' end processing of replication-dependent histone mRNAs. Mol Cell Biol 2014; 34:4272-84. [PMID: 25266659 DOI: 10.1128/mcb.00791-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.
Collapse
|
28
|
Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol 2014; 92:659-80. [PMID: 24628792 DOI: 10.1111/mmi.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
Abstract
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.
Collapse
Affiliation(s)
- Ewa Grabowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
30
|
Sabath I, Skrajna A, Yang XC, Dadlez M, Marzluff WF, Dominski Z. 3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors. RNA (NEW YORK, N.Y.) 2013; 19:1726-44. [PMID: 24145821 PMCID: PMC3884669 DOI: 10.1261/rna.040360.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
3'-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3'-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3'-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF Im-are present in Drosophila nuclear extracts in a stable supercomplex.
Collapse
Affiliation(s)
- Ivan Sabath
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
| | - Xiao-cui Yang
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Corresponding authorE-mail
| |
Collapse
|
31
|
Li ZG, Jiao Y, Li WJ, Deng GR, Cui L, Gao C, Zhao XX, Wu MY, Jia HT. Hypermethylation of two CpG sites upstream of CASP8AP2 promoter influences gene expression and treatment outcome in childhood acute lymphoblastic leukemia. Leuk Res 2013; 37:1287-93. [PMID: 23953914 DOI: 10.1016/j.leukres.2013.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
DNA hypermethylation of Caspase 8 associated protein 2 (CASP8AP2) and its role in childhood acute lymphoblastic leukemia (ALL) is unclear. We analyzed methylation status of CpG sites upstream of CASP8AP2 gene in 86 children with ALL by bisulfite sequencing and quantitative PCR. Methylation percentage of two CpG sites at positions of -1189 and -1176 was inversely correlated with mRNA expression (Spearman correlation: -0.333, P=0.002). High methylation was associated with the existence of minimal residual disease (MRD) at day 78 (P=0.035), The patients in high methylation group had a poor treatment outcome. The combination of methylation level and MRD at day 33 might improve current risk stratification.
Collapse
Affiliation(s)
- Zhi-Gang Li
- Key Laboratory of Major Diseases in Children (Capital Medical University), Ministry of Education; Hematology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Salzler HR, Tatomer DC, Malek PY, McDaniel SL, Orlando AN, Marzluff WF, Duronio RJ. A sequence in the Drosophila H3-H4 Promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs. Dev Cell 2013; 24:623-34. [PMID: 23537633 DOI: 10.1016/j.devcel.2013.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/18/2012] [Accepted: 02/22/2013] [Indexed: 01/11/2023]
Abstract
Compartmentalization of RNA biosynthetic factors into nuclear bodies (NBs) is a ubiquitous feature of eukaryotic cells. How NBs initially assemble and ultimately affect gene expression remains unresolved. The histone locus body (HLB) contains factors necessary for replication-coupled histone messenger RNA transcription and processing and associates with histone gene clusters. Using a transgenic assay for ectopic Drosophila HLB assembly, we show that a sequence located between, and transcription from, the divergently transcribed H3-H4 genes nucleates HLB formation and activates other histone genes in the histone gene cluster. In the absence of transcription from the H3-H4 promoter, "proto-HLBs" (containing only a subset of HLB components) form, and the adjacent histone H2a-H2b genes are not expressed. Proto-HLBs also transiently form in mutant embryos with the histone locus deleted. We conclude that HLB assembly occurs through a stepwise process involving stochastic interactions of individual components that localize to a specific sequence in the H3-H4 promoter.
Collapse
Affiliation(s)
- Harmony R Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3'-end processing. Mol Cell Biol 2012; 33:28-37. [PMID: 23071092 DOI: 10.1128/mcb.00653-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animal replication-dependent histone pre-mRNAs are processed at the 3' end by endonucleolytic cleavage that is not followed by polyadenylation. The cleavage reaction is catalyzed by CPSF73 and depends on the U7 snRNP and its integral component, Lsm11. A critical role is also played by the 220-kDa protein FLASH, which interacts with Lsm11. Here we demonstrate that the N-terminal regions of these two proteins form a platform that tightly interacts with a unique combination of polyadenylation factors: symplekin, CstF64, and all CPSF subunits, including the endonuclease CPSF73. The interaction is inhibited by alterations in each component of the FLASH/Lsm11 complex, including point mutations in FLASH that are detrimental for processing. The same polyadenylation factors are associated with the endogenous U7 snRNP and are recruited in a U7-dependent manner to histone pre-mRNA. Collectively, our studies identify the molecular mechanism that recruits the CPSF73 endonuclease to histone pre-mRNAs, reveal an unexpected complexity of the U7 snRNP, and suggest that in animal cells polyadenylation factors assemble into two alternative complexes-one specifically crafted to generate polyadenylated mRNAs and the other to generate nonpolyadenylated histone mRNAs that end with the stem-loop.
Collapse
|
34
|
Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:17-34. [PMID: 23042601 DOI: 10.1002/wrna.1139] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell nucleus contains dozens of subcompartments that separate biochemical processes into confined spaces. Cajal bodies (CBs) were discovered more than 100 years ago, but only extensive research in the past decades revealed the surprising complexity of molecular and cellular functions taking place in these structures. Many protein and RNA species are modified and assembled within CBs, which have emerged as a meeting place and factory for ribonucleoprotein (RNP) particles involved in splicing, ribosome biogenesis and telomere maintenance. Recently, a distinct structure near histone gene clusters--the Histone locus body (HLB)--was discovered. Involved in histone mRNA 3'-end formation, HLBs can share several components with CBs. Whether the appearance of distinct HLBs is simply a matter of altered affinity between these structures or of an alternate mode of CB assembly is unknown. However, both structures share basic assembly properties, in which transcription plays a decisive role in initiation. After this seeding event, additional components associate in random order. This appears to be a widespread mechanism for body assembly. CB assembly encompasses an additional layer of complexity, whereby a set of pre-existing substructures can be integrated into mature CBs. We propose this as a multi-seeding model of CB assembly.
Collapse
Affiliation(s)
- Martin Machyna
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
35
|
Abstract
Histone proteins are essential for the packaging of DNA into chromosomes. Histone gene expression is cell-cycle-regulated and coupled to DNA replication. Control of histone gene expression occurs at the transcriptional and post-transcriptional level and ensures that a fine balance between histone abundance and DNA replication is maintained for the correct packaging of newly replicated DNA into chromosomes. In the present paper, we review histone gene expression, highlighting the control mechanisms and key molecules involved in this process.
Collapse
|
36
|
Hummon AB, Pitt JJ, Camps J, Emons G, Skube SB, Huppi K, Jones TL, Beissbarth T, Kramer F, Grade M, Difilippantonio MJ, Ried T, Caplen NJ. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells. Mol Cancer 2012; 11:1. [PMID: 22216762 PMCID: PMC3281783 DOI: 10.1186/1476-4598-11-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/04/2012] [Indexed: 11/11/2022] Open
Abstract
Background Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. Results A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. Conclusions We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH.
Collapse
Affiliation(s)
- Amanda B Hummon
- Gene Silencing Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
White AE, Burch BD, Yang XC, Gasdaska PY, Dominski Z, Marzluff WF, Duronio RJ. Drosophila histone locus bodies form by hierarchical recruitment of components. ACTA ACUST UNITED AC 2011; 193:677-94. [PMID: 21576393 PMCID: PMC3166876 DOI: 10.1083/jcb.201012077] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An assembly process involving sequential recruitment of components and hierarchical dependency drives formation of the nuclear structures known as histone locus bodies. Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes. We identified the transcription elongation factor suppressor of Ty 6 (Spt6) and a homologue of mammalian nuclear protein of the ataxia telangiectasia–mutated locus that is encoded by the homeotic gene multisex combs (mxc) as novel HLB components. By combining genetic manipulation in both cell culture and embryos with cytological observations of Mxc, Spt6, and the known HLB components, FLICE-associated huge protein, Mute, U7 small nuclear ribonucleoprotein, and MPM-2 phosphoepitope, we demonstrated sequential recruitment and hierarchical dependency for localization of factors to HLBs during development, suggesting that ordered assembly can play a role in nuclear body formation.
Collapse
Affiliation(s)
- Anne E White
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|