1
|
Brouze M, Czarnocka-Cieciura A, Gewartowska O, Kusio-Kobiałka M, Jachacy K, Szpila M, Tarkowski B, Gruchota J, Krawczyk P, Mroczek S, Borsuk E, Dziembowski A. TENT5-mediated polyadenylation of mRNAs encoding secreted proteins is essential for gametogenesis in mice. Nat Commun 2024; 15:5331. [PMID: 38909026 PMCID: PMC11193744 DOI: 10.1038/s41467-024-49479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.
Collapse
Affiliation(s)
- Michał Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | | | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Monika Kusio-Kobiałka
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Kamil Jachacy
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Marcin Szpila
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Bartosz Tarkowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Ewa Borsuk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland.
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland.
| |
Collapse
|
2
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Duran-Arqué B, Cañete M, Castellazzi CL, Bartomeu A, Ferrer-Caelles A, Reina O, Caballé A, Gay M, Arauz-Garofalo G, Belloc E, Mendez R. Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation. Genome Biol 2022; 23:192. [PMID: 36096799 PMCID: PMC9465852 DOI: 10.1186/s13059-022-02759-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vertebrate CPEB proteins bind mRNAs at cytoplasmic polyadenylation elements (CPEs) in their 3' UTRs, leading to cytoplasmic changes in their poly(A) tail lengths; this can promote translational repression or activation of the mRNA. However, neither the regulation nor the mechanisms of action of the CPEB family per se have been systematically addressed to date. RESULTS Based on a comparative analysis of the four vertebrate CPEBs, we determine their differential regulation by phosphorylation, the composition and properties of their supramolecular assemblies, and their target mRNAs. We show that all four CPEBs are able to recruit the CCR4-NOT deadenylation complex to repress the translation. However, their regulation, mechanism of action, and target mRNAs define two subfamilies. Thus, CPEB1 forms ribonucleoprotein complexes that are remodeled upon a single phosphorylation event and are associated with mRNAs containing canonical CPEs. CPEB2-4 are regulated by multiple proline-directed phosphorylations that control their liquid-liquid phase separation. CPEB2-4 mRNA targets include CPEB1-bound transcripts, with canonical CPEs, but also a specific subset of mRNAs with non-canonical CPEs. CONCLUSIONS Altogether, these results show how, globally, the CPEB family of proteins is able to integrate cellular cues to generate a fine-tuned adaptive response in gene expression regulation through the coordinated actions of all four members.
Collapse
Affiliation(s)
- Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Manuel Cañete
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Chiara Lara Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Ferrer-Caelles
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Eulalia Belloc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Raúl Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
5
|
Chung CZ, Balasuriya N, Siddika T, Frederick MI, Heinemann IU. Gld2 activity and RNA specificity is dynamically regulated by phosphorylation and interaction with QKI-7. RNA Biol 2021; 18:397-408. [PMID: 34288801 DOI: 10.1080/15476286.2021.1952540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In the cell, RNA abundance is dynamically controlled by transcription and decay rates. Posttranscriptional nucleotide addition at the RNA 3' end is a means of regulating mRNA and RNA stability and activity, as well as marking RNAs for degradation. The human nucleotidyltransferase Gld2 polyadenylates mRNAs and monoadenylates microRNAs, leading to an increase in RNA stability. The broad substrate range of Gld2 and its role in controlling RNA stability make the regulation of Gld2 activity itself imperative. Gld2 activity can be regulated by post-translational phosphorylation via the oncogenic kinase Akt1 and other kinases, leading to either increased or almost abolished enzymatic activity, and here we confirm that Akt1 phosphorylates Gld2 in a cellular context. Another means to control Gld2 RNA specificity and activity is the interaction with RNA binding proteins. Known interactors are QKI-7 and CPEB, which recruit Gld2 to specific miRNAs and mRNAs. We investigate the interplay between five phosphorylation sites in the N-terminal domain of Gld2 and three RNA binding proteins. We found that the activity and RNA specificity of Gld2 is dynamically regulated by this network. Binding of QKI-7 or phosphorylation at S62 relieves the autoinhibitory function of the Gld2 N-terminal domain. Binding of QKI-7 to a short peptide sequence within the N-terminal domain can also override the deactivation caused by Akt1 phosphorylation at S116. Our data revealed that Gld2 substrate specificity and activity can be dynamically regulated to match the cellular need of RNA stabilization and turnover.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Tarana Siddika
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| |
Collapse
|
6
|
Ma XY, Zhang H, Feng JX, Hu JL, Yu B, Luo L, Cao YL, Liao S, Wang J, Gao S. Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing. Nucleic Acids Res 2020; 48:8782-8795. [PMID: 32633758 PMCID: PMC7470959 DOI: 10.1093/nar/gkaa578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of histology and embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
7
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
9
|
Ueberham U, Arendt T. Genomic Indexing by Somatic Gene Recombination of mRNA/ncRNA - Does It Play a Role in Genomic Mosaicism, Memory Formation, and Alzheimer's Disease? Front Genet 2020; 11:370. [PMID: 32411177 PMCID: PMC7200996 DOI: 10.3389/fgene.2020.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that genomic individuality of neurons, characterized by DNA-content variation, is a common if not universal phenomenon in the human brain that occurs naturally but can also show aberrancies that have been linked to the pathomechanism of Alzheimer’s disease and related neurodegenerative disorders. Etiologically, this genomic mosaic has been suggested to arise from defects of cell cycle regulation that may occur either during brain development or in the mature brain after terminal differentiation of neurons. Here, we aim to draw attention towards another mechanism that can give rise to genomic individuality of neurons, with far-reaching consequences. This mechanism has its origin in the transcriptome rather than in replication defects of the genome, i.e., somatic gene recombination of RNA. We continue to develop the concept that somatic gene recombination of RNA provides a physiological process that, through integration of intronless mRNA/ncRNA into the genome, allows a particular functional state at the level of the individual neuron to be indexed. By insertion of defined RNAs in a somatic recombination process, the presence of specific mRNA transcripts within a definite temporal context can be “frozen” and can serve as an index that can be recalled at any later point in time. This allows information related to a specific neuronal state of differentiation and/or activity relevant to a memory trace to be fixed. We suggest that this process is used throughout the lifetime of each neuron and might have both advantageous and deleterious consequences.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Chung CZ, Balasuriya N, Manni E, Liu X, Li SSC, O’Donoghue P, Heinemann IU. Gld2 activity is regulated by phosphorylation in the N-terminal domain. RNA Biol 2019; 16:1022-1033. [PMID: 31057087 PMCID: PMC6602411 DOI: 10.1080/15476286.2019.1608754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
The de-regulation of microRNAs (miRNAs) is associated with multiple human diseases, yet cellular mechanisms governing miRNA abundance remain largely elusive. Human miR-122 is required for Hepatitis C proliferation, and low miR-122 abundance is associated with hepatic cancer. The adenylyltransferase Gld2 catalyses the post-transcriptional addition of a single adenine residue (A + 1) to the 3'-end of miR-122, enhancing its stability. Gld2 activity is inhibited by binding to the Hepatitis C virus core protein during HepC infection, but no other mechanisms of Gld2 regulation are known. We found that Gld2 activity is regulated by site-specific phosphorylation in its disordered N-terminal domain. We identified two phosphorylation sites (S62, S110) where phosphomimetic substitutions increased Gld2 activity and one site (S116) that markedly reduced activity. Using mass spectrometry, we confirmed that HEK 293 cells readily phosphorylate the N-terminus of Gld2. We identified protein kinase A (PKA) and protein kinase B (Akt1) as the kinases that site-specifically phosphorylate Gld2 at S116, abolishing Gld2-mediated nucleotide addition. The data demonstrate a novel phosphorylation-dependent mechanism to regulate Gld2 activity, revealing tumour suppressor miRNAs as a previously unknown target of Akt1-dependent signalling.
Collapse
Affiliation(s)
- Christina Z. Chung
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Emad Manni
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Xuguang Liu
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, Canada
- Department of Oncology and Child Health Research Institute, The University of Western Ontario, London, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Canada
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
11
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
12
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
13
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res 2018; 46:362-386. [PMID: 29165587 PMCID: PMC5758885 DOI: 10.1093/nar/gkx1120] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie L Van Etten
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trista L Schagat
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Promega Corporation, Madison, WI 53711, USA
| | - Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Nousch M, Minasaki R, Eckmann CR. Polyadenylation is the key aspect of GLD-2 function in C. elegans. RNA (NEW YORK, N.Y.) 2017; 23:1180-1187. [PMID: 28490506 PMCID: PMC5513063 DOI: 10.1261/rna.061473.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
The role of many enzymes extends beyond their dedicated catalytic activity by fulfilling important cellular functions in a catalysis-independent fashion. In this aspect, little is known about 3'-end RNA-modifying enzymes that belong to the class of nucleotidyl transferases. Among these are noncanonical poly(A) polymerases, a group of evolutionarily conserved enzymes that are critical for gene expression regulation, by adding adenosines to the 3'-end of RNA targets. In this study, we investigate whether the functions of the cytoplasmic poly(A) polymerase (cytoPAP) GLD-2 in C. elegans germ cells exclusively depend on its catalytic activity. To this end, we analyzed a specific missense mutation affecting a conserved amino acid in the catalytic region of GLD-2 cytoPAP. Although this mutated protein is expressed to wild-type levels and incorporated into cytoPAP complexes, we found that it cannot elongate mRNA poly(A) tails efficiently or promote GLD-2 target mRNA abundance. Furthermore, germ cell defects in animals expressing this mutant protein strongly resemble those lacking the GLD-2 protein altogether, arguing that only the polyadenylation activity of GLD-2 is essential for gametogenesis. In summary, we propose that all known molecular and biological functions of GLD-2 depend on its enzymatic activity, demonstrating that polyadenylation is the key mechanism of GLD-2 functionality. Our findings highlight the enzymatic importance of noncanonical poly(A) polymerases and emphasize the pivotal role of poly(A) tail-centered cytoplasmic mRNA regulation in germ cell biology.
Collapse
Affiliation(s)
- Marco Nousch
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ryuji Minasaki
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian R Eckmann
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Chung CZ, Seidl LE, Mann MR, Heinemann IU. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj 2017; 1861:2971-2979. [PMID: 28483641 DOI: 10.1016/j.bbagen.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. SCOPE OF REVIEW This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. MAJOR CONCLUSIONS The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. GENERAL SIGNIFICANCE Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical, and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
17
|
Rouhana L, Tasaki J, Saberi A, Newmark PA. Genetic dissection of the planarian reproductive system through characterization of Schmidtea mediterranea CPEB homologs. Dev Biol 2017; 426:43-55. [PMID: 28434803 PMCID: PMC5544531 DOI: 10.1016/j.ydbio.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 01/30/2023]
Abstract
Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA; Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | - Junichi Tasaki
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
18
|
Kratassiouk G, Pritchard LL, Cuvellier S, Vislovukh A, Meng Q, Groisman R, Degerny C, Deforzh E, Harel-Bellan A, Groisman I. The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell Cycle 2016; 15:667-77. [PMID: 27027998 DOI: 10.1080/15384101.2016.1147631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3' untranslated region (3'UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3'UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle.
Collapse
Affiliation(s)
- Gueorgui Kratassiouk
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Linda L Pritchard
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Sylvain Cuvellier
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France.,d Inserm U1016, Institut Cochin, Département Génétique et Développement , Paris , France
| | - Andrii Vislovukh
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France.,e Department of Translation Mechanisms , Institute of Molecular Biology and Genetics, National Academy of Sciences , Kiev , Ukraine
| | - Qingwei Meng
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France.,f The Breast Department of the Third Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Regina Groisman
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Cindy Degerny
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Evgeny Deforzh
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Annick Harel-Bellan
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| | - Irina Groisman
- a Université Paris Sud, Laboratoire Epigénétique et Cancer, Formation de Recherche en Evolution 3377 , Gif-Sur-Yvette , France.,b Centre National de la Recherche Scientifique (CNRS) , Gif-Sur-Yvette , France.,c Commissariat à l'Energie Atomique (CEA) , Saclay, Gif-sur-Yvette , France
| |
Collapse
|
19
|
Lackey PE, Welch JD, Marzluff WF. TUT7 catalyzes the uridylation of the 3' end for rapid degradation of histone mRNA. RNA (NEW YORK, N.Y.) 2016; 22:1673-1688. [PMID: 27609902 PMCID: PMC5066620 DOI: 10.1261/rna.058107.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 05/03/2023]
Abstract
The replication-dependent histone mRNAs end in a stem-loop instead of the poly(A) tail present at the 3' end of all other cellular mRNAs. Following processing, the 3' end of histone mRNAs is trimmed to 3 nucleotides (nt) after the stem-loop, and this length is maintained by addition of nontemplated uridines if the mRNA is further trimmed by 3'hExo. These mRNAs are tightly cell-cycle regulated, and a critical regulatory step is rapid degradation of the histone mRNAs when DNA replication is inhibited. An initial step in histone mRNA degradation is digestion 2-4 nt into the stem by 3'hExo and uridylation of this intermediate. The mRNA is then subsequently degraded by the exosome, with stalled intermediates being uridylated. The enzyme(s) responsible for oligouridylation of histone mRNAs have not been definitively identified. Using high-throughput sequencing of histone mRNAs and degradation intermediates, we find that knockdown of TUT7 reduces both the uridylation at the 3' end as well as uridylation of the major degradation intermediate in the stem. In contrast, knockdown of TUT4 did not alter the uridylation pattern at the 3' end and had a small effect on uridylation in the stem-loop during histone mRNA degradation. Knockdown of 3'hExo also altered the uridylation of histone mRNAs, suggesting that TUT7 and 3'hExo function together in trimming and uridylating histone mRNAs.
Collapse
Affiliation(s)
- Patrick E Lackey
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
20
|
Yang Q, Lin J, Liu M, Li R, Tian B, Zhang X, Xu B, Liu M, Zhang X, Li Y, Shi H, Wu L. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. SCIENCE ADVANCES 2016; 2:e1501482. [PMID: 27500274 PMCID: PMC4974095 DOI: 10.1126/sciadv.1501482] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/20/2016] [Indexed: 05/03/2023]
Abstract
Small RNAs play important roles in early embryonic development. However, their expression dynamics and modifications are poorly understood because of the scarcity of RNA that is obtainable for sequencing analysis. Using an improved deep sequencing method that requires as little as 10 ng of total RNA or 50 oocytes, we profile small RNAs in mouse oocytes and early embryos. We find that microRNA (miRNA) expression starts soon after fertilization, and the mature miRNAs carried into the zygote by sperm during fertilization are relatively rare compared to the oocyte miRNAs. Intriguingly, the zygotic miRNAs display a marked increase in 3' mono- and oligoadenylation in one- to two-cell embryos, which may protect the miRNAs from the massive degradation taking place during that time. Moreover, bioinformatics analyses show that the function of miRNA is suppressed from the oocyte to the two-cell stage and appears to be reactivated after the two-cell stage to regulate genes important in embryonic development. Our study thus provides a highly sensitive profiling method and valuable data sets for further examination of small RNAs in early embryos.
Collapse
Affiliation(s)
- Qiyuan Yang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jimin Lin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Liu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Ronghong Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Xue Zhang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mofang Liu
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Zhang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Yiping Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huijuan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Corresponding author. (H.S.); (L.W.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author. (H.S.); (L.W.)
| |
Collapse
|
21
|
Erson-Bensan AE, Can T. Alternative Polyadenylation: Another Foe in Cancer. Mol Cancer Res 2016; 14:507-17. [PMID: 27075335 DOI: 10.1158/1541-7786.mcr-15-0489] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Advancements in sequencing and transcriptome analysis methods have led to seminal discoveries that have begun to unravel the complexity of cancer. These studies are paving the way toward the development of improved diagnostics, prognostic predictions, and targeted treatment options. However, it is clear that pieces of the cancer puzzle are still missing. In an effort to have a more comprehensive understanding of the development and progression of cancer, we have come to appreciate the value of the noncoding regions of our genomes, partly due to the discovery of miRNAs and their significance in gene regulation. Interestingly, the miRNA-mRNA interactions are not solely dependent on variations in miRNA levels. Instead, the majority of genes harbor multiple polyadenylation signals on their 3' UTRs (untranslated regions) that can be differentially selected on the basis of the physiologic state of cells, resulting in alternative 3' UTR isoforms. Deregulation of alternative polyadenylation (APA) has increasing interest in cancer research, because APA generates mRNA 3' UTR isoforms with potentially different stabilities, subcellular localizations, translation efficiencies, and functions. This review focuses on the link between APA and cancer and discusses the mechanisms as well as the tools available for investigating APA events in cancer. Overall, detection of deregulated APA-generated isoforms in cancer may implicate some proto-oncogene activation cases of unknown causes and may help the discovery of novel cases; thus, contributing to a better understanding of molecular mechanisms of cancer. Mol Cancer Res; 14(6); 507-17. ©2016 AACR.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU) (ODTU), Ankara, Turkey.
| | - Tolga Can
- Department of Computer Engineering, Middle East Technical University (METU) (ODTU), Ankara, Turkey
| |
Collapse
|
22
|
Yamagishi R, Tsusaka T, Mitsunaga H, Maehata T, Hoshino SI. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs. Nucleic Acids Res 2016; 44:2475-90. [PMID: 26926106 PMCID: PMC4824116 DOI: 10.1093/nar/gkw118] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells.
Collapse
Affiliation(s)
- Ryota Yamagishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takeshi Tsusaka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroko Mitsunaga
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takaharu Maehata
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin-ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
23
|
Structural basis for the activation of the C. elegans noncanonical cytoplasmic poly(A)-polymerase GLD-2 by GLD-3. Proc Natl Acad Sci U S A 2015; 112:8614-9. [PMID: 26124149 DOI: 10.1073/pnas.1504648112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain typical of the canonical nuclear poly(A)-polymerase Pap1. The activity of C. elegans GLD-2 in vivo and in vitro depends on its association with the multi-K homology (KH) domain-containing protein, GLD-3, a homolog of Bicaudal-C. We have identified a minimal polyadenylation complex that includes the conserved nucleotidyl-transferase core of GLD-2 and the N-terminal domain of GLD-3, and determined its structure at 2.3-Å resolution. The structure shows that the N-terminal domain of GLD-3 does not fold into the predicted KH domain but wraps around the catalytic domain of GLD-2. The picture that emerges from the structural and biochemical data are that GLD-3 activates GLD-2 both indirectly by stabilizing the enzyme and directly by contributing positively charged residues near the RNA-binding cleft. The RNA-binding cleft of GLD-2 has distinct structural features compared with the poly(A)-polymerases Pap1 and Trf4. Consistently, GLD-2 has distinct biochemical properties: It displays unusual specificity in vitro for single-stranded RNAs with at least one adenosine at the 3' end. GLD-2 thus appears to have evolved specialized nucleotidyl-transferase properties that match the 3' end features of dormant cytoplasmic mRNAs.
Collapse
|
24
|
Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 2014; 244:181-210. [PMID: 25403746 DOI: 10.1002/dvdy.24229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | |
Collapse
|
25
|
Lee M, Choi Y, Kim K, Jin H, Lim J, Nguyen TA, Yang J, Jeong M, Giraldez AJ, Yang H, Patel DJ, Kim VN. Adenylation of maternally inherited microRNAs by Wispy. Mol Cell 2014; 56:696-707. [PMID: 25454948 DOI: 10.1016/j.molcel.2014.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/03/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022]
Abstract
Early development depends heavily on accurate control of maternally inherited mRNAs, and yet it remains unknown how maternal microRNAs are regulated during maternal-to-zygotic transition (MZT). We here find that maternal microRNAs are highly adenylated at their 3' ends in mature oocytes and early embryos. Maternal microRNA adenylation is widely conserved in fly, sea urchin, and mouse. We identify Wispy, a noncanonical poly(A) polymerase, as the enzyme responsible for microRNA adenylation in flies. Knockout of wispy abrogates adenylation and results in microRNA accumulation in eggs, whereas overexpression of Wispy increases adenylation and reduces microRNA levels in S2 cells. Wispy interacts with Ago1 through protein-protein interaction, which may allow the effective and selective adenylation of microRNAs. Thus, adenylation may contribute to the clearance of maternally deposited microRNAs during MZT. Our work provides mechanistic insights into the regulation of maternal microRNAs and illustrates the importance of RNA tailing in development.
Collapse
Affiliation(s)
- Mihye Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hua Jin
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Tuan Anh Nguyen
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jihye Yang
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Minsun Jeong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hui Yang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
26
|
Nousch M, Yeroslaviz A, Habermann B, Eckmann CR. The cytoplasmic poly(A) polymerases GLD-2 and GLD-4 promote general gene expression via distinct mechanisms. Nucleic Acids Res 2014; 42:11622-33. [PMID: 25217583 PMCID: PMC4191412 DOI: 10.1093/nar/gku838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Post-transcriptional gene regulation mechanisms decide on cellular mRNA activities. Essential gatekeepers of post-transcriptional mRNA regulation are broadly conserved mRNA-modifying enzymes, such as cytoplasmic poly(A) polymerases (cytoPAPs). Although these non-canonical nucleotidyltransferases efficiently elongate mRNA poly(A) tails in artificial tethering assays, we still know little about their global impact on poly(A) metabolism and their individual molecular roles in promoting protein production in organisms. Here, we use the animal model Caenorhabditis elegans to investigate the global mechanisms of two germline-enriched cytoPAPs, GLD-2 and GLD-4, by combining polysome profiling with RNA sequencing. Our analyses suggest that GLD-2 activity mediates mRNA stability of many translationally repressed mRNAs. This correlates with a general shortening of long poly(A) tails in gld-2-compromised animals, suggesting that most if not all targets are stabilized via robust GLD-2-mediated polyadenylation. By contrast, only mild polyadenylation defects are found in gld-4-compromised animals and few mRNAs change in abundance. Interestingly, we detect a reduced number of polysomes in gld-4 mutants and GLD-4 protein co-sediments with polysomes, which together suggest that GLD-4 might stimulate or maintain translation directly. Our combined data show that distinct cytoPAPs employ different RNA-regulatory mechanisms to promote gene expression, offering new insights into translational activation of mRNAs.
Collapse
Affiliation(s)
- Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, Dresden, 01307, Germany
| | - Assa Yeroslaviz
- Max Planck Institute of Biochemistry (MPIB), Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry (MPIB), Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Christian R Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, Dresden, 01307, Germany
| |
Collapse
|
27
|
Cragle C, MacNicol AM. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2. J Biol Chem 2014; 289:14239-51. [PMID: 24644291 DOI: 10.1074/jbc.m114.548271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mRNA-binding protein, Musashi, has been shown to regulate translation of select mRNAs and to control cellular identity in both stem cells and cancer cells. Within the mammalian cells, Musashi has traditionally been characterized as a repressor of translation. However, we have demonstrated that Musashi is an activator of translation in progesterone-stimulated oocytes of the frog Xenopus laevis, and recent evidence has revealed Musashi's capability to function as an activator of translation in mammalian systems. The molecular mechanism by which Musashi directs activation of target mRNAs has not been elucidated. Here, we report a specific association of Musashi with the noncanonical poly(A) polymerase germ line development defective-2 (GLD2) and map the association domain to 31 amino acids within the C-terminal domain of Musashi. We show that loss of GLD2 interaction through deletion of the binding domain or treatment with antisense oligonucleotides compromises Musashi function. Additionally, we demonstrate that overexpression of both Musashi and GLD2 significantly enhances Musashi function. Finally, we report a similar co-association also occurs between murine Musashi and GLD2 orthologs, suggesting that coupling of Musashi to the polyadenylation apparatus is a conserved mechanism to promote target mRNA translation.
Collapse
Affiliation(s)
- Chad Cragle
- From the Interdiciplinary Biomedical Sciences, Departments of Neurobiology and Developmental Sciences
| | - Angus M MacNicol
- Departments of Neurobiology and Developmental Sciences, Physiology and Biophysics, and Genetics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| |
Collapse
|
28
|
Vislovukh A, Vargas TR, Polesskaya A, Groisman I. Role of 3’-untranslated region translational control in cancer development, diagnostics and treatment. World J Biol Chem 2014; 5:40-57. [PMID: 24600513 PMCID: PMC3942541 DOI: 10.4331/wjbc.v5.i1.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
The messenger RNA 3’-untranslated region (3’UTR) plays an important role in regulation of gene expression on the posttranscriptional level. The 3’UTR controls gene expression via orchestrated interaction between the structural components of mRNAs (cis-element) and the specific trans-acting factors (RNA binding proteins and non-coding RNAs). The crosstalk of these factors is based on the binding sequences and/or direct protein-protein interaction, or just functional interaction. Much new evidence that has accumulated supports the idea that several RNA binding factors can bind to common mRNA targets: to the non-overlapping binding sites or to common sites in a competitive fashion. Various factors capable of binding to the same RNA can cooperate or be antagonistic in their actions. The outcome of the collective function of all factors bound to the same mRNA 3’UTR depends on many circumstances, such as their expression levels, affinity to the binding sites, and localization in the cell, which can be controlled by various physiological conditions. Moreover, the functional and/or physical interactions of the factors binding to 3’UTR can change the character of their actions. These interactions vary during the cell cycle and in response to changing physiological conditions. Abnormal functioning of the factors can lead to disease. In this review we will discuss how alterations of these factors or their interaction can affect cancer development and promote or enhance the malignant phenotype of cancer cells. Understanding these alterations and their impact on 3’UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention and diagnostics. We will also discuss emerging new tools in cancer diagnostics and therapy based on 3’UTR binding factors and approaches to improve them.
Collapse
|
29
|
Cui J, Sartain CV, Pleiss JA, Wolfner MF. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev Biol 2013; 383:121-31. [PMID: 23978535 DOI: 10.1016/j.ydbio.2013.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
The GLD-2 class of poly(A) polymerases regulate the timing of translation of stored transcripts by elongating the poly(A) tails of target mRNAs in the cytoplasm. WISPY is a GLD-2 enzyme that acts in the Drosophila female germline and is required for the completion of the egg-to-embryo transition. Though a handful of WISPY target mRNAs have been identified during both oogenesis and early embryogenesis, it was unknown whether WISP simply regulated a small pool of patterning or cell cycle genes, or whether, instead, cytoplasmic polyadenylation was widespread during this developmental transition. To identify the full range of WISPY targets, we carried out microarray analysis to look for maternal mRNAs whose poly(A) tails fail to elongate in the absence of WISP function. We examined the polyadenylated portion of the maternal transcriptome in both stage 14 (mature) oocytes and in early embryos that had completed egg activation. Our analysis shows that the poly(A) tails of thousands of maternal mRNAs fail to elongate in wisp-deficient oocytes and embryos. Furthermore, we have identified specific classes of genes that are highly regulated in this manner at each stage. Our study shows that cytoplasmic polyadenylation is a major regulatory mechanism during oocyte maturation and egg activation.
Collapse
Affiliation(s)
- Jun Cui
- Department of Molecular Biology and Genetics, Biotechnology Bldg., Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
30
|
Lapointe CP, Wickens M. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. J Biol Chem 2013; 288:20723-33. [PMID: 23709223 DOI: 10.1074/jbc.m113.455451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Terminal uridylyl transferases (TUTs) catalyze the addition of uridines to the 3' ends of RNAs and are implicated in the regulation of both messenger RNAs and microRNAs. To better understand how TUTs add uridines to RNAs, we focused on a putative TUT from Xenopus laevis, XTUT7. We determined that XTUT7 catalyzed the addition of uridines to RNAs. Mutational analysis revealed that a truncated XTUT7 enzyme, which contained solely the nucleotidyl transferase and poly(A) polymerase-associated domains, was sufficient for catalytic activity. XTUT7 activity decreased upon removal of the CCHC zinc finger domains and a short segment of basic amino acids (the basic region). This basic region bound nucleic acids in vitro. We also demonstrated that XTUT7 repressed translation of a polyadenylated RNA, to which it added a distinct number of uridines. We generated a predicted structure of the XTUT7 catalytic core that indicated histidine 1269 was likely important for uridine specificity. Indeed, mutation of histidine 1269 broadened the nucleotide specificity of XTUT7 and abolished XTUT7-dependent translational repression. Our data reveal key aspects of how XTUT7 adds uridines to RNAs, highlight the role of the basic region, illustrate that XTUT7 can repress translation, and identify an amino acid important for uridine specificity.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
31
|
Scott DD, Norbury CJ. RNA decay via 3' uridylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:654-65. [PMID: 23385389 DOI: 10.1016/j.bbagrm.2013.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The post-transcriptional addition of non-templated nucleotides to the 3' ends of RNA molecules can have a profound impact on their stability and biological function. Evidence accumulated over the past few decades has identified roles for polyadenylation in RNA stabilisation, degradation and, in the case of eukaryotic mRNAs, translational competence. By contrast, the biological significance of RNA 3' modification by uridylation has only recently started to become apparent. The evolutionary origin of eukaryotic RNA terminal uridyltransferases can be traced to an ancestral poly(A) polymerase. Here we review what is currently known about the biological roles of these enzymes, the ways in which their activity is regulated and the consequences of this covalent modification for the target RNA molecule, with a focus on those instances where uridylation has been found to contribute to RNA degradation. Roles for uridylation have been identified in the turnover of mRNAs, pre-microRNAs, piwi-interacting RNAs and the products of microRNA-directed mRNA cleavage; many mature microRNAs are also modified by uridylation, though the consequences in this case are currently less well understood. In the case of piwi-interacting RNAs, modification of the 3'-terminal nucleotide by the HEN1 methyltransferase blocks uridylation and so stabilises the small RNA. The extent to which other uridylation-dependent mechanisms of RNA decay are similarly regulated awaits further investigation. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Daniel D Scott
- University of Oxford, Sir William Dunn School of Pathology, Oxford, UK.
| | | |
Collapse
|
32
|
Wu J, Campbell ZT, Menichelli E, Wickens M, Williamson JR. A protein.protein interaction platform involved in recruitment of GLD-3 to the FBF.fem-3 mRNA complex. J Mol Biol 2012; 425:738-54. [PMID: 23159559 DOI: 10.1016/j.jmb.2012.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 02/03/2023]
Abstract
The Pumilio and FBF (PUF) family of RNA-binding proteins interacts with protein partners to post-transcriptionally regulate mRNAs in eukaryotes. The interaction between PUF family member fem-3 binding factor (FBF) and germline development defective-3 (GLD-3) protein promotes spermatogenesis in Caenorhabditis elegans by increasing expression of the fem-3 mRNA. Defined here in these studies is the molecular basis for this critical interaction. A 10-amino-acid region within GLD-3 is required for FBF binding, while a 7-amino-acid loop in FBF between PUF repeats 7 and 8 is necessary for GLD-3 binding. These short sequences are conserved, as other FBF-binding proteins bear sequences similar to those in GLD-3 and other C. elegans PUF proteins contain sequences similar to those in FBF. The FBF-binding region of GLD-3 forms a ternary complex with FBF on the point mutation element (PME) in the fem-3 3' untranslated region, and formation of this GLD-3⋅FBF complex does not impact the RNA-binding activity of FBF. These data raise the possibility of alternative models involving the formation of a GLD-3⋅FBF⋅RNA complex in the regulation of germline mRNAs.
Collapse
Affiliation(s)
- Joann Wu
- Department of Molecular Biology, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 2012; 287:36370-83. [PMID: 22955276 PMCID: PMC3476303 DOI: 10.1074/jbc.m112.373522] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/05/2012] [Indexed: 11/06/2022] Open
Abstract
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.
Collapse
Affiliation(s)
- Jamie Van Etten
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Trista L. Schagat
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
- the Promega Corporation, Madison, Wisconsin 53711, and
| | - Joel Hrit
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Chase A. Weidmann
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Justin Brumbaugh
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J. Coon
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Aaron C. Goldstrohm
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
34
|
Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 2012; 151:521-32. [PMID: 23063654 DOI: 10.1016/j.cell.2012.09.022] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/26/2012] [Accepted: 08/15/2012] [Indexed: 11/23/2022]
Abstract
RNase III Drosha initiates microRNA (miRNA) maturation by cleaving a primary miRNA transcript and releasing a pre-miRNA with a 2 nt 3' overhang. Dicer recognizes the 2 nt 3' overhang structure to selectively process pre-miRNAs. Here, we find that, unlike prototypic pre-miRNAs (group I), group II pre-miRNAs acquire a shorter (1 nt) 3' overhang from Drosha processing and therefore require a 3'-end mono-uridylation for Dicer processing. The majority of let-7 and miR-105 belong to group II. We identify TUT7/ZCCHC6, TUT4/ZCCHC11, and TUT2/PAPD4/GLD2 as the terminal uridylyl transferases responsible for pre-miRNA mono-uridylation. The TUTs act specifically on dsRNAs with a 1 nt 3' overhang, thereby creating a 2 nt 3' overhang. Depletion of TUTs reduces let-7 levels and disrupts let-7 function. Although the let-7 suppressor, Lin28, induces inhibitory oligo-uridylation in embryonic stem cells, mono-uridylation occurs in somatic cells lacking Lin28 to promote let-7 biogenesis. Our study reveals functional duality of uridylation and introduces TUT7/4/2 as components of the miRNA biogenesis pathway.
Collapse
|
35
|
Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 2012; 11:460-72. [PMID: 22542725 DOI: 10.1016/j.arr.2012.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/14/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022]
Abstract
Cytoplasmic elongation of the poly(A) tail was originally identified as a mechanism to activate maternal mRNAs, stored as silent transcripts with short poly(A) tails, during meiotic progression. A family of RNA-binding proteins named CPEBs, which recruit the translational repression or cytoplasmic polyadenylation machineries to their target mRNAs, directly mediates cytoplasmic polyadenylation. Recent years have witnessed an explosion of studies showing that CPEBs are not only expressed in a variety of somatic tissues, but have essential functions controlling gene expression in time and space in the adult organism. These "new" functions of the CPEBs include regulating the balance between senescence and proliferation and its pathological manifestation, tumor development. In this review, we summarize current knowledge on the functions of the CPEB-family of proteins in the regulation of cell proliferation, their target mRNAs and the mechanism controlling their activities.
Collapse
|
36
|
Arumugam K, Macnicol MC, Macnicol AM. Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation. Mol Reprod Dev 2012; 79:553-63. [PMID: 22730340 DOI: 10.1002/mrd.22060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 11/06/2022]
Abstract
The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence-specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de-repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone-stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3' untranslated region (3' UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone-induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301W Markham, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
37
|
Minasaki R, Eckmann CR. Subcellular specialization of multifaceted 3'end modifying nucleotidyltransferases. Curr Opin Cell Biol 2012; 24:314-22. [PMID: 22551970 DOI: 10.1016/j.ceb.2012.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
While canonical 3'end modifications of mRNAs or tRNAs are well established, recent technological advances in RNA analysis have given us a glimpse of how widespread other types of distinctive 3'end modifications appear to be. Next to alternative nuclear or cytoplasmic polyadenylation mechanisms, evidence accumulated for a variety of 3'end mono-nucleotide and oligo-nucleotide additions of primarily adenosines or uracils on a variety of RNA species. Enzymes responsible for such non-templated additions are non-canonical RNA nucleotidyltransferases, which possess surprising flexibility in RNA substrate selection and enzymatic activity. We will highlight recent findings supporting the view that RNA nucleotidyltransferase activity, RNA target selection and sub-compartimentalization are spatially, temporally and physiologically regulated by dedicated co-factors. Along with the diversification of non-coding RNA classes, the evolutionary conservation of these multifaceted RNA modifiers underscores the prevalence and importance of diverse 3'end formation mechanisms.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
38
|
Time of day regulates subcellular trafficking, tripartite synaptic localization, and polyadenylation of the astrocytic Fabp7 mRNA. J Neurosci 2012; 32:1383-94. [PMID: 22279223 DOI: 10.1523/jneurosci.3228-11.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus. Northern blotting revealed a coordinated time-of-day-dependent oscillation for the Fabp7 mRNA poly(A) tail throughout murine brain. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) regulates subcellular trafficking and translation of synaptic plasticity-related mRNAs. Here we show that Fabp7 mRNA coimmunoprecipitated with CPEB1 from primary mouse astrocyte extracts, and its 3'UTR contains phylogenetically conserved cytoplasmic polyadenylation elements (CPEs) capable of regulating translation of reporter mRNAs during Xenopus oocyte maturation. Given that Fabp7 expression is confined to astrocytes and neural progenitors in adult mouse brain, the synchronized cycling pattern of Fabp7 mRNA is a novel discovery among known CPE-regulated transcripts. These results implicate circadian, sleep, and/or metabolic control of CPEB-mediated subcellular trafficking and localized translation of Fabp7 mRNA in the tripartite synapse of mammalian brain.
Collapse
|
39
|
Targeted translational regulation using the PUF protein family scaffold. Proc Natl Acad Sci U S A 2011; 108:15870-5. [PMID: 21911377 DOI: 10.1073/pnas.1105151108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory complexes formed on mRNAs control translation, stability, and localization. These complexes possess two activities: one that binds RNA and another--the effector--that elicits a biological function. The Pumilio and FBF (PUF) protein family of RNA binding proteins provides a versatile scaffold to design and select proteins with new specificities. Here, the PUF scaffold is used to target translational activation and repression of specific mRNAs, and to induce specific poly(A) addition and removal. To do so, we linked PUF scaffold proteins to a translational activator, GLD2, or a translational repressor, CAF1. The chimeric proteins activate or repress the targeted mRNAs in Xenopus oocytes, and elicit poly(A) addition or removal. The magnitude of translational control relates directly to the affinity of the RNA-protein complex over a 100-fold range of K(d). The chimeric proteins act on both reporter and endogenous mRNAs: an mRNA that normally is deadenylated during oocyte maturation instead receives poly(A) in the presence of an appropriate chimera. The PUF-effector strategy enables the design of proteins that affect translation and stability of specific mRNAs in vivo.
Collapse
|
40
|
Villalba A, Coll O, Gebauer F. Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 2011; 21:452-7. [DOI: 10.1016/j.gde.2011.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
|
41
|
Laishram RS, Barlow CA, Anderson RA. CKI isoforms α and ε regulate Star-PAP target messages by controlling Star-PAP poly(A) polymerase activity and phosphoinositide stimulation. Nucleic Acids Res 2011; 39:7961-73. [PMID: 21729869 PMCID: PMC3185439 DOI: 10.1093/nar/gkr549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Star-PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P(2)), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P(2) sensitive CKI isoform, CKIα associates with and phosphorylates Star-PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star-PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P(2). CKI activity was required for the expression and efficient 3'-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star-PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star-PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star-PAP targets. We show that in addition to CKIα, Star-PAP associates with another CKI isoform, CKIε in the Star-PAP complex that phosphorylates Star-PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3'-end processing of Star-PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star-PAP activity and regulates Star-PAP target messages.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Department of Pharmacology, University of Wisconsin-Madison, 1300 University Ave. University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
42
|
Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues. Mol Biol Rep 2011; 39:2811-9. [PMID: 21660475 DOI: 10.1007/s11033-011-1040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/04/2011] [Indexed: 12/13/2022]
Abstract
Pumilio proteins regulate the translation of specific proteins required for germ cell development and morphogenesis. In the present study, we have identified the pumilio-2 in zebrafish and analyze its expression in adult tissues and early embryos. Pumilio-2 codes for the full-length Pumilio-2 protein and contains a PUF-domain. When compared to the mammalian and avian Pumilio-2 proteins, zebrafish Pumilio-2 protein was found to contain an additional sequence of 24 amino acid residues within the PUF-domain. Zebrafish pumilio-2 mRNA is expressed in the ovary, testis, liver, kidney and brain but is absent in the heart and muscle as detected by RT-PCR. The results of in situ hybridization indicate that transcripts of pumilio-2 are distributed in all blastomeres from the 1-cell stage to the sphere stage and accumulate in the head and tail during the 60%-epiboly and 3-somite stages. Transcripts were also detected in the brain and neural tube of the 24 h post-fertilization (hpf) embryos. Western blot analyses indicate that the Pumilio-2 protein is strongly expressed in the ovary, testis and brain but not in other tissues. These data suggest that pumilio-2 plays an important role in the development of the zebrafish germ cells and nervous system.
Collapse
|
43
|
Vishnu MR, Sumaroka M, Klein PS, Liebhaber SA. The poly(rC)-binding protein alphaCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation. RNA (NEW YORK, N.Y.) 2011; 17:944-56. [PMID: 21444632 PMCID: PMC3078743 DOI: 10.1261/rna.2587411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3' UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3' UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings.
Collapse
Affiliation(s)
- Melanie R Vishnu
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
44
|
Ota R, Kotani T, Yamashita M. Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes. J Biol Chem 2011; 286:2853-63. [PMID: 21098481 PMCID: PMC3024781 DOI: 10.1074/jbc.m110.155523] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/14/2010] [Indexed: 11/06/2022] Open
Abstract
Precise control of the timing of translational activation of dormant mRNAs stored in oocytes is required for normal progression of oocyte maturation. We previously showed that Pumilio1 (Pum1) is specifically involved in the translational control of cyclin B1 mRNA during Xenopus oocyte maturation, in cooperation with cytoplasmic polyadenylation element-binding protein (CPEB). It was reported that another Pumilio, Pumilio2 (Pum2), exists in Xenopus oocytes and that this protein regulates the translation of RINGO mRNA, together with Deleted in Azoospermia-like protein (DAZL). In this study, we characterized Pum1 and Pum2 biochemically by using newly produced antibodies that discriminate between them. Pum1 and Pum2 are bound to several key proteins involved in translational control of dormant mRNAs, including CPEB and DAZL, in immature oocytes. However, Pum1 and Pum2 themselves have no physical interaction. Injection of anti-Pum1 or anti-Pum2 antibody accelerated CPEB phosphorylation, cyclin B1 translation, and oocyte maturation. Pum1 phosphorylation coincides with the dissociation of CPEB from Pum1 and the translational activation of cyclin B1 mRNA, a target of Pum1, whereas Pum2 phosphorylation occurred at timing earlier than that for Pum1. Some, but not all, of cyclin B1 mRNAs release the deadenylase PARN during oocyte maturation, whereas Pum1 remains associated with the mRNA. On the basis of these findings, we discuss the functions of Pum1 and Pum2 in translational control of mRNAs during oocyte maturation.
Collapse
Affiliation(s)
- Ryoma Ota
- From the Laboratory of Reproductive and Developmental Biology, Graduate School of Life Science and
| | - Tomoya Kotani
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakane Yamashita
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
45
|
|
46
|
Eckmann CR, Rammelt C, Wahle E. Control of poly(A) tail length. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:348-61. [PMID: 21957022 DOI: 10.1002/wrna.56] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Poly(A) tails have long been known as stable 3' modifications of eukaryotic mRNAs, added during nuclear pre-mRNA processing. It is now appreciated that this modification is much more diverse: A whole new family of poly(A) polymerases has been discovered, and poly(A) tails occur as transient destabilizing additions to a wide range of different RNA substrates. We review the field from the perspective of poly(A) tail length. Length control is important because (1) poly(A) tail shortening from a defined starting point acts as a timer of mRNA stability, (2) changes in poly(A) tail length are used for the purpose of translational regulation, and (3) length may be the key feature distinguishing between the stabilizing poly(A) tails of mRNAs and the destabilizing oligo(A) tails of different unstable RNAs. The mechanism of length control during nuclear processing of pre-mRNAs is relatively well understood and is based on the changes in the processivity of poly(A) polymerase induced by two RNA-binding proteins. Developmentally regulated poly(A) tail extension also generates defined tails; however, although many of the proteins responsible are known, the reaction is not understood mechanistically. Finally, destabilizing oligoadenylation does not appear to have inherent length control. Rather, average tail length results from the balance between polyadenylation and deadenylation.
Collapse
Affiliation(s)
- Christian R Eckmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
47
|
GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proc Natl Acad Sci U S A 2010; 107:17445-50. [PMID: 20855596 DOI: 10.1073/pnas.1012611107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Regulated polyadenylation is a broadly conserved mechanism that controls key events during oogenesis. Pivotal to that mechanism is GLD-2, a catalytic subunit of cytoplasmic poly(A) polymerase (PAP). Caenorhabditis elegans GLD-2 forms an active PAP with multiple RNA-binding partners to regulate diverse aspects of germline and early embryonic development. One GLD-2 partner, RNP-8, was previously shown to influence oocyte fate specification. Here we use a genomic approach to identify transcripts selectively associated with both GLD-2 and RNP-8. Among the 335 GLD-2/RNP-8 potential targets, most were annotated as germline mRNAs and many as maternal mRNAs. These targets include gld-2 and rnp-8 themselves, suggesting autoregulation. Removal of either GLD-2 or RNP-8 resulted in shortened poly(A) tails and lowered abundance of four target mRNAs (oma-2, egg-1, pup-2, and tra-2); GLD-2 depletion also lowered the abundance of most GLD-2/RNP-8 putative target mRNAs when assayed on microarrays. Therefore, GLD-2/RNP-8 appears to polyadenylate and stabilize its target mRNAs. We also provide evidence that rnp-8 influences oocyte development; rnp-8 null mutants have more germ cell corpses and fewer oocytes than normal. Furthermore, RNP-8 appears to work synergistically with another GLD-2-binding partner, GLD-3, to ensure normal oogenesis. We propose that the GLD-2/RNP-8 enzyme is a broad-spectrum regulator of the oogenesis program that acts within an RNA regulatory network to specify and produce fully functional oocytes.
Collapse
|
48
|
Abstract
The CCR4-CAF1-NOT complex is a major cytoplasmic deadenylation complex in yeast and mammals. This complex associates with RNA-binding proteins and microRNAs to repress translation of target mRNAs. We sought to determine how CCR4 and CAF1 participate in repression and control of maternal mRNAs using Xenopus laevis oocytes. We show that Xenopus CCR4 and CAF1 enzymes are active deadenylases and repress translation of an adenylated mRNA. CAF1 also represses translation independent of deadenylation. The deadenylation-independent repression requires a 5' cap structure on the mRNA; however, deadenylation does not. We suggest that mere recruitment of CAF1 is sufficient for repression, independent of deadenylation.
Collapse
Affiliation(s)
- Amy Cooke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
49
|
Schmidt MJ, Norbury CJ. Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:142-51. [PMID: 21956911 DOI: 10.1002/wrna.16] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The addition of nontemplated nucleotides, particularly adenylyl and uridylyl residues, to the 3' ends of RNA substrates has been the focus of much attention in recent years, and these studies have generated some intriguing surprises. In addition to the well-known canonical poly(A) polymerase (PAP) that polyadenylates mRNAs prior to export from the nucleus to the cytoplasm, a separate class of noncanonical poly(A) polymerases has emerged over the past decade. Studies on various organisms have led to the realization that these noncanonical PAPs, which are conserved from yeast to mammals, play crucial and diverse roles in the regulation of gene expression. Here we review the current knowledge of these enzymes, with an emphasis on the human proteins, and highlight recent discoveries that have implications far beyond the understanding of RNA metabolism itself.
Collapse
|
50
|
The early noncoding region of human papillomavirus type 16 is regulated by cytoplasmic polyadenylation factors. Virus Res 2010; 149:217-23. [DOI: 10.1016/j.virusres.2010.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/30/2010] [Accepted: 02/01/2010] [Indexed: 11/21/2022]
|