1
|
Han X, Wang D, Yang L, Wang N, Shen J, Wang J, Zhang L, Chen L, Gao S, Zong WX, Wang Y. Activation of polyamine catabolism promotes glutamine metabolism and creates a targetable vulnerability in lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2319429121. [PMID: 38513095 PMCID: PMC10990097 DOI: 10.1073/pnas.2319429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/25/2024] [Indexed: 03/23/2024] Open
Abstract
Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.
Collapse
Affiliation(s)
- Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Deyu Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Liao Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ning Wang
- Bio-med Big Data Center, Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ08854
| | - Jinghan Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai200032, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200433, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ08854
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- Minhang Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
2
|
Cruz-Pulido YE, Mounce BC. Good cop, bad cop: Polyamines play both sides in host immunity and viral replication. Semin Cell Dev Biol 2023; 146:70-79. [PMID: 36604249 PMCID: PMC10101871 DOI: 10.1016/j.semcdb.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.
Collapse
Affiliation(s)
- Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Infectious Disease and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
3
|
Deng L, Liao L, Zhang YL, Hu SY, Yang SY, Ma XY, Huang MY, Zhang FL, Li DQ. MYC-driven U2SURP regulates alternative splicing of SAT1 to promote triple-negative breast cancer progression. Cancer Lett 2023; 560:216124. [PMID: 36907504 DOI: 10.1016/j.canlet.2023.216124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Triple-negative breast cancer (TNBC), although highly lethal, lacks validated therapeutic targets. Here, we report that U2 snRNP-associated SURP motif-containing protein (U2SURP), a poorly defined member of the serine/arginine rich protein family, was significantly upregulated in TNBC tissues, and its high expression was associated with poor prognosis of TNBC patients. MYC, a frequently amplified oncogene in TNBC tissues, enhanced U2SURP translation through an eIF3D (eukaryotic translation initiation factor 3 subunit D)-dependent mechanism, resulting in the accumulation of U2SURP in TNBC tissues. Functional assays revealed that U2SURP played an important role in facilitating tumorigenesis and metastasis of TNBC cells both in vitro and in vivo. Intriguingly, U2SURP had no significant effects on proliferative, migratory, and invasive potential of normal mammary epithelial cells. Furthermore, we found that U2SURP promoted alternative splicing of spermidine/spermine N1-acetyltransferase 1 (SAT1) pre-mRNA by removal of intron 3, resulting in an increase in the stability of SAT1 mRNA and subsequent protein expression levels. Importantly, spliced SAT1 promoted the oncogenic properties of TNBC cells, and re-expression of SAT1 in U2SURP-depleted cells partially rescued the impaired malignant phenotypes of TNBC cells caused by U2SURP knockdown both in vitro and in mice. Collectively, these findings reveal previously unknown functional and mechanism roles of the MYC-U2SURP-SAT1 signaling axis in TNBC progression and highlight U2SURP as a potential therapy target for TNBC.
Collapse
Affiliation(s)
- Ling Deng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
5
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
6
|
Baker M, Petasny M, Taqatqa N, Bentata M, Kay G, Engal E, Nevo Y, Siam A, Dahan S, Salton M. KDM3A regulates alternative splicing of cell-cycle genes following DNA damage. RNA (NEW YORK, N.Y.) 2021; 27:1353-1362. [PMID: 34321328 PMCID: PMC8522690 DOI: 10.1261/rna.078796.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Mai Baker
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mayra Petasny
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eden Engal
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ahmad Siam
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Manet E, Polvèche H, Mure F, Mrozek-Gorska P, Roisné-Hamelin F, Hammerschmidt W, Auboeuf D, Gruffat H. Modulation of alternative splicing during early infection of human primary B lymphocytes with Epstein-Barr virus (EBV): a novel function for the viral EBNA-LP protein. Nucleic Acids Res 2021; 49:10657-10676. [PMID: 34530456 PMCID: PMC8501971 DOI: 10.1093/nar/gkab787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus associated with human cancers worldwide. Ex vivo, the virus efficiently infects resting human B lymphocytes and induces their continuous proliferation. This process is accompanied by a global reprogramming of cellular gene transcription. However, very little is known on the impact of EBV infection on the regulation of alternative splicing, a pivotal mechanism that plays an essential role in cell fate determination and is often deregulated in cancer. In this study, we have developed a systematic time-resolved analysis of cellular mRNA splice variant expression during EBV infection of resting B lymphocytes. Our results reveal that major modifications of alternative splice variant expression appear as early as day 1 post-infection and suggest that splicing regulation provides—besides transcription—an additional mechanism of gene expression regulation at the onset of B cell activation and proliferation. We also report a role for the viral proteins, EBNA2 and EBNA-LP, in the modulation of specific alternative splicing events and reveal a previously unknown function for EBNA-LP—together with the RBM4 splicing factor—in the alternative splicing regulation of two important modulators of cell proliferation and apoptosis respectively, NUMB and BCL-X.
Collapse
Affiliation(s)
- Evelyne Manet
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | | | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | - Florian Roisné-Hamelin
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | | | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| |
Collapse
|
8
|
Tulluri V, Nemmara VV. Role of Antizyme Inhibitor Proteins in Cancers and Beyond. Onco Targets Ther 2021; 14:667-682. [PMID: 33531815 PMCID: PMC7846877 DOI: 10.2147/ott.s281157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Polyamines are multivalent organic cations essential for many cellular functions, including cell growth, differentiation, and proliferation. However, elevated polyamine levels are associated with a slew of pathological conditions, including multiple cancers. Intracellular polyamine levels are primarily controlled by the autoregulatory circuit comprising two different protein types, Antizymes (OAZ) and Antizyme Inhibitors (AZIN), which regulate the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC). While OAZ functions to decrease the intracellular polyamine levels by inhibiting ODC activity and exerting a negative control of polyamine uptake, AZIN operates to increase intracellular polyamine levels by binding and sequestering OAZ to relieve ODC inhibition and to increase polyamine uptake. Interestingly, OAZ and AZIN exhibit autoregulatory functions on polyamine independent pathways as well. A growing body of evidence demonstrates the dysregulation of AZIN expression in multiple cancers. Additionally, RNA editing of the Azin1 transcript results in a "gain-of-function" phenotype, which is shown to drive aggressive tumor types. This review will discuss the recent advances in AZIN's role in cancers via aberrant polyamine upregulation and its polyamine-independent protein regulation. This report will also highlight AZIN interaction with proteins outside the polyamine biosynthetic pathway and its potential implication to cancer pathogenesis. Finally, this review will reveal the protein interaction network of AZIN isoforms by analyzing three different interactome databases.
Collapse
Affiliation(s)
- Vennela Tulluri
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| | - Venkatesh V Nemmara
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| |
Collapse
|
9
|
Pozzi B, Bragado L, Mammi P, Torti MF, Gaioli N, Gebhard L, García Solá M, Vaz-Drago R, Iglesias N, García C, Gamarnik A, Srebrow A. Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. Nucleic Acids Res 2020; 48:6824-6838. [PMID: 32432721 PMCID: PMC7337517 DOI: 10.1093/nar/gkaa340] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
RNA-seq experiments previously performed by our laboratories showed enrichment in intronic sequences and alterations in alternative splicing in dengue-infected human cells. The transcript of the SAT1 gene, of well-known antiviral action, displayed higher inclusion of exon 4 in infected cells, leading to an mRNA isoform that is degraded by non-sense mediated decay. SAT1 is a spermidine/spermine acetyl-transferase enzyme that decreases the reservoir of cellular polyamines, limiting viral replication. Delving into the molecular mechanism underlying SAT1 pre-mRNA splicing changes upon viral infection, we observed lower protein levels of RBM10, a splicing factor responsible for SAT1 exon 4 skipping. We found that the dengue polymerase NS5 interacts with RBM10 and its sole expression triggers RBM10 proteasome-mediated degradation. RBM10 over-expression in infected cells prevents SAT1 splicing changes and limits viral replication, while its knock-down enhances the splicing switch and also benefits viral replication, revealing an anti-viral role for RBM10. Consistently, RBM10 depletion attenuates expression of interferon and pro-inflammatory cytokines. In particular, we found that RBM10 interacts with viral RNA and RIG-I, and even promotes the ubiquitination of the latter, a crucial step for its activation. We propose RBM10 fulfills diverse pro-inflammatory, anti-viral tasks, besides its well-documented role in splicing regulation of apoptotic genes.
Collapse
Affiliation(s)
- Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Pablo Mammi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - María Florencia Torti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Buenos Aires, Argentina
| | - Nicolás Gaioli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Leopoldo G Gebhard
- CONICET-Universidad Nacional de Quilmes, Laboratorio de Virus Emergentes, Departamento de CyT, Buenos Aires, Argentina
| | - Martín E García Solá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Rita Vaz-Drago
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Néstor G Iglesias
- CONICET-Universidad Nacional de Quilmes, Laboratorio de Virus Emergentes, Departamento de CyT, Buenos Aires, Argentina
| | - Cybele C García
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Buenos Aires, Argentina
| | | | - Anabella Srebrow
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
10
|
Rahhal R, Seto E. Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 2019; 47:4911-4926. [PMID: 31162605 PMCID: PMC6547430 DOI: 10.1093/nar/gkz292] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Histone modifications and RNA splicing, two seemingly unrelated gene regulatory processes, greatly increase proteome diversity and profoundly influence normal as well as pathological eukaryotic cellular functions. Like many histone modifying enzymes, histone deacetylases (HDACs) play critical roles in governing cellular behaviors and are indispensable in numerous biological processes. While the association between RNA splicing and histone modifications is beginning to be recognized, a lack of knowledge exists regarding the role of HDACs in splicing. Recent studies however, reveal that HDACs interact with spliceosomal and ribonucleoprotein complexes, actively control the acetylation states of splicing-associated histone marks and splicing factors, and thereby unexpectedly could modulate splicing. Here, we review the role of histone/protein modifications and HDACs in RNA splicing and discuss the convergence of two parallel fields, which supports the argument that HDACs, and perhaps most histone modifying enzymes, are much more versatile and far more complicated than their initially proposed functions. Analogously, an HDAC-RNA splicing connection suggests that splicing is regulated by additional upstream factors and pathways yet to be defined or not fully characterized. Some human diseases share common underlying causes of aberrant HDACs and dysregulated RNA splicing and, thus, further support the potential link between HDACs and RNA splicing.
Collapse
Affiliation(s)
- Raneen Rahhal
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
11
|
Knockdown of SSATX, an alternative splicing variant of the SAT1 gene, promotes melanoma progression. Gene 2019; 716:144010. [DOI: 10.1016/j.gene.2019.144010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
|
12
|
Xue L, Liu X, Wang Q, Liu CQ, Chen Y, Jia W, Hsie R, Chen Y, Luh F, Zheng S, Yen Y. Ribonucleotide reductase subunit M2B deficiency leads to mitochondrial permeability transition pore opening and is associated with aggressive clinicopathologic manifestations of breast cancer. Am J Transl Res 2018; 10:3635-3649. [PMID: 30662615 PMCID: PMC6291710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Ribonucleotide reductase small subunit M2B (RRM2B) plays an essential role in maintaining mitochondrial homeostasis. Mitochondrial permeability transition pore (MPTP) is a key regulator of mitochondrial homeostasis. MPTP contributes to cell death and is crucial in cancer progression. RRM2B's relation to MPTP is not well known, and the role of RRM2B in cancer progression is controversial. Here, our aim was to study the role of RRM2B in regulating MPTP and the association between RRM2B and clinicopathological manifestations in breast cancer. Analysis of Rrm2b-/- mice cells found changes consistent with MPTP opening, including mitochondrial swelling and upregulation of cyclophilin D (CypD), a protein that activates MPTP opening. Silencing of RRM2B gene expression in MCF7 and KB cell lines led to MPTP opening. Accordingly, dysfunctional oxidative phosphorylation and elevated superoxide levels were also detected in RRM2B-silenced MCF7 and KB cell lines, which was consistent with the findings by gene set enrichment analysis of 159 breast cancer cases that genes involving respiratory electron transport were enriched in high-RRM2B breast cancer, and genes involving biologic oxidation were enriched in low-RRM2B breast cancers. A metabolomic study revealed that spermine levels in RRM2B-silenced MCF7 and KB cells were only 5% and 8% of control levels, respectively. Addition of exogenous spermine to RRM2B-silenced MCF7 and KB cells was able to reverse the MPTP opening induced by RRM2B deficiency. These results suggest that RRM2B may induce MPTP opening through reducing spermine levels. Immunohistochemical analysis of 148 breast cancer cases showed that RRM2B and CypD protein levels were inversely correlated in breast cancer specimens (P<0.05), so were their associated clinicopathologic parameters that high-level RRM2B expression was associated with better clinicopathological features. We conclude that RRM2B deficiency leads to MPTP opening mediated by spermine. Coupling of low RRM2B and high CypD expression is associated with aggressive manifestations of breast cancer.
Collapse
Affiliation(s)
- Lijun Xue
- Department of Pathology, Loma Linda University Medical CenterLoma Linda, CA 92354, USA
| | - Xiyong Liu
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Qinchuan Wang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
- Surgical Oncology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Charlie Q Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Yunru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Wei Jia
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Ronhong Hsie
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Yifan Chen
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Frank Luh
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Shu Zheng
- Cancer Institute, Zhejiang UniversityHangzhou 310009, Zhejiang, China
| | - Yun Yen
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| |
Collapse
|
13
|
Abstract
Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.
Collapse
Affiliation(s)
- Thomas E Dever
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ivaylo P Ivanov
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
Hoque M, Park JY, Chang YJ, Luchessi AD, Cambiaghi TD, Shamanna R, Hanauske-Abel HM, Holland B, Pe'ery T, Tian B, Mathews MB. Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells. ACTA ACUST UNITED AC 2017; 5:e1366294. [PMID: 29034140 DOI: 10.1080/21690731.2017.1366294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells. eIF5A modulates the synthesis of groups of proteins (the eIF5A regulon), and undergoes a distinctive two-step post-translational modification (hypusination) catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. We show that expression of NMD-susceptible constructs was increased by depletion of the major eIF5A isoform, eIF5A1. NMD was also attenuated when hypusination was inhibited by RNA interference with either of the two eIF5A modifying enzymes, or by treatment with the drugs ciclopirox or deferiprone which inhibit deoxyhypusine hydroxylase. Transcriptome analysis by RNA-Seq identified human genes whose expression is coordinately regulated by eIF5A1, its modifying enzymes, and the pivotal NMD factor, Upf1. Transcripts encoding components of the translation system were highly represented, including some encoding ribosomal proteins controlled by alternative splicing coupled to NMD (AS-NMD). Our findings extend and strengthen the association of eIF5A with NMD, previously inferred in yeast, and show that hypusination is important for this function of human eIF5A. In addition, they advance drug-mediated NMD suppression as a therapeutic opportunity for nonsense-associated diseases. We propose that regulation of mRNA stability contributes to eIF5A's role in selective gene expression.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ji Yeon Park
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yun-Juan Chang
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.,Office of Advanced Research Computing, Rutgers University, Newark, NJ, USA
| | - Augusto D Luchessi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Tavane D Cambiaghi
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Raghavendra Shamanna
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hartmut M Hanauske-Abel
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bart Holland
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tsafi Pe'ery
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Michael B Mathews
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
16
|
Zheng S. Alternative splicing and nonsense-mediated mRNA decay enforce neural specific gene expression. Int J Dev Neurosci 2016; 55:102-108. [PMID: 26968265 DOI: 10.1016/j.ijdevneu.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022] Open
Abstract
Alternative pre-mRNA splicing is a fundamental regulatory process for most mammalian multi-exon genes to increase proteome diversity. Nonsense-mediated mRNA decay (NMD) is a conserved mRNA surveillance mechanism to mitigate deleterious effects caused by gene mutations or transcriptional errors. Coupling alternative splicing and NMD (AS-NMD), in which alternative splicing switches between translational and NMD isoforms, results in fine-tuning overall gene expression to, in turn, expand the functional activities of these two post-transcriptional regulatory processes. AS-NMD is known for maintaining homeostatic expression of many RNA-binding proteins. We further show that AS-NMD is a conserved mechanism among mammals to induce developmental expression of the synaptic scaffold protein PSD-95. Comparing gene sequences between human Psd-95 and its ancestral orthologues indicates that AS-NMD regulation of mammalian Psd-95 is a product of selective pressure and that it enforces neural-specific expression of PSD-95 proteins in mammals. Invertebrate homolog of Psd-95 is not subjected to AS-NMD regulation and its protein product does not exhibit neural-specific expression. Given the prevalence of alternative splicing regulation in the mammalian nervous system, neural-specific expression of many other genes could be controlled by AS-NMD in a similar manner. We discuss the implication of these discoveries, as well as the challenges in generalizing the regulation and functional activity of AS-NMD.
Collapse
Affiliation(s)
- Sika Zheng
- Division of Biomedical Sciences, University of California Riverside, University of California, 201 School of Medicine Research Building, 900 University Avenue, Riverside, CA 92521, United States.
| |
Collapse
|
17
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
18
|
Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites. Curr Genet 2015; 62:31-8. [PMID: 26194054 DOI: 10.1007/s00294-015-0506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Collapse
|
19
|
Pantazatos SP, Andrews SJ, Dunning-Broadbent J, Pang J, Huang YY, Arango V, Nagy PL, John Mann J. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide. Neurobiol Dis 2015; 79:123-34. [PMID: 25959060 DOI: 10.1016/j.nbd.2015.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/23/2015] [Accepted: 04/29/2015] [Indexed: 01/25/2023] Open
Abstract
Low brain expression of the spermidine/spermine N-1 acetyltransferase (SAT1) gene, the rate-limiting enzyme involved in catabolism of polyamines that mediate the polyamine stress response (PSR), has been reported in depressed suicides. However, it is unknown whether this effect is associated with depression or with suicide and whether all or only specific isoforms expressed by SAT1, such as the primary 171 amino acid protein-encoding transcript (SSAT), or an alternative splice variant (SSATX) that is involved in SAT1 regulated unproductive splicing and transcription (RUST), are involved. We applied next generation sequencing (RNA-seq) to assess gene-level, isoform-level, and exon-level SAT1 expression differences between healthy controls (HC, N = 29), DSM-IV major depressive disorder suicides (MDD-S, N = 21) and MDD non-suicides (MDD, N = 9) in the dorsal lateral prefrontal cortex (Brodmann Area 9, BA9) of medication-free individuals postmortem. Using small RNA-seq, we also examined miRNA species putatively involved in SAT1 post-transcriptional regulation. A DSM-IV diagnosis was made by structured interview. Toxicology and history ruled out recent psychotropic medication. At the gene-level, we found low SAT1 expression in both MDD-S (vs. HC, p = 0.002) and MDD (vs. HC, p = 0.002). At the isoform-level, reductions in MDD-S (vs. HC) were most pronounced in four transcripts including SSAT and SSATX, while reductions in MDD (vs. HC) were pronounced in three transcripts, one of which was reduced in MDD relative to MDD-S (all p < 0.1 FDR corrected). We did not observe evidence for differential exon-usage (i.e. splicing) nor differences in miRNA expression. Results replicate the finding of low SAT1 brain expression in depressed suicides in an independent sample and implicate low SAT1 brain expression in MDD independent of suicide. Low expressions of both SSAT and SATX isoforms suggest that shared transcriptional mechanisms involved in RUST may account for low SAT1 brain expression in depressed suicides. Future studies are required to understand the functions and regulation of SAT1 isoforms, and how they relate to the pathogenesis of MDD and suicide.
Collapse
Affiliation(s)
- Spiro P Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Stuart J Andrews
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Jiuhong Pang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Yung-Yu Huang
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Victoria Arango
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Peter L Nagy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Igarashi K, Kashiwagi K. Modulation of protein synthesis by polyamines. IUBMB Life 2015; 67:160-9. [PMID: 25906835 DOI: 10.1002/iub.1363] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-Ku, Chiba, Japan; Amine Pharma Research Institute, Chuo-Ku, Chiba, Japan
| | | |
Collapse
|
21
|
Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet 2015; 6:22. [PMID: 25763008 PMCID: PMC4329817 DOI: 10.3389/fgene.2015.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune diseases.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Yves Renaudineau
- Research Unit INSERM ERI29/EA2216, SFR ScinBios, Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique et Réseau Canaux Ioniques du Cancéropole Grand Ouest, European University of Brittany Brest, France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan Brest, France
| |
Collapse
|
22
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|
23
|
Neto AGB, Pestana-Calsa MC, de Morais MA, Calsa T. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. J Proteomics 2014; 104:104-11. [PMID: 24667144 DOI: 10.1016/j.jprot.2014.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED Dekkera bruxellensis is an industrially relevant yeast, especially in bioethanol production. The capacity of D. bruxellensis to assimilate nitrate can confer advantages of this yeast over Saccharomyces cerevisiae at industrial conditions. In the present work we present the consequences of nitrate assimilation, using ammonium as reference, to the proteomics of D. bruxellensis. Thirty-four protein spots were overproduced in nitrate medium and were identified by MS-TOF/TOF analysis and were putatively identified by using local Mascot software. Apart from the overexpression of genes of nitrate metabolism, ATP synthesis and PPP and TCA pathways previously reported, cultivation on nitrate induced overproduction of glycolytic enzymes, which corroborate the high energy demand and NADH availability for nitrate assimilation. Overproduction of alcohol dehydrogenase (Adh) protein was also observed. Proteomic profile of D. bruxellensis cultivated in nitrate and described in the present work agrees with the hypothesis of metabolic flux regulation, making available the energy in the form of NADH to support nitrate assimilation. This work contributes with an initial picture of proteins presenting differential accumulation in industrial contaminant yeast, in strict association with possible metabolic responses to nitrate as sole nitrogen source in cultivation medium. BIOLOGICAL SIGNIFICANCE The present study investigated the gene expression at translational level of yeast D. bruxellensis for nitrate assimilation. This study corroborated with biological models that consider the ability to assimilate this nitrogen source confers advantages on this yeast during the fermentation process industry. However, larger studies are needed in this way as our group is investigating new proteins under LC-MS/MS approach. Together, these studies will help in understanding the operation of networks and cellular regulation of the process of assimilation of nitrogen sources for the D. bruxellensis, unravelling new aspects of the physiology of this yeast by proteomic analysis. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Adauto Gomes Barbosa Neto
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maria Clara Pestana-Calsa
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil; Environmental Engineering Area, Universidade Maurício de Nassau, Recife, Brazil
| | - Marcos Antonio de Morais
- Laboratory of Microbial Genetics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil
| | - Tercilio Calsa
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
24
|
Abstract
Alternative pre-mRNA splicing is an integral part of gene regulation in eukaryotes. Here we provide a basic overview of the various types of alternative splicing, as well as the functional role, highlighting how alternative splicing varies across phylogeny. Regulated alternative splicing can affect protein function and ultimately impact biological outcomes. We examine the possibility that portions of alternatively spliced transcripts are the result of stochastic processes rather than regulated. We discuss the implications of misregulated alternative splicing and explore of the role of alternative splicing in human disease.
Collapse
Affiliation(s)
- Stacey D Wagner
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
25
|
Keinänen TA, Hyvönen MT, Alhonen L, Vepsäläinen J, Khomutov AR. Selective regulation of polyamine metabolism with methylated polyamine analogues. Amino Acids 2013; 46:605-20. [PMID: 24022706 DOI: 10.1007/s00726-013-1587-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022]
Abstract
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N¹-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.
Collapse
|
26
|
Multiple forms of mouse antizyme inhibitor 1 mRNA differentially regulated by polyamines. Amino Acids 2013; 46:575-83. [PMID: 24077669 DOI: 10.1007/s00726-013-1598-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Antizyme inhibitor 1 (Azin1), a positive regulator of cellular polyamines, is induced by various proliferative stimuli and repressed by polyamines. It has been reported that the translational repression of Azin1 by polyamines involves an upstream open reading frame on the mRNA, but little has been known about polyamine effect on its transcription or splicing. We found multiple forms of Azin1 transcripts formed by alternative splicing and initiation of transcription from putative alternative start sites. One of the novel splice variants, Azin1-X, has a premature termination codon on 5′ extension of exon 7, encodes a C-terminal truncated form of protein (Azin1ΔC), and is subject to nonsense-mediated mRNA decay. 2-Difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, increased both transcription from the canonical transcription start site and the ratio of the full-length mRNA to Azin1-X mRNA, whereas polyamines show the opposite effect. Thus, polyamines regulate two novel steps of Azin1 expression, namely the transcription and a particular splicing pattern, both of which may affect the level of mRNA encoding the full-length active Azin1 protein.
Collapse
|
27
|
Zheng S, Black DL. Alternative pre-mRNA splicing in neurons: growing up and extending its reach. Trends Genet 2013; 29:442-8. [PMID: 23648015 PMCID: PMC3959871 DOI: 10.1016/j.tig.2013.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/20/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
Abstract
Alternative pre-mRNA splicing determines the protein output of most neuronally expressed genes. Many examples have been described of protein function being modulated by coding changes in different mRNA isoforms. Several recent studies demonstrate that, through the coupling of splicing to other processes of mRNA metabolism, alternative splicing can also act as an on/off switch for gene expression. Other regulated splicing events may determine how an mRNA is utilized in its later cytoplasmic life by changing its localization or translation. These studies make clear that the multiple steps of post-transcriptional gene regulation are strongly linked. Together, these regulatory process play key roles in all aspects of the cell biology of neurons, from their initial differentiation, to their choice of connections, and finally to their function with mature circuits.
Collapse
Affiliation(s)
- Sika Zheng
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, UCLA, David Geffen School of Medicine, UCLA, 6780 MRL Bldg, 675 Charles Young Dr. S. Los Angeles, CA 90095-1662, (310) 794-7644
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, UCLA, David Geffen School of Medicine, UCLA, 6780 MRL Bldg, 675 Charles Young Dr. S. Los Angeles, CA 90095-1662, (310) 794-7644
| |
Collapse
|
28
|
Shi M, Gan YJ, Davis TO, Scott RS. Downregulation of the polyamine regulator spermidine/spermine N(1)-acetyltransferase by Epstein-Barr virus in a Burkitt's lymphoma cell line. Virus Res 2013; 177:11-21. [PMID: 23891576 DOI: 10.1016/j.virusres.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
Transition of Akata Burkitt's lymphoma (BL) from a malignant to nonmalignant phenotype upon loss of Epstein-Barr virus (EBV) is evidence for a viral contribution to tumorigenesis despite the tight restriction of EBV gene expression in BL. Examination of global cellular gene expression in Akata subclones that retained or lost EBV identified spermidine/spermine N(1)-acetyltransferase (SAT1), an inducible enzyme whose catabolism of polyamines affects both apoptosis and cell growth, as one of a limited number of cellular genes downregulated by EBV. Re-infection of the EBV-negative Akata clone reduced SAT1 mRNA to a level comparable with the parental EBV-positive Akata. EBV-positive Akata cells demonstrated decreased SAT1 enzyme activity concomitant with altered intracellular polyamine constituents. Reduction of SAT1 in EBV-positive BL was a transcriptional effect. Forced expression of the viral BCL2 homologue, BHRF1, in an EBV-negative Akata clone reduced SAT1 mRNA. Thus, EBV repression of polyamine catabolism becomes a complementary alteration to dysregulated c-myc enhancement of polyamine synthesis in BL and favorable to BL lymphomagenesis.
Collapse
Affiliation(s)
- Mingxia Shi
- Center for Tumor and Molecular Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
29
|
Majumdar R, Shao L, Minocha R, Long S, Minocha SC. Ornithine: the overlooked molecule in the regulation of polyamine metabolism. PLANT & CELL PHYSIOLOGY 2013; 54:990-1004. [PMID: 23574701 DOI: 10.1093/pcp/pct053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We overexpressed a mouse ornithine decarboxylase gene under the control of a constitutive and an estradiol-inducible promoter in Arabidopsis thaliana to increase our understanding of the regulation of polyamine metabolism. Of particular interest was the role of the substrate ornithine not only in the regulation of polyamine biosynthesis, but also in the accumulation of related amino acids in response to short-term induction of this enzyme. We hypothesized that the inducible expression of the transgene would mimic the natural responses of plants to changing conditions, e.g. under stress conditions and during rapid growth. Our results reveal that ornithine, even though present in relatively small quantities (compared with other amino acids of the glutamate-arginine-proline pathway), may not only be the key regulator of polyamine biosynthesis in Arabidopsis, but it may also regulate the entire subset of pathways for glutamate to arginine and to proline. Indirectly, it could also regulate putrescine catabolism, therefore contributing to the γ-aminobutyric acid content of the cells. Furthermore, the induction of mouse ornithine decarboxylase resulted in up- and down-regulation of several amino acids in the transgenic plants. It was learned that the turnover of putrescine in both the wild type and the transgenic plants occurs rapidly, with a half-life of 6-8 h.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | | |
Collapse
|
30
|
Eom T, Zhang C, Wang H, Lay K, Fak J, Noebels JL, Darnell RB. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eLife 2013; 2:e00178. [PMID: 23359859 PMCID: PMC3552424 DOI: 10.7554/elife.00178] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 12/13/2022] Open
Abstract
The neuronal RNA binding protein NOVA regulates splicing, shuttles to the cytoplasm, and co-localizes with target transcripts in dendrites, suggesting links between splicing and local translation. Here we identified >200 transcripts showing NOVA-dependent changes in abundance, but, surprisingly, HITS-CLIP revealed NOVA binds these RNAs in introns rather than 3′ UTRs. This led us to discover NOVA-regulated splicing of cryptic exons within these introns. These exons triggered nonsense mediated decay (NMD), as UPF1 and protein synthesis were required for NOVA's effect on RNA levels. Their regulation was dynamic and physiologically relevant. The NMD exons were regulated by seizures, which also induced changes in Nova subcellular localization and mediated large changes in synaptic proteins, including proteins implicated in familial epilepsy. Moreover, Nova haploinsufficient mice had spontaneous epilepsy. The data reveal a hidden means of dynamic RNA regulation linking electrical activity to splicing and protein output, and of mediating homeostatic excitation/inhibition balance in neurons. DOI:http://dx.doi.org/10.7554/eLife.00178.001 After the DNA in a gene has been transcribed into messenger RNA, portions of the mRNA called introns are removed, and the remaining stretches of mRNA, which are known as exons, are spliced together. Within eukaryotic cells, a process known as alternative splicing allows a single gene to encode for multiple protein variants by ensuring that some exons are included in the final, modified mRNA, while other exons are excluded. This modified mRNA is then translated into proteins. Eukaryotic cells also contain proteins that bind to RNA to regulate alternative splicing. These RNA-binding proteins are often found in both the cytoplasm and nucleus of cells, and their involvement in splicing may be linked to other processes in the cell such as mRNA localization and translation. It has also become clear over the past two decades that certain types of RNA-binding proteins, including NOVA proteins, are only found in neurons, and that these proteins have been best characterized as alternative splicing regulators. Recent work has also suggested that they also have important roles in regulating neuronal activity and development, and that their actions in neuronal nuclei and cytoplasm might be coordinated. Now Eom et al. use the predictive power of a high throughput sequencing and crosslinking method termed HITS-CLIP to show that NOVA proteins can indirectly regulate cytoplasmic mRNA levels by regulating the process of alternative splicing in the nucleus to produce ‘cryptic’ exons in the brains of mice. The presence of these exons in the mRNA leads to the production of premature termination codons in the cytoplasm. These codons trigger a process called nonsense-mediated decay that involves identifying mRNA transcripts that contain nonsense mutations, and then degrading them. These cryptic exons were seen in mice missing the NOVA proteins, where they are expressed in abnormally high levels; in normal mice, these exons have not been seen before, hence they were termed ‘cryptic’. Eom et al. also show that these cryptic exons are physiologically relevant by inducing epileptic seizures in mice. Following the seizures, they find that the NOVA proteins up-regulate and down-regulate the levels of different cryptic exons, leading to changes in the levels of the proteins encoded by these mRNAs, including proteins that inhibit further seizures. Overall the results indicate that, by controlling the production of various proteins in neurons, these previously unknown cryptic exons have important roles in the workings of the brain. DOI:http://dx.doi.org/10.7554/eLife.00178.002
Collapse
Affiliation(s)
- Taesun Eom
- Laboratory of Molecular Neuro-Oncology , Rockefeller University , New York , United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Lien YC, Ou TY, Lin YT, Kuo PC, Lin HJ. Duplication and diversification of the spermidine/spermine N1-acetyltransferase 1 genes in zebrafish. PLoS One 2013; 8:e54017. [PMID: 23326562 PMCID: PMC3543422 DOI: 10.1371/journal.pone.0054017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Spermidine/spermine N(1)-acetyltransferase 1 (Ssat1) is a key enzyme in the polyamine interconversion pathway, which maintains polyamine homeostasis. In addition, mammalian Ssat1 is also involved in many physiological and pathological events such as hypoxia, cell migration, and carcinogenesis. Using cross-genomic bioinformatic analysis in 10 deuterostomes, we found that ssat1 only exists in vertebrates. Comparing with mammalian, zebrafish, an evolutionarily distant vertebrate, contains 3 homologous ssat1 genes, named ssat1a, ssat1b, and ssat1c. All zebrafish homologues could be transcribed and produce active enzymes. Despite the long history since their evolutionary diversification, some features of human SSAT1 are conserved and subfunctionalized in the zebrafish family of Ssat1 proteins. The polyamine-dependent protein synthesis was only found in Ssat1b and Ssat1c, not in Ssat1a. Further study indicated that both 5' and 3' sequences of ssat1b mediate such kind of translational regulation inside the open reading frame (ORF). The polyamine-dependent protein stabilization was only observed in Ssat1b. The last 70 residues of Ssat1b were crucial for its rapid degradation and polyamine-induced stabilization. It is worth noting that only Ssat1b and Ssat1c, but not the polyamine-insensitive Ssat1a, were able to interact with integrin α9 and Hif-1α. Thus, Ssat1b and Ssat1c might not only be a polyamine metabolic enzyme but also simultaneously respond to polyamine levels and engage in cross-talk with other signaling pathways. Our data revealed some correlations between the sequences and functions of the zebrafish family of Ssat1 proteins, which may provide valuable information for studies of their translational regulatory mechanism, protein stability, and physiological functions.
Collapse
Affiliation(s)
- Yi-Chin Lien
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ting-Yu Ou
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Tzu Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Po-Chih Kuo
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Zheng S, Gray EE, Chawla G, Porse BT, O'Dell TJ, Black DL. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 2012; 15:381-8, S1. [PMID: 22246437 PMCID: PMC3288398 DOI: 10.1038/nn.3026] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/14/2011] [Indexed: 11/09/2022]
Abstract
Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation.
Collapse
Affiliation(s)
- Sika Zheng
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Novel anti-apoptotic effect of the retinoblastoma protein: implications for polyamine analogue toxicity. Amino Acids 2011; 42:929-37. [PMID: 21809081 DOI: 10.1007/s00726-011-1007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023]
Abstract
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N(1),N(11)-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb-cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.
Collapse
|
34
|
Tissue-specific alternative splicing of spermidine/spermine N1-acetyltransferase. Amino Acids 2011; 42:485-93. [PMID: 21809078 DOI: 10.1007/s00726-011-1027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/02/2011] [Indexed: 10/17/2022]
Abstract
The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N(1)-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N(1),N(11)-diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.
Collapse
|
35
|
Hyvönen MT, Keinänen TA, Khomutov M, Simonian A, Weisell J, Kochetkov SN, Vepsäläinen J, Alhonen L, Khomutov AR. The use of novel C-methylated spermidine derivatives to investigate the regulation of polyamine metabolism. J Med Chem 2011; 54:4611-8. [PMID: 21639123 DOI: 10.1021/jm200293r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The polyamines are organic polycations present at millimolar concentrations in eukaryotic cells where they participate in the regulation of vital cellular functions including proliferation and differentiation. Biological evaluation of rationally designed polyamine analogs is one of the cornerstones of polyamine research. Here we have synthesized and characterized novel C-methylated spermidine analogs, that is, 2-methylspermidine, 3-methylspermidine, and 8-methylspermidine. 3-Methylspermidine was found to be metabolically stable in DU145 cells, while 8-methylspermidine was a substrate for spermidine/spermine N(1)-acetyltransferase (SSAT) and 2-methylspermidine was a substrate for both SSAT and acetylpolyamine oxidase. All the analogs induced the splicing of the productive mRNA splice variant of SSAT, overcame growth arrest induced by 72-h treatment with ornithine decarboxylase (ODC) inhibitor α-difluoromethylornithine, and were transported via the polyamine transporter. Surprisingly, 2-methylspermidine was a weak downregulator of ODC activity in DU145 cells. Our data demonstrates that it is possible to radically alter the biochemical properties of a polyamine analog by changing the position of the methyl group.
Collapse
Affiliation(s)
- Mervi T Hyvönen
- AI Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin HJ, Lien YC, Hsu CH. A high-throughput colorimetric assay to characterize the enzyme kinetic and cellular activity of spermidine/spermine N1-acetyltransferase 1. Anal Biochem 2010; 407:226-32. [DOI: 10.1016/j.ab.2010.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
|
37
|
Weisell J, Hyvönen MT, Häkkinen MR, Grigorenko NA, Pietilä M, Lampinen A, Kochetkov SN, Alhonen L, Vepsäläinen J, Keinänen TA, Khomutov AR. Synthesis and biological characterization of novel charge-deficient spermine analogues. J Med Chem 2010; 53:5738-48. [PMID: 20684609 DOI: 10.1021/jm100439p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biogenic polyamines, spermidine and spermine, are positively charged at physiological pH. They are present in all cells and essential for their growth and viability. Here we synthesized three novel derivatives of the isosteric charge-deficient spermine analogue 1,12-diamino-3,6,9-triazadodecane (SpmTrien, 5a) that are N(1)-Ac-SpmTrien (5c), N(12)-Ac-SpmTrien (5b), and N(1),N(12)-diethyl-1,12-diamino-3,6,9-triazadodecane (N(1),N(12)-Et(2)-SpmTrien, 5d). 5a and 5d readily accumulated in DU145 cells at the same concentration range as natural polyamines and moderately competed for the uptake with putrescine (1) but not with spermine (4a) or spermidine (2). 5a efficiently down-regulated ornithine decarboxylase and decreased polyamine levels, while 5d proved to be inefficient, compared with N(1),N(11)-diethylnorspermine (6). None of the tested analogues were substrates for human recombinant spermine oxidase, but those having free aminoterminus, including 1,8-diamino-3,6-diazaoctane (Trien, 3a), were acetylated by mouse recombinant spermidine/spermine N(1)-acetyltransferase. 5a was acetylated to 5c and 5b, and the latter was further metabolized by acetylpolyamine oxidase to 3a, a drug used to treat Wilson's disease. Thus, 5a is a bioactive precursor of 3a with enhanced bioavailability.
Collapse
Affiliation(s)
- Janne Weisell
- Department of Biosciences, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 2009; 20:4885-98. [PMID: 19812253 DOI: 10.1091/mbc.e09-07-0550] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All mammalian cells depend on polyamines for normal growth and proliferation, but the exact roles of polyamines at the molecular level remain largely unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we show that in rat intestinal epithelial cells (IECs), polyamines enhanced HuR association with the 3'-untranslated region of the c-Myc mRNA by increasing HuR phosphorylation by Chk2, in turn promoting c-Myc translation. Depletion of cellular polyamines inhibited Chk2 and reduced the affinity of HuR for c-Myc mRNA; these effects were completely reversed by addition of the polyamine putrescine or by Chk2 overexpression. In cells with high content of cellular polyamines, HuR silencing or Chk2 silencing reduced c-Myc translation and c-Myc expression levels. Our findings demonstrate that polyamines regulate c-Myc translation in IECs through HuR phosphorylation by Chk2 and provide new insight into the molecular functions of cellular polyamines.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, and Department of Pathology, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogues. Biochem J 2009; 422:321-8. [PMID: 19522702 DOI: 10.1042/bj20090737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The natural polyamines are ubiquitous multifunctional organic cations which play important roles in regulating cellular proliferation and survival. Here we present a novel approach to investigating polyamine functions by using optical isomers of MeSpd (alpha-methylspermidine) and Me2Spm (alpha,omega-bismethylspermine), metabolically stable functional mimetics of natural polyamines. We studied the ability of MeSpd and Me2Spm to alter the normal polyamine regulation pathways at the level of polyamine uptake and the major control mechanisms known to affect the key polyamine metabolic enzymes. These include: (i) ODC (ornithine decarboxylase), which catalyses the rate-limiting step of polyamine synthesis; (ii) ODC antizyme, an inhibitor of ODC and polyamine uptake; (iii) SSAT (spermidine/spermine N1-acetyltransferase), the major polyamine catabolic enzyme; and (iv) AdoMetDC (S-adenosyl-L-methionine decarboxylase), which is required for the conversion of putrescine into spermidine, and spermidine into spermine. We show that the stereoisomers differ in their cellular uptake and ability to downregulate ODC and AdoMetDC, and to induce SSAT. These effects are mediated by the ability of the enantiomers to induce +1 ribosomal frameshifting on ODC antizyme mRNA, to suppress the translation of AdoMetDC uORF (upstream open reading frame) and to regulate the alternative splicing of SSAT pre-mRNA. The unique effects of chiral polyamine analogues on polyamine metabolism may offer novel possibilities for studying the physiological functions, control mechanisms, and targets of the natural polyamines, as well as advance therapeutic drug development in cancer and other human health-related issues.
Collapse
|
40
|
Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J 2009; 422:101-9. [PMID: 19473115 DOI: 10.1042/bj20090411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SSAT (Spermidine/spermine N1-acetyltransferase, also known as SAT1), the key enzyme in the catabolism of polyamines, is turned over rapidly and there is only a low amount present in the cell. In the present study, the regulation of SSAT by spermine analogues, the inducers of the enzyme, was studied in wild-type mouse fetal fibroblasts, expressing endogenous SSAT, and in the SSAT-deficient mouse fetal fibroblasts transiently expressing an SSAT-EGFP (enhanced green fluorescent protein) fusion gene. In both cell lines treatments with DENSpm (N(1),N(11)-diethylnorspermine), CPENSpm (N(1)-ethyl-N(11)-[(cyclopropyl)-methy]-4,8-diazaundecane) and CHENSpm (N(1)-ethyl-N(11)-[(cycloheptyl)methy]-4,8-diazaundecane) led to high, moderate or low induction of SSAT activity respectively. The level of activity detected correlated with the presence of SSAT and SSAT-EGFP proteins, the latter localizing both in the cytoplasm and nucleus. RT-PCR (reverse transcription-PCR) results suggested that the analogue-affected regulation of SSAT-EGFP expression occurred, mainly, after transcription. In wild-type cells, DENSpm increased the amount of SSAT mRNA, and both DENSpm and CHENSpm affected splicing of the SSAT pre-mRNA. Depleted intracellular spermidine and spermine levels inversely correlated with detected SSAT activity. Interestingly, the analogues also reduced polyamine levels in the SSAT-deficient cells expressing the EGFP control. The results from the present study show that the distinct SSAT regulation by different analogues involves regulatory actions at multiple levels, and that the spermine analogues, in addition to inducing SSAT, lower intracellular polyamine pools by SSAT-independent mechanisms.
Collapse
|
41
|
Modulation of cellular function by polyamines. Int J Biochem Cell Biol 2009; 42:39-51. [PMID: 19643201 DOI: 10.1016/j.biocel.2009.07.009] [Citation(s) in RCA: 601] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 12/13/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are essential for normal cell growth. The polyamine levels in cells are regulated by biosynthesis, degradation, and transport. Polyamines can modulate the functions of DNA, nucleotide triphosphates, proteins, and especially RNA because most polyamines exist in a polyamine-RNA complex in cells. Thus, the major focus on this review is on the role of polyamines in protein synthesis. In addition, effects of polyamines on B to Z conversion of DNA, transcription, phosphorylation of proteins, cell cycle progression, apoptosis and ion channels, especially NMDA receptors, are outlined. The function of eIF5A is also briefly discussed. Finally, a correlation between acrolein, produced from polyamines by polyamine oxidases, and chronic renal failure or brain stroke is summarized. Increased levels of polyamine oxidases and acrolein are good markers of chronic renal failure and brain stroke.
Collapse
|
42
|
Abstract
In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA.
| | | |
Collapse
|
43
|
Hansen KD, Lareau LF, Blanchette M, Green RE, Meng Q, Rehwinkel J, Gallusser FL, Izaurralde E, Rio DC, Dudoit S, Brenner SE. Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila. PLoS Genet 2009; 5:e1000525. [PMID: 19543372 PMCID: PMC2689934 DOI: 10.1371/journal.pgen.1000525] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/18/2009] [Indexed: 01/21/2023] Open
Abstract
Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly. A gene can be processed into multiple mRNAs through alternative splicing. Alternative splicing increases the number of proteins encoded by the genome, but not all alternative mRNAs produce protein. Instead, some are degraded by nonsense-mediated mRNA decay (NMD), a surveillance system that was originally identified as a means of clearing the cell of mRNAs with nonsense, or stop codon, mutations. Alternative splicing that introduces early stop codons will lead to NMD, offering a way for the cell to down-regulate gene expression after a gene has been transcribed. In this paper, we have developed a new analysis method to study the combined effect of alternative splicing and degradation in the fruit fly Drosophila melanogaster using microarrays. We have found a stringently defined set of 45 genes that can be spliced either into an mRNA that encodes a protein or into an mRNA that is degraded by NMD, down-regulating the overall gene expression. The affected genes include a number that are central to the cell's regulatory processes, including translation, RNA splicing, and cell cycle progression. Our results also help shed light on how NMD determines whether a stop codon is premature, and thus whether to target an mRNA for degradation.
Collapse
Affiliation(s)
- Kasper Daniel Hansen
- Division of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Liana F. Lareau
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Marco Blanchette
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Richard E. Green
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Qi Meng
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jan Rehwinkel
- Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Fabian L. Gallusser
- Division of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Elisa Izaurralde
- Max-Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, Nishimura T, Dohmae N, Kashiwagi K, Igarashi K. Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol 2009; 41:2251-61. [PMID: 19427401 DOI: 10.1016/j.biocel.2009.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/25/2009] [Accepted: 04/29/2009] [Indexed: 11/17/2022]
Abstract
In Escherichia coli, several proteins whose synthesis is enhanced by polyamines at the level of translation have been identified. We looked for proteins that are similarly regulated in eukaryotes using a mouse mammary carcinoma FM3A cell culture system. Polyamine deficiency was induced by adding an inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine, to the medium. Proteins enhanced by polyamines were determined by comparison of protein levels in control and polyamine-deficient cells using two-dimensional gel electrophoresis, and were identified by Edman degradation and/or LC/MALDI-TOF/TOF tandem mass spectrometry. Polyamine stimulation of the synthesis of these proteins at the level of translation was confirmed by measuring levels of the corresponding mRNAs and proteins, and levels of the [(35)S]methionine pulse-labeled proteins. The proteins identified in this way were T-complex protein 1, beta subunit (Cct2); heterogeneous nuclear ribonucleoprotein L (Hnrpl); and phosphoglycerate mutase 1 (Pgam1). Since Cct2 was most strongly enhanced by polyamines among three proteins, the mechanism of polyamine stimulation of Cct2 synthesis was studied using NIH3T3 cells transiently transfected with genes encoding Cct2-EGFP fusion mRNA with normal or mutated 5'-untranslated region (5'-UTR) of Cct2 mRNA. Polyamines most likely enhanced ribosome shunting on the 5'-UTR of Cct2 mRNA.
Collapse
Affiliation(s)
- Kazuhiro Nishimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Khomutov AR, Keinanen TA, Grigorenko NA, Hyvonen MT, Uimari A, Pietila M, Cerrada-Gimenez M, Simonian AR, Khomutov MA, Vepsalainen J, Alhonen L, Janne J. Methylated analogs of spermine and spermidine as tools to investigate cellular functions of polyamines and enzymes of their metabolism. Mol Biol 2009. [DOI: 10.1134/s0026893309020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Saltzman AL, Kim YK, Pan Q, Fagnani MM, Maquat LE, Blencowe BJ. Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol Cell Biol 2008; 28:4320-30. [PMID: 18443041 PMCID: PMC2447145 DOI: 10.1128/mcb.00361-08] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/01/2008] [Accepted: 04/17/2008] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.
Collapse
Affiliation(s)
- Arneet L Saltzman
- Department of Molecular Genetics, Centre for Cellular and Biomolecular Research, 160 College Street, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Spermidine/spermine-N(1)-acetyltransferase (SSAT) regulates cellular polyamine content. Its acetylated products are either excreted from the cell or oxidized by acetylpolyamine oxidase. Since polyamines play critical roles in normal and neoplastic growth and in ion channel regulation, SSAT is a key enzyme in these processes. SSAT is very highly regulated. Its content is adjusted in response to alterations in polyamine content to maintain polyamine homeostasis. Certain polyamine analogs can mimic the induction of SSAT and cause a loss of normal polyamines. This may have utility in cancer chemotherapy. SSAT activity is also induced via a variety of other stimuli, including toxins, hormones, cytokines, nonsteroidal anti-inflammatory agents, natural products, and stress pathways, and by ischemia-reperfusion injury. These increases are initiated by alterations in Sat1 gene transcription reinforced by alterations at the other regulatory steps, including protein turnover, mRNA processing, and translation. Transgenic manipulation of SSAT activity has revealed that SSAT activity links polyamine metabolism to lipid and carbohydrate metabolism by means of alterations in the content of acetyl-CoA and ATP. A high level of SSAT stimulates flux through the polyamine biosynthetic pathway, since biosynthetic enzymes are induced in response to the fall in polyamines. This sets up a futile cycle in which ATP is used to generate S-adenosylmethionine for polyamine biosynthesis and acetyl-CoA is consumed in the acetylation reaction. A variety of other effects of increased SSAT activity include death of pancreatic cells, blockage of regenerative tissue growth, behavioral changes, keratosis follicularis spinulosa decalvans, and hair loss. These are very likely due to changes in polyamine and putrescine levels, although increased oxidative stress via the oxidation of acetylated polyamines may also contribute. Recently, it was found that the SSAT protein and/or a related protein, thialysine acetyltransferase, interacts with a number of other important proteins, including the hypoxia-inducible factor-1 alpha-subunit, the p65 subunit of NF-kappaB, and alpha9beta1-integrin, altering the function of these proteins. It is not yet clear whether this functional alteration involves protein acetylation, local polyamine concentration changes, or other effects. It has been suggested that SSAT may also be a useful target in diseases other than cancer, but the wide-ranging physiological and pathophysiological effects of altered SSAT expression will require very careful limitation of such strategies to the relevant cells to avoid toxic effects.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
48
|
Higashi K, Terui Y, Inomata E, Katagiri D, Nomura Y, Someya T, Nishimura K, Kashiwagi K, Kawai G, Igarashi K. Selective structural change of bulged-out region of double-stranded RNA containing bulged nucleotides by spermidine. Biochem Biophys Res Commun 2008; 370:572-7. [PMID: 18396151 DOI: 10.1016/j.bbrc.2008.03.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
Polyamines are essential for cell growth due to effects mainly at the level of translation. These effects likely involve a structural change, induced by polyamines, of the bulged-out region of double-stranded RNA that is different from changes induced by Mg(2+). Structural changes were studied using U6-34, a model RNA of U6 small nuclear RNA containing bulged nucleotides. Binding of NS1-2 peptide derived from the RNA binding site of NS1 protein, to U6-34 was inhibited by spermidine but not by Mg(2+). A selective conformational change of the bases in the bulged-out region of U6-34 induced by spermidine was observed by NMR. The selective effect of spermidine was lost when the bulged-out region of U6-34 was removed in U6-34(Delta5). The binding of NS1-2 peptide to U6-34(Delta5) was inhibited both by spermidine and Mg(2+). The selective structural change of U6-34 by spermidine was confirmed by circular dichroism.
Collapse
Affiliation(s)
- Kyohei Higashi
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee Y, Hyun S, Kim H, Yu J. Amphiphilic Helical Peptides Containing Two Acridine Moieties Display Picomolar Affinity toward HIV-1 RRE and TAR. Angew Chem Int Ed Engl 2008; 47:134-7. [DOI: 10.1002/anie.200703090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Lee Y, Hyun S, Kim H, Yu J. Amphiphilic Helical Peptides Containing Two Acridine Moieties Display Picomolar Affinity toward HIV-1 RRE and TAR. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|