1
|
Kasuga M, Mutsuro-Aoki H, Ando T, Tamura K. Molecular Anatomy of the Class I Ligase Ribozyme for Elucidation of the Activity-Generating Unit. BIOLOGY 2023; 12:1012. [PMID: 37508441 PMCID: PMC10376402 DOI: 10.3390/biology12071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The class I ligase ribozyme consists of 121 nucleotides and shows a high catalytic rate comparable to that found in natural proteinaceous polymerases. In this study, we aimed to identify the smaller active unit of the class I ligase ribozyme comprising ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Based on the three-dimensional structure of the class I ligase ribozyme, mutants were prepared and their ligation activities were analyzed. Sufficient ligation activity was maintained even when shortening to 94 nucleotides. However, because it would be difficult to approach the target of ~50 nucleotides by removing only the partial structure, the class I ligase ribozyme was then split into two molecules. The ligation activity was maintained even when splitting into two molecules of 55 and 39 nucleotides. Using a system with similar split ribozymes, we analyzed the ligation activity of mutants C30, C47, and A71, which have been previously identified as the positions that contribute to catalytic activity, and discussed the structural basis of the activity of these bases. Our findings suggest the rationale for the class I ligase ribozyme's assembling from multiple fragments that would be achievable with prebiotic synthesis.
Collapse
Affiliation(s)
- Miho Kasuga
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Walton T, DasGupta S, Duzdevich D, Oh SS, Szostak JW. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Proc Natl Acad Sci U S A 2020; 117:5741-5748. [PMID: 32123094 PMCID: PMC7084097 DOI: 10.1073/pnas.1914367117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Jack W Szostak
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
3
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
4
|
Maurel MC, Leclerc F, Vergne J, Zaccai G. RNA Back and Forth: Looking through Ribozyme and Viroid Motifs. Viruses 2019; 11:E283. [PMID: 30901893 PMCID: PMC6466107 DOI: 10.3390/v11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Current cellular facts allow us to follow the link from chemical to biochemical metabolites, from the ancient to the modern world. In this context, the "RNA world" hypothesis proposes that early in the evolution of life, the ribozyme was responsible for the storage and transfer of genetic information and for the catalysis of biochemical reactions. Accordingly, the hammerhead ribozyme (HHR) and the hairpin ribozyme belong to a family of endonucleolytic RNAs performing self-cleavage that might occur during replication. Furthermore, regarding the widespread occurrence of HHRs in several genomes of modern organisms (from mammals to small parasites and elsewhere), these small ribozymes have been regarded as living fossils of a primitive RNA world. They fold into 3D structures that generally require long-range intramolecular interactions to adopt the catalytically active conformation under specific physicochemical conditions. By studying viroids as plausible remains of ancient RNA, we recently demonstrated that they replicate in non-specific hosts, emphasizing their adaptability to different environments, which enhanced their survival probability over the ages. All these results exemplify ubiquitous features of life. Those are the structural and functional versatility of small RNAs, ribozymes, and viroids, as well as their diversity and adaptability to various extreme conditions. All these traits must have originated in early life to generate novel RNA populations.
Collapse
Affiliation(s)
- Marie-Christine Maurel
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
| | - Jacques Vergne
- Sorbonne Université, Museum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISYEB, F-75005 Paris, France.
| | - Giuseppe Zaccai
- Institut de Biologie Structurale CNRS-CEA-UGA, F-380447 Grenoble, France, and Institut Laue Langevin, 71 Avenue des Martyrs, F-38042 Grenoble, France.
| |
Collapse
|
5
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
6
|
Cheng CY, Chou FC, Kladwang W, Tian S, Cordero P, Das R. Consistent global structures of complex RNA states through multidimensional chemical mapping. eLife 2015; 4:e07600. [PMID: 26035425 PMCID: PMC4495719 DOI: 10.7554/elife.07600] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 11/13/2022] Open
Abstract
Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OHCleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI:http://dx.doi.org/10.7554/eLife.07600.001 Our genetic material, in the form of molecules of DNA, provides instructions for many different processes in our cells. To issue these instructions, particular sections of DNA are copied to make a type of molecule called ribonucleic acid (RNA). Some of these RNA molecules contain instructions to make proteins, but others—known as non-coding RNAs—regulate the activity of genes in cells. The genetic information within RNA is encoded by the sequence of four different chemical parts called ‘nucleotides’. RNA can exist as a single strand of nucleotides, but the nucleotides can also pair up in specific combinations to form sections of double-stranded RNA. Therefore, a single strand of non-coding RNA can fold into a complex three-dimensional shape that contains loops, twists, and bulges. The three-dimensional structures of non-coding RNAs are crucial for their roles in cells, but the variety and complexity of shapes that they can form makes it technically difficult to study them. In 2008, researchers developed a new method called MOHCA that can map the positions of nucleotides that are close together in the three-dimensional structure. Highly reactive chemicals are attached to the nucleotides and these can react with, and damage, other nearby nucleotides. By detecting which nucleotides have been damaged, it is possible to map the positions of these nucleotides and decipher the structure of the RNA molecule using computer algorithms. MOHCA is a promising approach, but the initial methods to find the damaged nucleotides were tedious and required specialized equipment. Now, Cheng, Das et al.—including some of the researchers involved in the 2008 work—have developed an improved version of MOHCA that uses readily available RNA sequencing techniques to find the damaged nucleotides. The RNA sequencing data are then analyzed by a new algorithm in the Rosetta computer modeling software. Cheng, Das et al. used this newly developed ‘MOHCA-seq’ and Rosetta to reveal the structures of a human non-coding RNA and several other non-coding RNA molecules to a much higher level of detail than before. Together, MOHCA-seq and Rosetta provide a rapid method for researchers to decipher the three-dimensional structure of non-coding RNAs. This method is likely to speed up the analysis of the complex structures of non-coding RNAs. It will be useful in future efforts to work out what roles these RNAs play in cells, including their activity in cancer, neurodegeneration, and other diseases. DOI:http://dx.doi.org/10.7554/eLife.07600.002
Collapse
Affiliation(s)
- Clarence Yu Cheng
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Pablo Cordero
- Biomedical Informatics Program, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, United States
| |
Collapse
|
7
|
Katzman B, Vyazmensky M, Press O, Volokita M, Engel S. Tethered ribozyme ligation enables detection of molecular proximity in homogeneous solutions. Biotechnol J 2015; 10:379-85. [DOI: 10.1002/biot.201400551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/04/2014] [Accepted: 12/11/2014] [Indexed: 11/06/2022]
|
8
|
Shin JH, Xu L, Li RW, Gao Y, Bickhart D, Liu GE, Baldwin R, Li CJ. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells. Anim Genet 2014; 45 Suppl 1:40-50. [PMID: 24990294 DOI: 10.1111/age.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3 and H4 and their variants in bovine cells at the whole-genome scale. A total of 10 variants of histone H3 and H4 modifications were mapped at the whole-genome scale (acetyl-H3K18-ChIP-seq, trimethy-H3K9, histone H4 ChIP-seq, acetyl-H4K5 ChIP-seq, acetyl-H4K12 ChIP-seq, acetyl-H4K16 ChIP-seq, histone H3 ChIP-seq, acetyl H3H9 ChIP-seq, acetyl H3K27 ChIP-seq and tetra-acetyl H4 ChIP-seq). Integrated experiential data and an analysis of histone and histone modification at a single base resolution across the entire genome are presented. We analyzed the enriched binding regions in the proximal promoter (within 5 kb upstream or at the 5'-untranslated region from the transcriptional start site (TSS)), and the exon, intron and intergenic regions (defined by regions 25 kb upstream and 10 kb downstream from the TSS). A de novo search for the binding motif of the 10 ChIP-seq datasets discovered numerous motifs from each of the ChIP-seq datasets. These consensus sequences indicated that histone modification at different locations changes the histone H3 and H4 binding preferences. Nevertheless, a high degree of conservation in histone binding also was presented in these motifs. This first extensive epigenomic landscape mapping in bovine cells offers a new framework and a great resource for testing the role of epigenomes in cell function and transcriptomic regulation.
Collapse
Affiliation(s)
- J H Shin
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe Street, Suite 102, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Choi SY, Cho B. Secondary Structure Analysis of an RNA Interacting with Guanine-rich Sequence. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.12.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Ding F, Lavender CA, Weeks KM, Dokholyan NV. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 2012; 9:603-8. [PMID: 22504587 PMCID: PMC3422565 DOI: 10.1038/nmeth.1976] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/20/2012] [Indexed: 01/08/2023]
Abstract
Molecular modeling guided by experimentally-derived structural information is an attractive approach for three-dimensional structure determination of complex RNAs that are not amenable to study by high-resolution methods. Hydroxyl radical probing (HRP), performed routinely in many laboratories, provides a measure of solvent accessibility at individual nucleotides. HRP measurements have, to date, only been used to evaluate RNA models qualitatively. Here, we report development of a quantitative structure refinement approach using HRP measurements to drive discrete molecular dynamics simulations for RNAs ranging in size from 80 to 230 nucleotides. HRP reactivities were first used to identify RNAs that form extensive helical packing interactions. For these RNAs, we achieved highly significant structure predictions, given inputs of RNA sequence and base pairing. This HRP-directed tertiary structure refinement approach generates robust structural hypotheses useful for guiding explorations of structure-function interrelationships in RNA.
Collapse
Affiliation(s)
- Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Cho BR. Secondary Structure Analysis of a G-rich Sequence Recognizing RNA Aptamer with Structure Specific Enzymes. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.6.2137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Wang QS, Cheng LKL, Unrau PJ. Characterization of the B6.61 polymerase ribozyme accessory domain. RNA (NEW YORK, N.Y.) 2011; 17:469-477. [PMID: 21224380 PMCID: PMC3039146 DOI: 10.1261/rna.2495011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/03/2010] [Indexed: 05/30/2023]
Abstract
The "RNA world" hypothesis rests on the assumption that RNA polymerase ribozymes can replicate RNA without the use of protein. In the laboratory, in vitro selection has been used to create primitive versions of such polymerases. The best variant to date is a ribozyme called B6.61 that can extend a RNA primer template by 20 nucleotides (nt). This polymerase has two domains: the recently crystallized Class I ligase core, responsible for phosphodiester bond formation, and the poorly characterized accessory domain that makes polymerization possible. Here we find that the accessory domain is specified by a 37-nt bulged stem-loop structure. The accessory domain is positioned by a tertiary interaction between the terminal AL4 loop of the accessory and the J3/4 triloop found within the ligase core. This docking interaction is associated with an unwinding of the A3 and A4 helixes that appear to facilitate the correct positioning of an essential 8-nt purine bulge found between the two helices. This, together with other constraints inferred from tethering the accessory domain to a range of sites on the ligase core, indicates that the accessory domain is draped over the vertex of the ligase core tripod structure. This geometry suggests how the purine bulge in the polymerase replaces the P2 helix in the Class I ligase with a new structure that may facilitate the stabilization of incoming nucleotide triphosphates.
Collapse
Affiliation(s)
- Qing S Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
14
|
Rother M, Rother K, Puton T, Bujnicki JM. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 2011; 39:4007-22. [PMID: 21300639 PMCID: PMC3105415 DOI: 10.1093/nar/gkq1320] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA is a large group of functionally important biomacromolecules. In striking analogy to proteins, the function of RNA depends on its structure and dynamics, which in turn is encoded in the linear sequence. However, while there are numerous methods for computational prediction of protein three-dimensional (3D) structure from sequence, with comparative modeling being the most reliable approach, there are very few such methods for RNA. Here, we present ModeRNA, a software tool for comparative modeling of RNA 3D structures. As an input, ModeRNA requires a 3D structure of a template RNA molecule, and a sequence alignment between the target to be modeled and the template. It must be emphasized that a good alignment is required for successful modeling, and for large and complex RNA molecules the development of a good alignment usually requires manual adjustments of the input data based on previous expertise of the respective RNA family. ModeRNA can model post-transcriptional modifications, a functionally important feature analogous to post-translational modifications in proteins. ModeRNA can also model DNA structures or use them as templates. It is equipped with many functions for merging fragments of different nucleic acid structures into a single model and analyzing their geometry. Windows and UNIX implementations of ModeRNA with comprehensive documentation and a tutorial are freely available.
Collapse
Affiliation(s)
- Magdalena Rother
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw and Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Kristian Rother
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw and Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Tomasz Puton
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw and Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw and Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
- *To whom correspondence should be addressed. Tel: +48 22 597 0750; Fax: +48 22 597 0715;
| |
Collapse
|
15
|
A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat Struct Mol Biol 2010; 18:100-6. [PMID: 21151117 PMCID: PMC3058332 DOI: 10.1038/nsmb.1945] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/01/2010] [Indexed: 02/03/2023]
Abstract
RNA crystallization and phasing represent major bottlenecks in RNA structure determination. Seeking to exploit antibody fragments as RNA crystallization chaperones, we have used an arginine-enriched synthetic Fab library displayed on phage to obtain Fabs against the class I ligase ribozyme. We solved the structure of a Fab:ligase complex at 3.1Å using molecular replacement with Fab coordinates, confirming the ribozyme architecture and revealing the chaperone’s role in RNA recognition and crystal contacts. The epitope resides in the GAAACAC sequence that caps the P5 helix and retains high-affinity Fab binding within the context of other structured RNAs. This portable epitope provides a new RNA crystallization chaperone system that easily can be screened in parallel to the U1A RNA-binding protein, with the advantages of the smaller size of the loop and high molecular weight, large surface area, and phasing power provided by Fabs.
Collapse
|
16
|
Abstract
How life emerged on this planet is one of the most important and fundamental questions of science. Although nearly all details concerning our origins have been lost in the depths of time, there is compelling evidence to suggest that the earliest life might have exploited the catalytic and self-recognition properties of RNA to survive. If an RNA based replicating system could be constructed in the laboratory, it would be much easier to understand the challenges associated with the very earliest steps in evolution and provide important insight into the establishment of the complex metabolic systems that now dominate this planet. Recent progress into the selection and characterization of ribozymes that promote nucleotide synthesis and RNA polymerization are discussed and outstanding problems in the field of RNA-mediated RNA replication are summarized.
Collapse
Affiliation(s)
- Leslie K L Cheng
- Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
17
|
Díaz Arenas C, Lehman N. Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol Biol 2010; 10:80. [PMID: 20331885 PMCID: PMC2850355 DOI: 10.1186/1471-2148-10-80] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 03/23/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the RNA World, molecular populations were probably very small and highly susceptible to the force of strong random drift. In conjunction with Muller's Ratchet, this would have imposed difficulties for the preservation of the genetic information and the survival of the populations. Mechanisms that allowed these nascent populations to overcome this problem must have been advantageous. RESULTS Using continuous in vitro evolution experimentation with an increased mutation rate imposed by MnCl2, it was found that clonal 100-molecule populations of ribozymes clearly exhibit certain characteristics of a quasispecies. This is the first time this has been seen with a catalytic RNA. Extensive genotypic sampling from two replicate lineages was gathered and phylogenetic networks were constructed to elucidate the structure of the evolving RNA populations. A common distribution was found in which a mutant sequence was present at high frequency, surrounded by a cloud of mutant with lower frequencies. This is a typical distribution of quasispecies. Most of the mutants in these clouds were connected by short Hamming distance values, indicating their close relatedness. CONCLUSIONS The quasispecies nature of mutant RNA clouds facilitates the recovery of genotypes under pressure of being removed from the population by random drift. The empirical populations therefore evolved a genotypic resiliency despite a high mutation rate by adopting the characteristics of quasispecies, implying that primordial RNA pools could have used this strategy to avoid extinction.
Collapse
Affiliation(s)
- Carolina Díaz Arenas
- Department of Chemistry, Portland State University, PO Box 751, Portland, Oregon, 97207, USA
| | - Niles Lehman
- Department of Chemistry, Portland State University, PO Box 751, Portland, Oregon, 97207, USA
| |
Collapse
|
18
|
Masquida B, Beckert B, Jossinet F. Exploring RNA structure by integrative molecular modelling. N Biotechnol 2010; 27:170-83. [PMID: 20206310 DOI: 10.1016/j.nbt.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded in three dimensions (3D) and used as building blocks assembled manually during a bioinformatic interactive process. Comparing the models to the corresponding crystal structures has validated the method as being powerful to predict the RNA topology and architecture while being less accurate regarding the prediction of base-base interactions. These aspects as well as the necessary steps towards automation will be discussed.
Collapse
Affiliation(s)
- Benoît Masquida
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, Strasbourg, France.
| | | | | |
Collapse
|
19
|
Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP. Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 2009; 326:1271-5. [PMID: 19965478 DOI: 10.1126/science.1174676] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.
Collapse
Affiliation(s)
- David M Shechner
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bagby SC, Bergman NH, Shechner DM, Yen C, Bartel DP. A class I ligase ribozyme with reduced Mg2+ dependence: Selection, sequence analysis, and identification of functional tertiary interactions. RNA (NEW YORK, N.Y.) 2009; 15:2129-2146. [PMID: 19946040 PMCID: PMC2779684 DOI: 10.1261/rna.1912509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg(2+)] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.
Collapse
Affiliation(s)
- Sarah C Bagby
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Abstract
Computer control of Darwinian evolution has been demonstrated by propagating a population of RNA enzymes in a microfluidic device. The RNA population was challenged to catalyze the ligation of an oligonucleotide substrate under conditions of progressively lower substrate concentrations. A microchip-based serial dilution circuit automated an exponential growth phase followed by a 10-fold dilution, which was repeated for 500 log-growth iterations. Evolution was observed in real time as the population adapted and achieved progressively faster growth rates over time. The final evolved enzyme contained a set of 11 mutations that conferred a 90-fold improvement in substrate utilization, coinciding with the applied selective pressure. This system reduces evolution to a microfluidic algorithm, allowing the experimenter to observe and manipulate adaptation.
Collapse
Affiliation(s)
- Brian M Paegel
- Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gerald F Joyce
- Departments of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
|
25
|
|
26
|
Chai D. RNA structure and modeling: progress and techniques. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:71-100. [PMID: 18929139 DOI: 10.1016/s0079-6603(08)00003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dinggeng Chai
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Zaher HS, Unrau PJ. Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA (NEW YORK, N.Y.) 2007; 13:1017-26. [PMID: 17586759 PMCID: PMC1894930 DOI: 10.1261/rna.548807] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/14/2007] [Indexed: 05/13/2023]
Abstract
Our current understanding of biology suggests that early life relied predominantly on RNA for catalysis and replication. Here, we report the isolation of an RNA polymerase ribozyme called B6.61 that exhibits superior extension and fidelity relative to its progenitor, the Round-18 polymerase. The B6.61 polymerase was selected from a mutagenized pool containing approximately 9 x 10(14) sequence variants through the use of a novel large-scale in vitro compartmentalization system. B6.61 polymerized all tested primer-template (PT) complexes faster than the Round-18 variant. For one PT, B6.61 exhibited dramatically faster elongation past one full helical turn and incorporated at least 20 nucleotides of sequence, setting a new extension record for an RNA polymerase ribozyme. The increased efficiency of the B6.61 construct was related to improvements in fidelity, with the new variant incorporating less incorrect wobble base pairs than its parent. This new polymerase demonstrates the feasibility of evolving an artificial RNA replicase ribozyme in the foreseeable future.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, BC, Canada
| | | |
Collapse
|
28
|
Gilbert SD, Montange RK, Stoddard CD, Batey RT. Structural studies of the purine and SAM binding riboswitches. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:259-68. [PMID: 17381305 DOI: 10.1101/sqb.2006.71.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Riboswitches are recently discovered genetic regulatory elements found in the 5'-untranslated regions of bacterial mRNAs that act through their ability to specifically bind small-molecule metabolites. Binding of the ligand to the aptamer domain of the riboswitch is communicated to a second domain, the expression platform, which directs transcription or translation of the mRNA. To understand this process on a molecular level, structures of three of these riboswitches bound to their cognate ligands have been solved by X-ray crystallography: the purine, thiamine pyrophosphate (TPP), and S-adenosylmethionine (SAM-I) binding aptamer domains. These studies have uncovered three common themes between the otherwise different molecules. First, the natural RNA aptamers recognize directly or indirectly almost every feature of their ligand to achieve extraordinary specificity. Second, all of these RNAs use a complex tertiary architecture to establish the binding pocket. Finally, in each case, ligand binding serves to stabilize a helix that communicates the binding event to the expression platform. Here, we discuss these properties of riboswitches in the context of the purine and SAM-I riboswitches.
Collapse
Affiliation(s)
- S D Gilbert
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
29
|
Cho B, Burke DH. Topological rearrangement yields structural stabilization and interhelical distance constraints in the Kin.46 self-phosphorylating ribozyme. RNA (NEW YORK, N.Y.) 2006; 12:2118-25. [PMID: 17068208 PMCID: PMC1664729 DOI: 10.1261/rna.173506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Kin.46 ribozyme catalyzes transfer of the gamma (thio)phosphoryl group of ATP (or ATPgammaS) to the ribozyme's 5' hydroxyl. Single-turnover catalytic activities of topologically rearranged versions of Kin.46 were studied to gain insight into its overall tertiary architecture. The distal ends of stems P3 and P4 were tethered through a single-stranded connection domain that altered the interhelical connectivity. The shortest linkers interfered with catalysis, while seven or more nucleotides (nt) in the linker allowed near-normal catalytic rates, suggesting that a distance of roughly 25-35 A optimally separates the termini of these helices. Activity was maximal when the tether contained 15 nt, at which point the k(cat) (0.016 min(-1)) and Km (1.2 mM) values were identical to those of a nontethered control. The presence of the tether alters Mg(2+) dependence, in that Mg2+ binding appears to be more cooperative in the tethered ribozyme (Hill coefficient 1.4-1.8 versus 0.8 for the nontethered ribozyme). Binding affinity for the ATPgammaS substrate increases at elevated concentrations of Mg2+, particularly for the tethered ribozyme. The tethered ribozyme displays significantly enhanced thermal stability, with a maximum initial velocity (0.126 min(-1)) at 60 degrees C, whereas the nontethered ribozyme has a lower maximum initial velocity (0.051 min(-1)) at 50 degrees C. The tether also significantly reduces the apparent entropy of activation. Both of these effects can be understood in terms of stabilization of the ribozyme in a conformation that is on-path with respect to catalysis, and in terms of facilitating formation of the allosteric activation helix P4.
Collapse
Affiliation(s)
- Bongrae Cho
- Department of Applied Chemistry, Division of Applied Science, Cheongju University, Cheongju 360-764, Korea
| | | |
Collapse
|
30
|
Soll SJ, Díaz Arenas C, Lehman N. Accumulation of deleterious mutations in small abiotic populations of RNA. Genetics 2006; 175:267-75. [PMID: 17110480 PMCID: PMC1774997 DOI: 10.1534/genetics.106.066142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.
Collapse
Affiliation(s)
- Steven J Soll
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | | | | |
Collapse
|
31
|
Gultyaev AP, Heus HA, Olsthoorn RCL. An RNA conformational shift in recent H5N1 influenza A viruses. ACTA ACUST UNITED AC 2006; 23:272-6. [PMID: 17090581 DOI: 10.1093/bioinformatics/btl559] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Recent outbreaks of avian influenza are being caused by unusually virulent H5N1 strains. It is unknown what makes these recent H5N1 strains more aggressive than previously circulating strains. Here, we have compared more than 3000 RNA sequences of segment 8 of type A influenza viruses and found a unique single nucleotide substitution typically associated with recent H5N1 strains. By phylogenetic analysis, biochemical and biophysical experiments, we demonstrate that this substitution dramatically affects the equilibrium between a hairpin and a pseudoknot conformation near the 3' splice-site of the NS gene. This conformational shift may have consequences for splicing regulation of segment 8 mRNA. Our data suggest that besides changes at the protein level, changes in RNA secondary structure should be seriously considered when attempting to explain influenza virus evolution. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
32
|
|
33
|
Hayden EJ, Riley CA, Burton AS, Lehman N. RNA-directed construction of structurally complex and active ligase ribozymes through recombination. RNA (NEW YORK, N.Y.) 2005; 11:1678-87. [PMID: 16177133 PMCID: PMC1370854 DOI: 10.1261/rna.2125305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-directed recombination can be used to catalyze a disproportionation reaction among small RNA substrates to create new combinations of sequences. But the accommodation of secondary and tertiary structural constraints in the substrates by recombinase ribozymes has not been explored. Here, we show that the Azoarcus group I intron can recombine oligoribonucleotides to construct class I ligase ribozymes, which are catalytically active upon synthesis. The substrate oligonucleotides, ranging in size from 58 to 104 nucleotides (nt), along with the 152-nt ligase ribozymes they reconstitute, can contain significant amounts of secondary structure. However, substrate recognition by the Azoarcus ribozyme depends on the existence of a single accessible CAU triplet for effective recombination. A biphasic temperature reaction profile was designed such that the sequential recombination/ligation events could take place in a thermocycler without human intervention. A temperature-dependent pH shift of the reaction buffer contributes to the success of the net reaction. When the substrate for the ligase ribozyme is introduced into the reaction mixture, as much as 11% can be observed being converted to product by the recombined ligase in the same reaction vessel. Recombination followed by ligation can also occur under isothermal conditions at 37 degrees C. Tertiary structure formation of the ligase upon construction can provide some protection from cleavage by the Azoarcus ribozyme when compared to the constituent substrates. These data suggest that RNA-directed recombination can, in fact, articulate complex ribozymes, and that there are logical rules that can guide the optimal placement of the CAU recognition sequence.
Collapse
Affiliation(s)
- Eric J Hayden
- Department of Chemistry, Portland State University, OR 97207, USA
| | | | | | | |
Collapse
|
34
|
Yu E, Fabris D. Toward multiplexing the application of solvent accessibility probes for the investigation of RNA three-dimensional structures by electrospray ionization-Fourier transform mass spectrometry. Anal Biochem 2005; 334:356-66. [PMID: 15494143 DOI: 10.1016/j.ab.2004.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Indexed: 11/16/2022]
Abstract
Multiple solvent accessibility probes can be applied simultaneously to investigate the three-dimensional structure of complex RNA substrates when electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS) is employed in place of polyacrylamide gel electrophoresis (PAGE). We show that classic chemical probes, such as dimethylsulfate, kethoxal, and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate, can be combined in probing mixtures designed to assess the full spectrum of base pairing and steric protection for the most abundant ribonucleotides included in RNA. After probe-independent hydrolysis of the alkylated substrate, the mixture of oligonucleotide products is mass mapped by ESI-FTMS analysis, which enables the unambiguous identification of probed bases from the unique mass signatures provided by the different chemical modifiers. In this bottom-up approach, any theoretical limit to the size of the possible target RNA will be determined by the effectiveness of the hydrolysis procedure rather than by the performance of the detection technique. Control experiments performed on the stem-loop 4 of human immunodeficiency virus type 1 have shown no adverse interactions between the reagents combined in the probing cocktails. No significant discrepancies between the alkylation patterns offered by the cocktails and the individual reagents could be detected, indicating that multiplexing the probe application does not necessarily lead to structural distortion but provides valid data on base accessibility and protection. To demonstrate the ruggedness of this approach, optimized cocktails were finally employed to assess the stability of the folded structure of mouse mammary tumor virus pseudoknot in the presence of different amounts of Mg2+. Multiplexing the probe application constitutes an essential step toward high-throughput applications, which will take advantage of a strategy that maximizes the information attainable from a single experiment, while minimizing time and sample consumption over PAGE-based methods.
Collapse
Affiliation(s)
- Eizadora Yu
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
35
|
Abstract
Hydroxyl radical footprinting is a widely used method for following the folding of RNA molecules in solution. This method has the unique ability to provide experimental information on the solvent accessibility of each nucleotide in an RNA molecule, so that the folding of all domains of the RNA species can be followed simultaneously at single-nucleotide resolution. In recent work, hydroxyl radical footprinting has been used, often in combination with other global measures of structure, to work out detailed folding pathways and three-dimensional structures for increasingly large and complicated RNA molecules. These include synthetic ribozymes, and group I and group II ribozymes, from yeast, the Azoarcus cyanobacterium and Tetrahymena thermophila. Advances have been made in methods for analysis of hydroxyl radical data, so that the large datasets that result from kinetic folding experiments can be analyzed in a semi-automated and quantitative manner.
Collapse
Affiliation(s)
- Thomas D Tullius
- Department of Chemistry, Boston University, Boston MA 02215, USA.
| | | |
Collapse
|
36
|
Coppins RL, Silverman SK. Rational modification of a selection strategy leads to deoxyribozymes that create native 3'-5' RNA linkages. J Am Chem Soc 2005; 126:16426-32. [PMID: 15600344 DOI: 10.1021/ja045817x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously used in vitro selection to identify several classes of deoxyribozymes that mediate RNA ligation by attack of a hydroxyl group at a 5'-triphosphate. In these reactions, the nucleophilic hydroxyl group is located at an internal 2'-position of an RNA substrate, leading to 2',5'-branched RNA. To obtain deoxyribozymes that instead create linear 3'-5'-linked (native) RNA, here we strategically modified the selection approach by embedding the nascent ligation junction within an RNA:DNA duplex region. This approach should favor formation of linear rather than branched RNA because the two RNA termini are spatially constrained by Watson-Crick base pairing during the ligation reaction. Furthermore, because native 3'-5' linkages are more stable in a duplex than isomeric non-native 2'-5' linkages, this strategy is predicted to favor the formation of 3'-5' linkages. All of the new deoxyribozymes indeed create only linear 3'-5' RNA, confirming the effectiveness of the rational design. The new deoxyribozymes ligate RNA with k(obs) values up to 0.5 h(-1) at 37 degrees C and 40 mM Mg2+, pH 9.0, with up to 41% yield at 3 h incubation. They require several specific RNA nucleotides on either side of the ligation junction, which may limit their practical generality. These RNA ligase deoxyribozymes are the first that create native 3'-5' RNA linkages, which to date have been highly elusive via other selection approaches.
Collapse
Affiliation(s)
- Rebecca L Coppins
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|