1
|
Nanas I, Chouzouris TM, Dovolou E, Dadouli K, Stamperna K, Kateri I, Barbagianni M, Amiridis GS. Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows. J Therm Biol 2021; 98:102951. [PMID: 34016368 DOI: 10.1016/j.jtherbio.2021.102951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Objectives of this study were to characterize the effects of heat stress on pregnancy associated glycoproteins (PAG) and progesterone and its involvement in embryo survival. In trial 1, blood samples collected from days 29 to 36 post insemination were examined for the comparison of PAG concentrations between winter (n = 3721) and summer (n = 2388). In trial 2, embryo losses were assessed in winter (n = 144) and in summer (n = 133), in days 31 or 32 of pregnancy. Pregnancy diagnosis was carried out by ultrasonography on days 24 or 25, and it was repeated a week later; in the second occasion PAG concentration was also determined. In trial 3 the PAG and progesterone concentrations were assessed in days 33 to 36 in winter and summer. In trial 1 PAG levels did not differ between winter and summer, the conception rate and the proportion of uncertain pregnancies were higher in winter than summer. The likelihood of pregnancy was 10 to 15% higher in winter. In trial 2, the embryo death rate was higher in summer, but the PAG levels of cows that had embryo loss in summer were higher than those in winter. In both seasons, lower PAG levels were associated with higher risk of pregnancy loss, while embryo death was five times more likely to occur in summer than in winter and lower PAG concentrations were positively associated with higher risk of embryo loss. In trial 3, mean PAG levels were higher and of progesterone were lower during the summer than during the winter. We infer that despite the devastating effects of heat stress on cows' fertility, those early embryos that survive under continuous heat stress can form a well-functioning placenta; hence, the high embryo mortality rate observed during the summer months could be mainly attributed to luteal insufficiency.
Collapse
Affiliation(s)
- Ioannis Nanas
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Thomas-Markos Chouzouris
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Eleni Dovolou
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece; Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, Greece
| | - Katerina Dadouli
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece; Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantina Stamperna
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Ilektra Kateri
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Mariana Barbagianni
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Georgios S Amiridis
- Clinic of Obstetrics & Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece.
| |
Collapse
|
2
|
Hosoe M, Furusawa T, Hayashi KG, Takahashi T, Hashiyada Y, Kizaki K, Hashizume K, Tokunaga T, Matsuyama S, Sakumoto R. Characterisation of bovine embryos following prolonged culture in embryonic stem cell medium containing leukaemia inhibitory factor. Reprod Fertil Dev 2020; 31:1157-1165. [PMID: 31030728 DOI: 10.1071/rd18343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/02/2019] [Indexed: 11/23/2022] Open
Abstract
In order to help elucidate the process of epiblast and trophoblast cell differentiation in bovine embryos invitro, we attempted to develop a suitable culture medium to allow extended embryo culture. Day 7 bovine blastocysts developed in conventional medium were cultured further in embryonic stem cell medium with or without leukaemia inhibitory factor (LIF) until Day 23. At Day 14, the expression of octamer-binding transcription factor 3/4 (OCT3/4) and VIMENTIN was significantly higher in embryos cultured with than without LIF, but embryonic disc formation was not observed. Although expression of SRY (sex determining region Y)-box 17 (SOX17) mRNA was significantly lower in Day 14 embryos cultured with and without LIF than in invivo embryos, hypoblast cells formed just inside the trophoblast cells of the invitro-cultured embryos. On Day 23, expression of placental lactogen (PL) and prolactin-related protein 1 (PRP1) was not affected by LIF in invitro-cultured embryos, levels of both genes were significantly lower in the invitro than invivo embryos. Similar to invivo embryos, binucleate cell clusters seen in Day 23invitro-cultured embryos were composed of PL-negative and -positive cells. These results suggest that our culture system partially reproduced the differentiation process of trophoblast cells invivo.
Collapse
Affiliation(s)
- Misa Hosoe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan; and Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan; and Corresponding author.
| | - Tadashi Furusawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken-Go Hayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Toru Takahashi
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Yutaka Hashiyada
- National Livestock Breeding Center, Nishigo, Fukushima 961-8511, Japan; and Ishikawa Prefectural University, Nono, Ishikawa, 921-8836, Japan
| | - Keiichiro Kizaki
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Kazuyoshi Hashizume
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Tomoyuki Tokunaga
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Reasarch Organization, Nasushiobara, Tochigi 329-2793, Japan; and Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ryosuke Sakumoto
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
3
|
Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 2019; 8:bio037937. [PMID: 30952696 PMCID: PMC6550082 DOI: 10.1242/bio.037937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Brazilian Agricultural Research Corporation - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais 36038-330, Brazil
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anthony W Herren
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Brett S Phinney
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Mohapatra SK, Sandhu A, Singh KP, Singla SK, Chauhan MS, Manik R, Palta P. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS One 2015; 10:e0129235. [PMID: 26053554 PMCID: PMC4459972 DOI: 10.1371/journal.pone.0129235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022] Open
Abstract
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Collapse
Affiliation(s)
| | - Anjit Sandhu
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Karn Pratap Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | - Radheysham Manik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- * E-mail:
| |
Collapse
|
5
|
Kim D, Park S, Jung YG, Roh S. In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod Fertil Dev 2015; 28:RD14071. [PMID: 25966803 DOI: 10.1071/rd14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/12/2015] [Indexed: 12/27/2022] Open
Abstract
We established and maintained somatic cell nuclear transfer embryo-derived stem-like cells (SCNT-eSLCs) from the traditional Korean beef cattle species, HanWoo (Bos taurus coreanae). Each SCNT blastocyst was placed individually on a feeder layer with culture medium containing three inhibitors of differentiation (3i). Primary colonies formed after 2-3 days of culture and the intact colonies were passaged every 5-6 days. The cells in each colony showed embryonic stem cell-like morphologies with a distinct boundary and were positive to alkaline phosphatase staining. Immunofluorescence and reverse transcription-polymerase chain reaction analyses also confirmed that these colonies expressed pluripotent markers. The colonies were maintained over 50 passages for more than 270 days. The cells showed normal karyotypes consisting of 60 chromosomes at Passage 50. Embryoid bodies were formed by suspension culture to analyse in vitro differentiation capability. Marker genes representing the differentiation into three germ layers were expressed. Typical embryonal carcinoma was generated after injecting cells under the testis capsule of nude mice, suggesting that the cultured cells may also have the potential of in vivo differentiation. In conclusion, we generated eSLCs from SCNT bovine embryos, using a 3i system that sustained stemness, normal karyotype and pluripotency, which was confirmed by in vitro and in vivo differentiation.
Collapse
|
6
|
Ramos-Ibeas P, Calle A, Pericuesta E, Laguna-Barraza R, Moros-Mora R, Lopera-Vásquez R, Maillo V, Yáñez-Mó M, Gutiérrez-Adán A, Rizos D, Ramírez MÁ. An efficient system to establish biopsy-derived trophoblastic cell lines from bovine embryos. Biol Reprod 2014; 91:15. [PMID: 24855108 DOI: 10.1095/biolreprod.114.118430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trophoblastic cells play a crucial role in implantation and placentogenesis and can be used as a model to provide substantial information on the peri-implantation period. Unfortunately, there are few cell lines for this purpose in cattle because of the difficulty of raising successive cell stocks in the long-term. Our results show that the combination of a monolayer culture system in microdrops on a surface treated with gelatin and the employment of conditioned media from mouse embryonic fibroblasts support the growth of bovine trophoblastic cells lines from an embryo biopsy. Expression profiles of mononucleate- and binucleate-specific genes in established trophoblastic cells lines represented various stages of gestation. Moreover, the ability to expand trophoblastic cell lines for more than 2 yr together with pluripotency-related gene expression patterns revealed certain self-renewal capacity. In summary, we have developed a system to expand in vitro trophoblastic cells from an embryo biopsy that solves the limitations of using amplified DNA from a small number of cells for bovine embryo genotyping and epigenotyping and, on the other hand, facilitates the establishment of trophoblastic cell lines that can be useful as peri-implantation in vitro models.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Departamento de Reproduccion Animal, INIA, Madrid, Spain
| | | | | | | | | | - María Yáñez-Mó
- Hospital Universitario Santa Cristina, Instituto de Investigaciones Sanitarias Princesa, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Tandiya U, Nagar V, Yadav VP, Ali I, Gupta M, Dangi SS, Hyder I, Yadav B, Bhakat M, Chouhan VS, Khan FA, Maurya VP, Sarkar M. Temporal changes in pregnancy-associated glycoproteins across different stages of gestation in the Barbari goat. Anim Reprod Sci 2013; 142:141-8. [PMID: 24148280 DOI: 10.1016/j.anireprosci.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/11/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to characterize the temporal profile of pregnancy-associated glycoproteins (PAGs; isoforms 1-11) across different stages of gestation in the Barbari goat. Placentae were collected from local abattoir, classified according to crown rump length of the corresponding foetus into five groups (0-30, 31-60, 61-90, 91-120, and 121-150 days of gestation), and used for relative quantification of mRNA expression by Pfaffl method. In addition, adult female goats (pregnant, n = 7; non-pregnant, n = 5) were used to estimate weekly plasma PAG and progesterone (P4) concentrations. The relative mRNA expression of PAGs was greater (p<0.05) during 31-60 days of gestation, which correlated well with the temporal changes in plasma PAG concentrations. Relative expression of PAGs decreased steadily as gestation advanced with minimum expression observed just before parturition, except for PAG-4 and PAG-8 that showed constantly higher expression throughout pregnancy. Plasma PAG and P4 concentrations showed a distinct temporal pattern with a significant increase beginning at 2 weeks and return to basal levels by 20 weeks of gestation. However, PAG concentrations reached a peak earlier in gestation (8 weeks) than P4 (10-14 weeks). Correlation analysis indicated a strong positive association (r = 0.748, p<0.01) between plasma PAG and P4 concentrations. In conclusion, results of this study indicate a distinct temporal pattern of PAG expression and secretion during gestation in the Barbari goat. The temporal changes in PAGs and the positive association with P4 are suggestive of their role in maintenance of pregnancy and progressive foetal development.
Collapse
Affiliation(s)
- Ujjawala Tandiya
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schiffmacher AT, Keefer CL. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells. Mol Reprod Dev 2013; 80:826-39. [PMID: 23836438 DOI: 10.1002/mrd.22212] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022]
Abstract
The bovine trophectoderm (TE) undergoes a dramatic morphogenetic transition prior to uterine endometrial attachment. Many studies have documented trophoblast-specific gene expression profiles at various pre-attachment stages, yet genetic interactions within the transitioning TE gene regulatory network are not well characterized. During bovine embryogenesis, transcription factors OCT4 and CDX2 are co-expressed during early trophoblast elongation. In this study, the bovine trophectoderm-derived CT-1 cell line was utilized as a genetic model to examine the roles of CDX2 and OCT4 within the bovine trophoblast gene regulatory network. An RT-PCR screen for TE-lineage transcription factors identified expression of CDX2, ERRB, ID2, SOX15, ELF5, HAND1, and ASCL2. CT-1 cells also express a nuclear-localized, 360 amino acid OCT4 ortholog of the pluripotency-specific human OCT4A. To delineate the roles of CDX2 and OCT4 within the CT-1 gene network, CDX2 and OCT4 levels were manipulated via overexpression and siRNA-mediated knockdown. An increase in CDX2 negatively regulated OCT4 expression, but increased expression of IFNT, HAND1, ASCL2, SOX15, and ELF5. A reduction of CDX2 levels exhibited a reciprocal effect, resulting in decreased expression of IFNT, HAND1, ASCL2, and SOX15. Both overexpression and knockdown of CDX2 increased ETS2 transcription. In contrast to CDX2, manipulation of OCT4 levels only revealed a positive autoregulatory mechanism and upregulation of ASCL2. Together, these results suggest that CDX2 is a core regulator of multiple trophoblast genes within CT-1 cells.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | | |
Collapse
|
9
|
Forde N, Duffy GB, McGettigan PA, Browne JA, Mehta JP, Kelly AK, Mansouri-Attia N, Sandra O, Loftus BJ, Crowe MA, Fair T, Roche JF, Lonergan P, Evans ACO. Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol Genomics 2012; 44:799-810. [DOI: 10.1152/physiolgenomics.00067.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h ( P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased ( SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 ( P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase ( P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.
Collapse
Affiliation(s)
- N. Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - G. B. Duffy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P. A. McGettigan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. A. Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. P. Mehta
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N. Mansouri-Attia
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - O. Sandra
- Institut National de la Recherche Agronomique, Unite Mixté de Recherche, 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - B. J. Loftus
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - M. A. Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - T. Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. F. Roche
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - P. Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. C. O. Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
10
|
Ushizawa K, Takahashi T, Hosoe M, Kizaki K, Hashizume K. Characterization and expression analysis of SOLD1, a novel member of the retrotransposon-derived Ly-6 superfamily, in bovine placental villi. PLoS One 2009; 4:e5814. [PMID: 19503832 PMCID: PMC2686098 DOI: 10.1371/journal.pone.0005814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 05/11/2009] [Indexed: 11/23/2022] Open
Abstract
Background Ly-6 superfamily members have a conserved Ly-6 domain that is defined by a distinct disulfide bonding pattern between eight or ten cysteine residues. These members are divided into membrane-type and secretory-type proteins. In the present study, we report the identification of a novel Ly-6 domain protein, secreted protein of Ly-6 domain 1 (SOLD1), from bovine placenta. Principal Findings SOLD1 mRNA was expressed in trophoblast mononucleate cells and the protein was secreted into and localized in the extracellular matrix of the mesenchyme in cotyledonary villi. SOLD1 bound mainly with type I collagen telopeptide. We confirmed secretion of SOLD1 from the basolateral surface of a bovine trophoblast cell line (BT-1). It may be related to the organization of the extra-cellular matrix in the mesenchyme of fetal villi. Since trophoblast mononucleate cells are epithelial cells, their polar organization is expected to have a crucial role in the SOLD1 secretion system. We established that SOLD1 is an intronless bovine gene containing the Alu retrotransposon, which was integrated via cytoplasmic reverse transcription. Conclusion We identified a novel retrotransposon-like Ly-6 domain protein in bovine placenta. SOLD1 is a crucial secreted protein that is involved in the organization of the mesenchyme of the cotyledonary villi. Furthermore, the gene encoding SOLD1 has an interesting genomic structure.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Keiichiro Kizaki
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kazuyoshi Hashizume
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
11
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
12
|
Giraldo AM, Hylan DA, Ballard CB, Purpera MN, Vaught TD, Lynn JW, Godke RA, Bondioli KR. Effect of Epigenetic Modifications of Donor Somatic Cells on the Subsequent Chromatin Remodeling of Cloned Bovine Embryos1. Biol Reprod 2008; 78:832-40. [DOI: 10.1095/biolreprod.107.066662] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Kato Y, Li X, Amarnath D, Ushizawa K, Hashizume K, Tokunaga T, Taniguchi M, Tsunoda Y. Comparative gene expression analysis of bovine nuclear-transferred embryos with different developmental potential by cDNA microarray and real-time PCR to determine genes that might reflect calf normality. CLONING AND STEM CELLS 2008; 9:495-511. [PMID: 18154511 DOI: 10.1089/clo.2007.0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Collapse
Affiliation(s)
- Yoko Kato
- Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect Immun 2008; 76:1897-907. [PMID: 18316388 DOI: 10.1128/iai.01554-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brucellosis is still a widespread zoonotic disease. Very little is known about the interaction between Brucella abortus and trophoblastic cells, which is essential for better understanding the pathogenesis of the Brucella-induced placentitis and abortion, a key event for transmission of the disease. The goal of this study was to evaluate the profile of gene expression by bovine trophoblastic cells during infection with B. abortus. Explants of chorioallantoic membranes were inoculated with B. abortus strain 2308. Microarray analysis was performed at 4 h after infection, and expression of cytokines and chemokines by trophoblastic cells was assessed by real-time reverse transcription-PCR at 6 and 12 h after inoculation. In addition, cytokine and chemokine expression in placentomes from experimentally infected cows was evaluated. Expression of proinflammatory genes by trophoblastic cells was suppressed at 4 h after inoculation, whereas a significant upregulation of CXC chemokines, namely, CXCL6 (GCP-2) and CXCL8 (interleukin 8), was observed at 12 but not at 6 h after inoculation. Placentomes of experimentally infected cows had a similar profile of chemokine expression, with upregulation of CXCL6 and CXCL8. Our data indicate that B. abortus modulates the innate immune response by trophoblastic cells, suppressing the expression of proinflammatory mediators during the early stages of infection that is followed by a delayed and mild expression of proinflammatory chemokines, which is similar to the profile of chemokine expression in the placentomes of experimentally infected cows. This trophoblastic response is likely to contribute to the pathogenesis of B. abortus-induced placentitis.
Collapse
|
15
|
Ayad A, Sousa NM, Sulon J, Hornick JL, Watts J, Lopez-Gatius F, Iguer-Ouada M, Beckers JF. Influence of progesterone concentrations on secretory functions of trophoblast and pituitary during the first trimester of pregnancy in dairy cattle. Theriogenology 2007; 67:1503-11. [PMID: 17459464 DOI: 10.1016/j.theriogenology.2007.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/14/2007] [Accepted: 03/17/2007] [Indexed: 11/26/2022]
Abstract
The essential role played by progesterone in the maintenance of pregnancy is unequivocal; however, the effects of progesterone on the secretory patterns of placental and pituitary molecules during the gestation period are not well defined. The objective of this study was to describe pregnancy-associated glycoprotein (PAG) concentrations (measured by RIA-497 and RIA-Pool) in pregnant females with progesterone concentrations lower (low-P4 group, n=20) or higher (high-P4 group, n=17) than the mean of 8.74 ng/mL on Day 21 (AI=Day 0). Luteinizing hormone (LH) and prolactin concentrations were also measured in both groups. Throughout the study period, blood samples were collected on Days 0, 21, 45, 60, and 80 from 37 females that were confirmed to be pregnant. PAG concentrations measured by both RIA-497 and RIA-Pool tended to be higher in high-P4 group than in low-P4 group from Day 30 until Day 80. On Day 80, plasma PAG concentrations that were measured using RIA-497 were observed to be higher (P<0.05) in the high-P4 group than in the low-P4 group (10.2+/-8.7 ng/mL versus 6.9+/-3.8 ng/mL). Concentrations of LH on Day 60 and prolactin on Day 80 were observed to be significantly lower (P<0.05) in the high-P4 group. There was a tendency for the concentrations of LH (Days 45 and 80) and prolactin (Days 30, 45, and 60) to be lower in cows in the high-P4 group than in the low-P4 group. Our results suggest the existence of a relationship among the concentration levels of progesterone, PAG, LH, and prolactin during early pregnancy.
Collapse
Affiliation(s)
- A Ayad
- Laboratory of Endocrinology and Animal Reproduction, Faculty of Veterinary Medicine, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ushizawa K, Takahashi T, Hosoe M, Ishiwata H, Kaneyama K, Kizaki K, Hashizume K. Global gene expression analysis and regulation of the principal genes expressed in bovine placenta in relation to the transcription factor AP-2 family. Reprod Biol Endocrinol 2007; 5:17. [PMID: 17462098 PMCID: PMC1867817 DOI: 10.1186/1477-7827-5-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/27/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cell-cell communication is an important factor in feto-maternal units during placentogenesis. The placenta produces pivotal hormones and cytokines for communication between cotyledonary villi and the maternal caruncle. Gene expression in bovine placenta throughout pregnancy was comprehensively screened by a cDNA microarray, and we searched for a common transcription factor in a gene cluster that showed increasing expression throughout gestation in cotyledonary villi and caruncle. METHODS Placentomal tissues (villi and caruncle) were collected from Day 25 to Day 250 of gestation for microarray analysis. Global gene expression profiles were analyzed using the k-means clustering method. A consensus sequence cis-element that may control up-regulated genes in a characteristic cluster was examined in silico. The quantitative expression and localization of a specific transcription factor were investigated in each tissue using quantitative real-time RT-PCR and in situ hybridization. RESULTS The microarray expression profiles were classified into ten clusters. The genes with most markedly increased expression became concentrated in cluster 2 as gestation proceeded. Cluster 2 included placental lactogen (CSH1), pregnancy-associated glycoprotein-1 (PAG1), and sulfotransferase family 1E estrogen-preferring member 1 (SULT1E1), which were mainly detected in giant trophoblast binucleate cells (BNC). Consensus sequence analysis identified transcription factor AP-2 binding sites in some genes in this cluster. Quantitative real-time RT-PCR analysis confirmed that high level expression of transcription factor AP-2 alpha (TFAP2A) was common to cluster 2 genes during gestation. In contrast, the expression level of another AP-2 family gene, transcription factor AP-2 beta (TFAP2B), was extremely low over the same period. Another gene of the family, transcription factor AP-2 gamma (TFAP2C), was expressed at medium level compared with TFAP2A and TFAP2B. In situ hybridization showed that TFAP2A, TFAP2B and TFAP2C mRNAs were localized in trophoblast cells but were expressed by different cells. TFAP2A was expressed in cotyledonary epithelial cells including BNC, TFAP2B was specifically expressed in BNC, and TFAP2C in mononucleate cells. CONCLUSION We detected gestational-stage-specific gene expression profiles in bovine placentomes using a combination of microarray and in silico analysis. In silico analysis indicated that the AP-2 family may be a consensus regulator for the gene cluster that characteristically appears in bovine placenta as gestation progresses. In particular, TFAP2A and TFAP2B may be involved in regulating binucleate cell-specific genes such as CSH1, some PAG or SULT1E1. These results suggest that the AP-2 family is a specific transcription factor for clusters of crucial placental genes. This is the first evidence that TFAP2A may regulate the differentiation and specific functions of BNC in bovine placenta.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroko Ishiwata
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kanako Kaneyama
- Department of Technology, National Livestock Breeding Center, 1 Odakurahara, Odakura, Nishigo, Fukushima 961-8511, Japan
| | - Keiichiro Kizaki
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kazuyoshi Hashizume
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
17
|
Talbot NC, Powell AM, Camp M, Ealy AD. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell Dev Biol Anim 2007; 43:59-71. [PMID: 17570020 DOI: 10.1007/s11626-007-9013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 02/09/2007] [Indexed: 01/14/2023]
Abstract
Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
18
|
Current Research Status for Economically Important Candidate Genes and Microarray Studies in Cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2006. [DOI: 10.5187/jast.2006.48.2.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Degrelle SA, Campion E, Cabau C, Piumi F, Reinaud P, Richard C, Renard JP, Hue I. Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev Biol 2005; 288:448-60. [PMID: 16289134 DOI: 10.1016/j.ydbio.2005.09.043] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/20/2005] [Accepted: 09/22/2005] [Indexed: 01/12/2023]
Abstract
Embryonic and extra-embryonic lineages are separated at the blastocyst stage in the mouse at the onset of implantation but well ahead of implantation in most mammals. To provide information on the development of the trophoblast lineage in late-implanting bovine embryos, we combined the use of molecular markers defining embryonic and extra-embryonic lineages in the mouse with a transcriptomic approach dedicated to the early steps of the elongation process, a characteristic feature of blastocyst development in ruminants. In this study, we present molecular evidence for differences between the cow and the mouse in the programming of trophoblast differentiation. This different programming encompasses: (i) the expression of epiblast specifying genes (Oct-4, Nanog) in bovine trophoblast cells at the onset of elongation, (ii) the transcription of proliferation markers in early elongating blastocysts, (iii) the early detection of trophoblast-specific transcripts related to extra-embryonic tissue's differentiation (Hand1, Ets2, IFN-tau) and (iv) the identification of a new transcript (c12) which displays a reciprocal pattern to that of Oct-4 and Nanog genes in the embryonic cells and for which no equivalent has thus far been found in the mouse. Altogether, these results tended to show that early elongation is a critical transition in bovine trophoblast development.
Collapse
Affiliation(s)
- Séverine A Degrelle
- UMR INRA/ENVA/CNRS Biologie du Développement et de la Reproduction, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|