1
|
Ma J, Yang G, Qin X, Mo L, Xiong X, Xiong Y, He H, Lan D, Fu W, Li J, Yin S. Molecular characterization of MSX2 gene and its role in regulating steroidogenesis in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2024; 231:101-110. [PMID: 39427591 DOI: 10.1016/j.theriogenology.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Cumulus granulosa cells (CGCs) are somatic cells surrounding the oocyte that play an important role in oocyte growth, meiotic maturation, ovulation, and fertilization in mammals. Therefore, revealing the molecular mechanisms related to the development and function of CGCs is essential for further understanding the regulatory network in female reproduction. MSX2 belongs to the highly conserved msh homeobox gene family and plays diverse roles in different biological processes. This study cloned the coding sequence (CDS) of the yak MSX2 gene and detected the abundance and localization of MSX2 in the major female reproductive organs. The results indicated that the CDS of this gene included 747 base pairs and encoded 248 amino acids. The abundance of MSX2 mRNA was highly expressed in the luteal phase of the yak ovary during the estrous cycle, and MSX2 protein was widely expressed in different female reproductive organs, including the ovary, corpus luteum, uterus, and oviduct. Repressing MSX2 abundance in yak CGCs declined the cell viability and defective steroidogenesis. Several genes abundances related to cell proliferation, apoptosis, and sterogenesis also changed after MSX2 knockdown. MSX2 overexpression had the opposite effect on cell viability in yak CGCs. These results reveal the specific mechanism by which MSX2 regulates the development and function of yak CGCs and give novel and valuable insights into the mechanisms involved in yak reproduction.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Gan Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xuan Qin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Honghong He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Berisha B, Thaqi G, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Effect of the gonadotropin surge on steroid receptor regulation in preovulatory follicles and newly formed corpora lutea in the cow. Domest Anim Endocrinol 2024; 89:106876. [PMID: 39047595 DOI: 10.1016/j.domaniend.2024.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The objective of the study was to characterize the mRNA expression patterns of specific steroid hormone receptors namely, estrogen receptors (ESRRA-estrogen related receptor alpha and ESRRB-estrogen related receptor beta) and progesterone receptors (PGR) in superovulation-induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. The bovine ovaries (n = 5 cow / group), containing preovulatory follicles or early CL, were collected relative to injection of the gonadotropin-releasing hormone (GnRH) at (I) 0 h, (II) 4 h, (III) 10 h, (IV) 20 h, (V) 25 h (preovulatory follicles) and (VI) 60 h (CL, 2-3 days after induced ovulation). In this experiment, we analyzed the steroid receptor mRNA expression and their localization in the follicle and CL tissue. The high mRNA expression of ESRRA, ESRRB, and PGR analyzed in the follicles before ovulation is significantly reduced in the group of follicles during ovulation (25 h after GnRH), rising again significantly after ovulation in newly formed CL, only for ESRRA and PGR (P < 0.05). Immunohistochemically, the nuclei of antral follicles' granulosa cells showed a positive staining for ESRRA, followed by higher activity in the large luteal cells just after ovulation (early CL). In contrast, the lower PGR immunopresence in preovulatory follicles increased in both small and large luteal cell nuclei after follicle ovulation. Our results of steroid receptor mRNA expression in this experimentally induced gonadotropin surge provide insight into the molecular mechanisms of the effects of steroid hormones on follicular-luteal tissue in the period close to the ovulation and subsequent CL formation in the cow.
Collapse
Affiliation(s)
- Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany; Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo; Academy of Science of Albania, Tirana, Albania
| | - Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany.
| | - Dieter Schams
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, Weihenstephan 85354, Germany
| |
Collapse
|
3
|
Sage MAG, Duffy DM. Novel Plasma Membrane Androgen Receptor SLC39A9 Mediates Ovulatory Changes in Cells of the Monkey Ovarian Follicle. Endocrinology 2024; 165:bqae071. [PMID: 38889246 PMCID: PMC11212825 DOI: 10.1210/endocr/bqae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.
Collapse
Affiliation(s)
- Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
4
|
Gasser FB, Stassi AF, Lujan Velázquez MMD, Etchevers L, Amweg AN, Salvetti NR, Ortega HH, Baravalle ME. Altered expression of angiogenic factors in dominant preovulatory follicles of dairy cattle treated with ACTH. Anim Reprod Sci 2024; 262:107415. [PMID: 38286040 DOI: 10.1016/j.anireprosci.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Studies in cows have reported that ovulation, steroidogenesis and angiogenesis are affected by stress and consequently fertility decreases. The purpose of this study was to evaluate the effects of ACTH administration during the preovulatory period on the expression of growth factors (CD-31, PDGF-A, PDGF-B, VEGFA-164, VEGFA-164b, VEGF-R1 and VEGF-R2) associated with the angiogenic process by immunohistochemistry in cows (n = 14). Results evidenced the expression of these growth factors in theca and granulosa cells from antral, atretic and dominant preovulatory follicles of ACTH-treated cows, suggesting that, under stress conditions, their expression continues to be required. VEGFA-164, VEGF-R1 and VEGF-R2 expression was greater in theca cells of dominant preovulatory follicles of the ACTH-treated group than in those of the control group. CD-31 protein expression was lower in the dominant preovulatory follicles of the ACTH-treated group than in those of the control group. PDGF-A and PDGF-B expression did not differ between groups, either in granulosa or in theca cells. These results suggest that VEGFA-164, its receptors and CD-31 are actors in the normal cycle of the ovaries and could have greater pathophysiological importance in the altered angiogenic process and other events that occur during anovulation and stress conditions. This dysregulation reinforces the importance of the angiogenic process in the pathophysiology of cystic ovarian disease in cows. This is the first report on the expression and localization of components of the VEGF and PDGF systems and CD-31 in cells from dominant preovulatory follicles after ACTH administration.
Collapse
Affiliation(s)
- Fátima Belén Gasser
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina
| | - Antonela Florencia Stassi
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Melisa María Del Lujan Velázquez
- Instituto de Ecología Humana y Desarrollo Sustentable. Universidad Católica de Santa Fe (UCSF). Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Lucas Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Ayelén Noelia Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Natalia Raquel Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Hugo Héctor Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - María Eugenia Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET) Universidad Nacional del Litoral, Argentina; Centro Universitario Gálvez, Universidad Nacional del Litoral (UNL), Gálvez, Santa Fe, Argentina.
| |
Collapse
|
5
|
Berisha B, Thaqi G, Sinowatz F, Schams D, Rodler D, Pfaffl MW. Prostaglandins as local regulators of ovarian physiology in ruminants. Anat Histol Embryol 2024; 53:e12980. [PMID: 37788129 DOI: 10.1111/ahe.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
- Academy of Science of Albania, Tirana, Albania
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Granit Thaqi
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Schams
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| |
Collapse
|
6
|
Yang X, Gao S, Luo W, Fu W, Xiong Y, Li J, Lan D, Yin S. Dynamic transcriptome analysis of Maiwa yak corpus luteum during the estrous cycle. Anim Biotechnol 2023; 34:4569-4579. [PMID: 36752221 DOI: 10.1080/10495398.2023.2174130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Maiwa yak is a special breed of animal living on the Qinghai-Tibet Plateau, which has great economic value, but its fertility rate is low. The corpus luteum (CL) is a temporary tissue that plays a crucial role in maintaining the physiological cycle. However, little is known about the transcriptome profile in Maiwa yak CL. In the present study, the transcriptome of Maiwa yak CL at early (EYCL), middle (MYCL) and late-stages (LYCL) was studied employing high-throughput sequencing. A total of 25,922 transcripts were identified, including 22,277 known as well as 3,645 novel ones. Furthermore, 690 and 212 differentially expressed (DE) mRNAs were detected in the EYCL vs. MYCL and MYCL vs. LYCL groups, respectively. KEGG pathway enrichment analysis of DEGs illustrated that the most enriched pathway was PI3K-Akt pathway. Furthermore, twenty-six DEGs were totally found to be associated with different biological processes of CL development. One of these genes, PGRMC1, displayed a dynamical expression trend during the lifespan of yak CL. The knockdown of PGRMC1 in luteinized yak granulosa cells resulted in defective steroidogenesis. In conclusion, this study analyzed the transcriptome profiles in yak CL of different stages, and provided a novel database for analyzing the gene network in yak CL.HIGHLIGHTSThe manuscript analyzed the transcriptome profiles in yak CL during the estrous cycle.Twenty-six DEGs were found to be associated with the development or function of CL.One of the DEGs, PGRMC1, was found to be responsible for steroidogenesis in luteinized yak granulosa cells.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shaoshuai Gao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wen Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Song A, Zhang S, Zhao X, Wu S, Qi X, Gao S, Qi J, Li P, Tan J. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomed Pharmacother 2023; 166:115319. [PMID: 37573658 DOI: 10.1016/j.biopha.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Aixin Song
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Xiaohan Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shan Gao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| |
Collapse
|
8
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
9
|
Thaqi G, Berisha B, Pfaffl MW. Expression of Locally Produced Adipokines and Their Receptors during Different Physiological and Reproductive Stages in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:1782. [PMID: 37889693 PMCID: PMC10251875 DOI: 10.3390/ani13111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 10/05/2023] Open
Abstract
This study aimed to determine the gene expression of different local novel adipokines, such as vaspin, adiponectin, visfatin, and resistin, and their known receptors, namely, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the bovine corpus luteum (CL) during different phases of the estrous cycle (on days 1-2, 3-4, 5-7, 8-12, 13-18, >18) and pregnancy (at months 1-2, 3-4, 5-7, >7). The mRNA expression was measured by reverse transcription polymerase chain reaction (RT-qPCR). The mRNA expression levels were normalized to the geometric mean of all three constantly expressed reference genes (cyclophilin A, ubiquitin, ubiquitin C). Our findings suggest that adipokines are expressed and present in all investigated groups, and are specifically up- or downregulated during the estrus cycle and during pregnancy. Vaspin and adiponectin levels were upregulated in the middle and late cycle stages. Resistin was abundant during the CL regression stage and in the first months of pregnancy. The specific expression of adipokine receptors indicates their involvement in the local mechanisms that regulate CL function. Further investigations are required to elucidate the regulative mechanisms underlying the different local effects of adipokines on the ovarian physiology of cows.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
10
|
Lund M, Pearson AC, Sage MAG, Duffy DM. Luteinizing hormone receptor promotes angiogenesis in ovarian endothelial cells of Macaca fascicularis and Homo sapiens†. Biol Reprod 2023; 108:258-268. [PMID: 36214501 PMCID: PMC9930396 DOI: 10.1093/biolre/ioac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis within the ovarian follicle is an important component of ovulation. New capillary growth is initiated by the ovulatory surge of luteinizing hormone (LH), and angiogenesis is well underway at the time of follicle rupture. LH-stimulated follicular production of vascular growth factors has been shown to promote new capillary formation in the ovulatory follicle. The possibility that LH acts directly on ovarian endothelial cells to promote ovulatory angiogenesis has not been addressed. For these studies, ovaries containing ovulatory follicles were obtained from cynomolgus macaques and used for histological examination of ovarian vascular endothelial cells, and monkey ovarian microvascular endothelial cells (mOMECs) were enriched from ovulatory follicles for in vitro studies. mOMECs expressed LHCGR mRNA and protein, and immunostaining confirmed LHCGR protein in endothelial cells of ovulatory follicles in vivo. Human chorionic gonadotropin (hCG), a ligand for LHCGR, increased mOMEC proliferation, migration and capillary-like sprout formation in vitro. Treatment of mOMECs with hCG increased cAMP, a common intracellular signal generated by LHCGR activation. The cAMP analog dibutyryl cAMP increased mOMEC proliferation in the absence of hCG. Both the protein kinase A (PKA) inhibitor H89 and the phospholipase C (PLC) inhibitor U73122 blocked hCG-stimulated mOMEC proliferation, suggesting that multiple G-proteins may mediate LHCGR action. Human ovarian microvascular endothelial cells (hOMECs) enriched from ovarian aspirates obtained from healthy oocyte donors also expressed LHCGR. hOMECs also migrated and proliferated in response to hCG. Overall, these findings indicate that the LH surge may directly activate ovarian endothelial cells to stimulate angiogenesis of the ovulatory follicle.
Collapse
Affiliation(s)
- Merete Lund
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew C Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
11
|
He Z, Chen Q, Ouyang Q, Hu J, Shen Z, Hu B, Hu S, He H, Li L, Liu H, Wang J. Transcriptomic analysis of the thyroid and ovarian stroma reveals key pathways and potential candidate genes associated with egg production in ducks. Poult Sci 2022; 102:102292. [PMID: 36435165 PMCID: PMC9700033 DOI: 10.1016/j.psj.2022.102292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The importance of thyroid-related genes has been repeatedly mentioned in the transcriptome studies of poultry with different laying performance, yet there are few systematic studies to unravel the regulatory mechanisms of the thyroid-ovary axis in the poultry egg production process. In this study, we compared the transcriptome profiles in the thyroid and ovarian stroma between high egg production (GP) and low egg production (DP) ducks, and then revealed the pathways and candidate genes involved in the process. We identified 1,114 and 733 differentially expressed genes (DEGs) in the thyroid and ovarian stroma, separately. The Gene Ontology (GO) analysis showed that a total of 504 and 189 GO terms were identified in the thyroid and ovarian stroma (P < 0.05). Three common GO terms were identified from the top 5 GO terms with the highest significant level in two tissues, including extracellular space, calcium ion binding, and integral component of plasma membrane. The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 15 and 14 KEGG pathways were significantly (P < 0.05) enriched in the thyroid and ovarian stroma, respectively. And, there were 8 common pathways, including neuroactive ligand-receptor interaction, calcium signaling pathway, ECM-receptor interaction, PPAR signaling pathway, melanogenesis, wnt signaling pathway, vascular smooth muscle contraction, and cytokine-cytokine receptor interaction. Notably, the neuroactive ligand-receptor interaction pathway was the most significantly enriched by the DEGs both in the thyroid and ovarian stroma. The interaction among DEGs enriched in the neuroactive ligand-receptor interaction and ECM-receptor interaction suggested that the thyroid may regulate ovarian development by these genes. Through integrated analysis of the protein-protein interaction (PPI) network and KEGG pathway maps, 9 key DEGs (PTH, THBS2, THBS4, CD36, ADIPOQ, ACSL6, PRKAA2, CRH, and PCK1) were identified, which could play crucial roles in the thyroid to regulate ovarian function and then affect egg-laying performance between GP and DP. This study serves as a basis to explore the molecular mechanism of the thyroid affecting ovarian function and egg production in female ducks and may help to identify molecular markers that can be used for duck genetic selection.
Collapse
|
12
|
Spicer LJ, Evans JR, Schreiber NB. Hormone regulation of thrombospondin-1 mRNA in porcine granulosa cells in vitro. Anim Reprod Sci 2022; 244:107048. [PMID: 35914333 PMCID: PMC10867812 DOI: 10.1016/j.anireprosci.2022.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 (THBS1) is involved in the process of angiogenesis and is down-regulated by insulin-like growth factor 1 (IGF1) in porcine granulosa cells (GC), but what other hormones regulate GC THBS1 and its role in follicular growth is unclear. Thus, six experiments were conducted to determine the influence of other hormones on THBS1 gene expression in porcine GC, and to determine if THBS1 mRNA changes during follicular development. For Exp. 1-5, small (1-5 mm) follicles from ovaries of abattoir gilts were aspirated, GC collected and treated with FSH, IGF1, fibroblast growth factor 9 (FGF9), Sonic hedgehog (SHH), estradiol, cortisol, and/or prostaglandin E2 (PGE2). FSH, IGF1 and FGF9 each decreased (P < 0.05) THBS1 mRNA abundance. Alone, PGE2 increased (P < 0.05) THBS1 mRNA abundance. PGE2 significantly attenuated the FSH-induced inhibition of THBS1 mRNA expression. Estradiol, cortisol, and SHH had no effect on THBS1 mRNA abundance. In Exp. 6, small (1-3 mm), medium (4-6 mm) and large (7-14 mm) follicles were aspirated to measure abundance of THBS1 mRNA in GC which did not differ (P > 0.10) between small and medium-sized follicles but was threefold greater (P < 0.05) in large compared to small or medium follicles. We hypothesize that the inhibitory effects of FSH, IGF1 and FGF9 on the antiangiogenic gene THBS1 could contribute to promoting angiogenesis in the developing follicle, while stimulation of THBS1 mRNA by PGE2 may help reduce angiogenesis during the preovulatory period when PGE2 and THBS1 mRNA are at their greatest levels.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - John R Evans
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nicole B Schreiber
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Berisha B, Thaqi G, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Regulatory changes of local produced prostaglandins in corpus luteum after experimentally induced luteolysis in the cow. Anat Histol Embryol 2022; 51:289-299. [PMID: 35132701 DOI: 10.1111/ahe.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
The objective of the study was to evaluate the expression patterns of prostaglandin F2alpha (PGF), prostaglandin E2 (PGE), PGF receptor (FP), PGE receptors (EP2 and EP4), prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin synthases (PGFS and PGES) in corpora lutea (CL) during experimentally induced luteolysis in cow. The Fleckvieh cows in the mid-luteal phase (days 8-12, control group) were injected with cloprostenol (PGF analogue), and CL were collected by transvaginal ovariectomy before (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48 and 64 h after PGF application (n = 5 per group). The mRNA expression was determined by RT-qPCR, the hormone concentrations by enzyme immunoassay and localization by immunohistochemistry. PTGS2 gene expression increased significantly 2 h after PGF application, followed by continuous and significant downregulation afterwards. The PGF tissue concentration increased significantly just after PGF injection and again during structural luteolysis (after 12 h), whereas PGE concentration significantly decreased during structural luteolysis. The FP receptor mRNA decreased significantly at 2 h and again at 12 h after PGF. In contrast, EP4 receptor mRNA increased significantly just after the PGF application (0.5 h). The immunostaining of PGES and PTGS2 on day 15-17 shows numerous positive luteal cells, followed by lower activity afterwards on day 18 (luteolysis). In conclusion, the changes of examined prostaglandin family members in CL tissue after PGF application may be key components of the local mechanisms regulating the cascade of actions leading to functional and subsequent structural luteolysis in the bovine ovary.
Collapse
Affiliation(s)
- Bajram Berisha
- Faculty of Agriculture and Veterinary, Animal Biotechnology, University of Prishtina, Prishtina, Kosovo.,Academy of Science of Albania, Tirana, Albania.,Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Granit Thaqi
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany.,Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| | - Michael W Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Chang CL, Lo WC, Lee TH, Sung JY, Sung YJ. Oocyte-specific disruption of adrenomedullin 2 gene enhances ovarian follicle growth after superovulation. Front Endocrinol (Lausanne) 2022; 13:1047498. [PMID: 36452323 PMCID: PMC9702065 DOI: 10.3389/fendo.2022.1047498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adrenomedullin 2 (ADM2), adrenomedullin (ADM), and calcitonin gene-related peptides (α- and β-CGRPs) signal through heterodimeric calcitonin receptor-like receptor/receptor activity-modifying protein 1, 2 and 3 (CLR/RAMP1, 2 and 3) complexes. These peptides are important regulators of neurotransmission, vasotone, cardiovascular development, and metabolic homeostasis. In rodents, ADM is essential for regulating embryo implantation, fetal-placental development, and hemodynamic adaptation during pregnancy. On the other hand, ADM2 was shown to affect vascular lumen enlargement, and cumulus cell-oocyte complex (COC) communication in rodent and bovine ovarian follicles. To investigate whether oocyte-derived ADM2 plays a physiological role in regulating ovarian folliculogenesis, we generated mice with oocyte-specific disruption of the Adm2 gene using a LoxP-flanked Adm2 transgene (Adm2 loxP/loxP) and crossed them with Zp3-Cre mice which carry a zona pellucida 3 (Zp3) promoter-Cre recombinase transgene. RESULTS While heterozygous Adm2 +/-/Zp3-Cre and homozygous Adm2 -/-/Zp3-Cre mice were fertile, Adm2 disruption in oocytes significantly increased the number of ovulated oocytes following a superovulation treatment. Oocyte-specific Adm2 disruption also significantly impaired the developmental capacity of fertilized eggs and decreased the size of the corpus luteum following superovulation, perhaps due to a reduction of ovarian cyclin D2-associated signaling. CONCLUSIONS The disruption of intrafollicular ADM2 signaling leads to follicular dysfunction. These data suggested that oocyte-derived ADM2 plays a facilitative role in the regulation of hormonal response and follicle growth independent of the closely related ADM and CGRP peptides, albeit in a subtle manner.
Collapse
|
15
|
Changes in Transcriptomic Profiles in Different Reproductive Periods in Yaks. BIOLOGY 2021; 10:biology10121229. [PMID: 34943144 PMCID: PMC8698885 DOI: 10.3390/biology10121229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary The molecular regulation mechanism of yak ovarian activity has attracted extensive attention. This study investigated the global gene expression profiles in different reproductive stages (anestrus, estrus, and pregnancy) by RNA-seq technology. Enrichment analysis revealed that DEGs were involved in the process of follicular growth, ovulation, and hormone metabolism. This study explored the regulation mechanism of the yak ovary in the reproductive cycle and laid a theoretical foundation for further understanding the reproductive characteristics of yak. Abstract Yak reproductive characteristics have received extensive attention, though the molecular regulation mechanism of its ovarian activity remains to be explored. Therefore, this study initially conducted a comparative analysis of yak ovarian activities in anestrus, estrus, and pregnancy regarding their morphology and histology, followed by implementing RNA sequencing (RNA-seq) technology to detect the overall gene expression and biological mechanism in different reproductive stages. H&E staining showed that there were more growing follicles and mature follicles in ovarian tissue sections during estrus than ovarian tissues during non-estrus. The RNA-seq analysis of yak ovary tissues in three periods showed that DEGs related to follicular development and hormone metabolism were screened in the three comparison groups, such as COL1A2, NR4A1, THBS2, PTGS2, SCARB1, STAR, and WNT2B. Bioinformatics analysis showed that these DEGs are involved in ion binding, cell development, metabolic processes, enriched in ECM–receptor interactions, steroid biosynthesis, together with aldosterone generation/discharge and Wnt/PI3K-Akt signaling pathways. In addition, we speculate alternate splice development events to have important role/s in regulating ovarian functional genomic expression profiles. These results provide essential knowledge aimed at scrutinizing pivotal biomarkers for yak ovarian activity, together with paving the way for enhancing researchers’ focus on improving yak reproductive performance.
Collapse
|
16
|
Shi H, Qi C, Meng L, Yao H, Jiang C, Fan M, Zhang Q, Hou X, Lin R. Bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by secreting thrombospondin-2. Cell Prolif 2021; 54:e13114. [PMID: 34435402 PMCID: PMC8488559 DOI: 10.1111/cpr.13114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Bone marrow‐derived cells (BMDCs), especially mesenchymal stem cells (MSCs), may be involved in the development of Helicobacter pylori‐associated gastric cancer (GC) in mice, but the specific mechanism remains unclear, and evidence from human studies is lacking. Materials and Methods To verify the role of BM‐MSCs in H pylori‐associated GC, green fluorescent protein (GFP)‐labelled BM‐MSCs were transplanted into the subserosal layers of the stomach in a mouse model of chronic H pylori infection. Three months post‐transplantation, the mice were sacrificed, and the gastric tissues were subjected to histopathological and immunofluorescence analyses. In addition, we performed fluorescence in situ hybridization (FISH) and immunofluorescence analyses of gastric tissue from a female patient with H pylori infection and a history of acute myeloid leukaemia who received a BM transplant from a male donor. Results In mice with chronic H pylori infection, GFP‐labelled BM‐MSCs migrated from the serous layer to the mucosal layer and promoted GC progression. The BM‐MSCs differentiated into pan‐cytokeratin‐positive epithelial cells and α‐smooth muscle actin‐positive cancer‐associated fibroblasts (CAFs) by secreting the protein thrombospondin‐2. FISH analysis of gastric tissue from the female patient revealed Y‐chromosome‐positive cells. Immunofluorescence analyses further confirmed that Y‐chromosome‐positive cells showed positive BM‐MSCs marker. These results suggested that allogeneic BMDCs, including BM‐MSCs, can migrate to the stomach under chronic H pylori infection. Conclusions Taken together, these findings imply that BM‐MSCs participate in the development of chronic H pylori‐associated GC by differentiating into both gastric epithelial cells and CAFs.
Collapse
Affiliation(s)
- Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuihua Qi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yin S, Zhou J, Yang L, Yuan Y, Xiong X, Lan D, Li J. Identification of microRNA transcriptome throughout the lifespan of yak ( Bos grunniens) corpus luteum. Anim Biotechnol 2021; 34:143-155. [PMID: 34310260 DOI: 10.1080/10495398.2021.1946552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The corpus luteum (CL) is a temporary organ that plays a critical role for female fertility by maintaining the estrous cycle. MicroRNA (miRNA) is a class of non-coding RNAs involved in various biological processes. However, there exists limited knowledge of the role of miRNA in yak CL. In this study, we used high-throughput sequencing to study the transcriptome dynamics of miRNA in yak early (eCL), middle (mCL) and late-stage CL (lCL). A total of 6,730 miRNAs were identified, including 5,766 known and 964 novels miRNAs. Three miRNAs, including bta-miR-126-3p, bta-miR-143 and bta-miR-148a, exhibited the highest expressions in yak CLs of all the three stages. Most of the miRNAs were 20-24 nt in length and the peak was at 22 nt. Besides, most miRNAs with different lengths displayed significant uracil preference at the 5'-end. Furthermore, 1,067, 280 and 112 differentially expressed (DE) miRNAs were found in eCL vs. mCL, mCL vs. lCL, and eCL vs. lCL, respectively. Most of the DE miRNAs were down-regulated in the eCL vs. mCL and eCL vs. lCL groups, and up-regulated in the mCL vs. lCL group. A total of 18,904 target genes were identified, with 18,843 annotated. Pathway enrichment analysis of the DE miRNAs target genes illustrated that the most enriched cellular process in each group included pathways in cancer, PI3K-Akt pathway, endocytosis, and focal adhesion. A total of 20 putative target genes in 47 DE miRNAs were identified to be closely associated with the formation, function or regression of CL. Three DE miRNAs, including bta-miR-11972, novel-miR-619 and novel-miR-153, were proved to directly bind to the 3'-UTR of their predicated target mRNAs, including CDK4, HSD17B1 and MAP1LC3C, respectively. Both of these DE miRNAs and their target mRNAs exhibited dynamic expression profiles across the lifespan of yak CL. This study presents a general basis for understanding of the regulation of miRNA on yak CL and also provides a novel genetic resource for future analysis of the gene network during the estrous cycle in the yak.
Collapse
Affiliation(s)
- Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China.,Key Laboratory of Modern Biotechnology, State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingwen Zhou
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Liuqing Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujie Yuan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Basavaraja R, Drum JN, Sapuleni J, Bibi L, Friedlander G, Kumar S, Sartori R, Meidan R. Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC Genomics 2021; 22:452. [PMID: 34134617 PMCID: PMC8207607 DOI: 10.1186/s12864-021-07747-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Maintenance of the corpus luteum (CL) beyond the time of luteolysis is essential for establishing pregnancy. Identifying the distinct features of early pregnancy CL remains unresolved, hence we analyzed here the transcriptome of CL on day 18 pregnant (P) and non-pregnant (NP) cows using RNA-Seq. CL of P cows expressed ISGs, verifying exposure to the pregnancy recognition signal, interferon-tau (IFNT), whereas the CL of NP cows had elevated luteal progesterone levels, implying that luteolysis had not yet commenced. Results The DEGs, IPA, and metascape canonical pathways, along with GSEA analysis, differed markedly in the CL of P cows from those of NP cows, at the same day of the cycle. Both metascape and IPA identified similar significantly enriched pathways such as interferon alpha/beta, sonic hedgehog pathway, TNFA, EDN1, TGFB1, and PDGF. However, type-1 interferon and sonic hedgehog pathways were positively enriched whereas most of the enriched pathways were downregulated in the P compared to NP samples. Thirty-four % of these pathways are known to be elevated by PGF2A during luteolysis. Notably, selective DEGs in luteinized granulosa cells were modulated by IFNT in vitro in a similar manner to their regulation in the CL of P cows. Conclusion This study unraveled the unique transcriptomic signature of the IFNT-exposed, early pregnancy CL, highlighting the abundance of downregulated pathways known to be otherwise induced during luteolysis. These and IFNT-regulated in vitro pregnancy-specific DEGs suggest that IFNT contributes to the characteristics and maintenance of early pregnancy CL. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07747-3.
Collapse
Affiliation(s)
- Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Jessica N Drum
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Lonice Bibi
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Sai Kumar
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| |
Collapse
|
19
|
Lin J, Guan L, Ge L, Liu G, Bai Y, Liu X. Nanopore-based full-length transcriptome sequencing of Muscovy duck (Cairina moschata) ovary. Poult Sci 2021; 100:101246. [PMID: 34198095 PMCID: PMC8253917 DOI: 10.1016/j.psj.2021.101246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
Unlike mammals, studies on mechanisms that regulate waterfowl ovulation have been rarely reported. To advance our understanding of the ovulation differences in Muscovy duck, we utilized the Oxford Nanopore Technologies (ONT) to generate transcriptome data from 3 groups of female duck ovaries with ovulation differences (i.e., preovulation [PO], consecutive ovulation [CO], and inconsecutive ovulation [IO]). In this study, the full-length transcriptome data qualitative analysis showed that a total of 24,504 nonredundant full-length transcripts were generated, 19,060 new transcripts were discovered and 14,848 novel transcripts were successfully annotated. For the quantitative analysis, differentially expressed genes (DEGs) between the 3 groups were identified and functional properties were characterized. CTNNB1, IGF1, FOXO3, HSPA2, PTEN and SMC4 may be potential hub genes that regulate ovulation. Adhesion-related pathway, mTOR pathway, TGF-β signaling pathway and FoxO signaling pathway have been considered as important pathways that affect follicular development and ovulation. These results provide a more complete data source of full-length transcriptome for the further study of gene expression and genetics in Muscovy duck. The hub genes and potential mechanisms that affect the ovulation of Muscovy duck have been screened out to provide a scientific basis for breeding work to improve the reproduction performance of Muscovy duck.
Collapse
Affiliation(s)
- Junyuan Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linfei Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
20
|
Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat Commun 2020; 11:4739. [PMID: 32958756 PMCID: PMC7505982 DOI: 10.1038/s41467-020-18550-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds. Investigation of potential functional variants in the water buffalo genome identifies a rare example of convergent domestication down to the same mutation having independently occurred and been selected for across domesticated species. Cross-species comparisons of recent selective sweeps can consequently help identify and refine important loci linked to domestication. The comparative genomics of domesticated lineages can yield insights into the signatures of artificial selection. This study sequences 79 water buffalo genomes from 7 breeds and reveals examples of convergent domestication at the genetic level between water buffalo and cattle.
Collapse
|
21
|
Berisha B, Schams D, Sinowatz F, Rodler D, Pfaffl MW. Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis. Reprod Domest Anim 2020; 55:1573-1584. [PMID: 32869370 DOI: 10.1111/rda.13812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
The objective of the study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A), inducible nitric oxide synthase (iNOS) and endothelial (eNOS) isoforms in time-defined follicle classes before and after GnRH application in the cow. Ovaries containing pre-ovulatory follicles or corpora lutea were collected by transvaginal ovariectomy (n = 5 cows/group) as follow: (I) before GnRH administration; (II) 4h after GnRH; (III) 10h after GnRH; (IV) 20h after GnRH; (V) 25h after GnRH; and (VI) 60h after GnRH (early corpus luteum). The mRNA abundance of HIF1A in the follicle group before GnRH was high, followed by a significant down regulation afterwards with a minimum level 25h after GnRH (close to ovulation) and significant increase only after ovulation. The mRNA abundance of iNOS before GnRH was high, decreased significantly during LH surge, with minimum levels afterwards. In contrast, the mRNA of eNOS decreased in the follicle group 20h after GnRH, followed by a rapid and significant upregulation just after ovulation. Immunohistochemically, the granulosa cells of antral follicles and the eosinophils of the theca tissue as well of the early corpus luteum showed a strong staining for HIF1A. The location of the eosinophils could be clearly demonstrated by immunostaining with an eosinophil-specific antibody (EMBP) and transmission electron microscopy. In conclusion, the parallel and acute regulated expression patterns of HIF1A and NOS isoforms, specifically during the interval between the LH surge and ovulation, indicate that these paracrine factors are involved in the local mechanisms, regulating final follicle maturation, ovulation and early luteal angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
22
|
Regulation of Female Folliculogenesis by Tsp1a in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2020; 21:ijms21165893. [PMID: 32824362 PMCID: PMC7460569 DOI: 10.3390/ijms21165893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
TSP1 was reported to be involved in multiple biological processes including the activation of TGF-β signaling pathways and the regulation of angiogenesis during wound repair and tumor growth, while its role in ovarian folliculogenesis remains to be elucidated. In the present study, Tsp1a was found to be expressed in the oogonia and granulosa cells of phase I to phase IV follicles in the ovaries of Nile tilapia by immunofluorescence. tsp1a homozygous mutants were generated by CRISPR/Cas9. Mutation of tsp1a resulted in increased oogonia, reduced secondary growth follicles and delayed ovary development. Expression of the cell proliferation marker PCNA was significantly up-regulated in the oogonia of the mutant ovaries. Furthermore, transcriptomic analysis revealed that expressions of DNA replication related genes were significantly up-regulated, while cAMP and MAPK signaling pathway genes which inhibit cell proliferation and promote cell differentiation were significantly down-regulated. In addition, aromatase (Cyp19a1a) expression and serum 17β-estradiol (E2) concentration were significantly decreased in the mutants. These results indicated that lacking tsp1a resulted in increased proliferation and inhibited differentiation of oogonia, which in turn, resulted in increased oogonia, reduced secondary growth follicles and decreased E2. Taken together, our results indicated that tsp1a was essential for ovarian folliculogenesis in Nile tilapia.
Collapse
|
23
|
Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int J Mol Sci 2020; 21:ijms21124565. [PMID: 32604954 PMCID: PMC7349727 DOI: 10.3390/ijms21124565] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as “folliculogenesis”. The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.
Collapse
|
24
|
Jerome A, Bhati J, Mishra D, Chaturvedi K, Rao A, Rai A, Sikka P, Singh I. MicroRNA-related markers associated with corpus luteum tropism in buffalo (Bubalus bubalis). Genomics 2020; 112:108-113. [DOI: 10.1016/j.ygeno.2019.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
|
25
|
Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Sci Rep 2019; 9:14682. [PMID: 31605002 PMCID: PMC6789004 DOI: 10.1038/s41598-019-51152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy.
Collapse
|
26
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
27
|
Zheng Y, Yuan J, Meng S, Chen J, Gu Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. CHEMOSPHERE 2019; 218:14-25. [PMID: 30465971 DOI: 10.1016/j.chemosphere.2018.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The hormone 17β-estradiol (E2) can be found in rivers, effluents, and even drinking water. Researches have demonstrated that E2 affects various metabolic pathways through gene activation and may cause reproductive toxicity in fish. Therefore, the aim of this study was to evaluate E2-induced toxicity via testicular transcriptome of zebrafish (Danio rerio) exposed to different concentrations (10 ng L-1, and 100 ng L-1) of E2. A total of >600 significant differentially expressed genes (DEGs) were enriched among the three treatments. Short time-series expression miner analysis revealed five KEGG pathways including drug metabolism, other enzymes, calcium signaling pathway, ECM-receptor interaction, gap junction, and cell adhesion molecules. Twenty genes were selected to verify the accuracy of RNA-Seq. Other reported genes related to sex differentiation, development, energy metabolism, and other processes were found. One set of genes significantly increased/decreased/fluctuated over time, especially 12 h after E2 exposure. Genes associated with ovaries (zp3c), and development (bmp15, gdf9, and sycp2l) were significantly upregulated with increasing E2 concentration. E2 and testosterone was significantly decreased by 10 (except for T) and 100 ng L-1 E2 exposure at 12 h. The current study demonstrated that sex differentiation, development, energy metabolism, immunity, and ribosome biogenesis in male zebrafish were all significantly affected by 17β-estradiol exposure through transcriptional alterations.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
28
|
Schips TG, Vanhoutte D, Vo A, Correll RN, Brody MJ, Khalil H, Karch J, Tjondrokoesoemo A, Sargent MA, Maillet M, Ross RS, Molkentin JD. Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nat Commun 2019; 10:76. [PMID: 30622267 PMCID: PMC6325143 DOI: 10.1038/s41467-018-08026-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7β1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability.
Collapse
Affiliation(s)
- Tobias G Schips
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Davy Vanhoutte
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Alexander Vo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert N Correll
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hadi Khalil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Karch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andoria Tjondrokoesoemo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marjorie Maillet
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Paul A, Punetha M, Kumar S, Sonwane A, Chouhan VS, Singh G, Maurya VP, Sarkar M. Regulation of steroidogenic function of luteal cells by thrombospondin and insulin in water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31:751-759. [DOI: 10.1071/rd18188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
The present study examined the effect of exogenous thrombospondin 1 (TSP1) on the steroidogenic function of luteal cells cultured invitro. Furthermore, the transcriptional interaction of insulin with TSP1 and its receptor, cluster of differentiation 36 (CD36) were also investigated. At the highest dose (500ngmL−1) TSP1 significantly downregulated the expression of the angiogenic marker von Willebrand factor (vWF) and progesterone production in cultured luteal cells. Moreover, the simultaneous upregulation in the expression of caspase 3 by exogenous TSP1 was consistent with a reduction in the number of viable luteal cells as determined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltertrazolium bromide (MTT) assay after 72h of culture. However, the expression of critical enzymes in the progesterone synthetic pathway was not significantly modulated by treatment with TSP1 in cultured luteal cells. Knocking out of endogenous TSP1 with the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPRassociated protein9 (Cas9) system improved the viability of luteal cells as well as increasing progesterone production and decreasing caspase 3 activation. Insulin treatment suppressed the expression of TSP1 and CD36 in cultured luteal cells in a dose- and time-dependent manner. To conclude, TSP1 acts as a negative endogenous regulator of angiogenesis that attenuates progesterone production, possibly by reducing the number of luteal cells via apoptosis during luteal regression, whereas insulin as a luteinising signal may have inhibited the thrombospondin system for the efficient development of luteal function.
Collapse
|
30
|
Walewska E, Wołodko K, Skarzynski D, Ferreira-Dias G, Galvão A. The Interaction Between Nodal, Hypoxia-Inducible Factor 1 Alpha, and Thrombospondin 1 Promotes Luteolysis in Equine Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:667. [PMID: 31632347 PMCID: PMC6779822 DOI: 10.3389/fendo.2019.00667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
The regulation of corpus luteus (CL) luteolysis is a complex process involving a myriad of factors. Previously, we have shown the involvement of Nodal in functional luteolysis in mares. Presently, we ask the extent of which Nodal mediation of luteolysis is done through regulation of angioregression. We demonstrated the interaction between Nodal and hypoxia-inducible factor 1 α (HIF1α) and thrombospondin 1/thrombospondin receptor (TSP1/CD36) systems, could mediate angioregression during luteolysis. First, we demonstrated the inhibitory effect of Nodal on the vascular marker platelet/endothelial cell adhesion molecule 1 (CD31). Also, treatment of mid CL explants with vascular endothelial growth factor A (VEGFA) showed a trend on activin-like kinase 7 (Alk7) protein inhibition. Next, Nodal was also shown to activate HIF1α and in vitro culture of mid CL explants under decreased oxygen level promoted Nodal expression and SMAD family member 3 (Smad3) phosphorylation. In another experiment, the crosstalk between Nodal and TSP1/CD36 was investigated. Indeed, Nodal increased the expression of the anti-angiogenic TSP1 and its receptor CD36 in mid CL explants. Finally, the supportive effect of prostaglandin F2α (PGF2α) on TSP1/CD36 was blocked by SB431542 (SB), a pharmacological inhibitor of Nodal signaling. Thus, we evidenced for the first time the in vitro interaction between Nodal and both HIF1α and TSP1 systems, two conserved pathways previously shown to be involved in vascular regression during luteolysis. Considering the given increased expression of Nodal in mid CL and its role on functional luteolysis, the current results suggest the additional involvement of Nodal in angioregression during luteolysis in the mare, particularly in the activation of HIF1α and TSP1/CD36.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Graça Ferreira-Dias
- The Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- *Correspondence: António Galvão
| |
Collapse
|
31
|
Bender HR, Campbell GE, Aytoda P, Mathiesen AH, Duffy DM. Thrombospondin 1 (THBS1) Promotes Follicular Angiogenesis, Luteinization, and Ovulation in Primates. Front Endocrinol (Lausanne) 2019; 10:727. [PMID: 31787928 PMCID: PMC6855263 DOI: 10.3389/fendo.2019.00727] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is essential to both ovulation and the formation of the corpus luteum. The thrombospondin (THBS) family of glycoproteins plays diverse roles in regulation of angiogenesis, but the role of these vascular regulators in ovulation and luteinization remain to be elucidated. Using the cynomolgus macaque as a model for human ovulation, we demonstrated that levels of THBS1 mRNA and protein in preovulatory follicle granulosa cells increased after the ovulatory gonadotropin surge, with peak levels just before the expected time of ovulation. THBS1 treatment of monkey ovarian microvascular endothelial cells in vitro stimulated migration, proliferation, and capillary sprout formation, consistent with a pro-angiogenic action of THBS1. Injection of an anti-THBS1 antibody into monkey preovulatory follicles reduced rates of follicle rupture and oocyte release in response to an ovulatory gonadotropin stimulus when compared with control IgG-injected follicles. Interestingly, two of three oocytes from anti-THBS1 antibody injected follicles were germinal vesicle intact, indicating that meiosis failed to resume as anticipated. Follicles injected with anti-THBS1 antibody also showed reduced granulosa cell layer expansion, endothelial cell invasion, and capillary formation when compared to control IgG-injected follicles. Overall, these findings support a critical role for THBS1 in follicular angiogenesis, with implications for both successful ovulation and corpus luteum formation.
Collapse
|
32
|
Yerushalmi GM, Salmon-Divon M, Ophir L, Yung Y, Baum M, Coticchio G, Fadini R, Mignini-Renzini M, Dal Canto M, Machtinger R, Maman E, Hourvitz A. Characterization of the miRNA regulators of the human ovulatory cascade. Sci Rep 2018; 8:15605. [PMID: 30353018 PMCID: PMC6199329 DOI: 10.1038/s41598-018-33807-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Ovarian follicular development and ovulation are complex and tightly regulated processes that involve regulation by microRNAs (miRNAs). We previously identified differentially expressed mRNAs between human cumulus granulosa cells (CGCs) from immature early antral follicles (germinal vesicle - GV) and mature preovulatory follicles (metaphase II - M2). In this study, we performed an integrated analysis of the transcriptome and miRNome in CGCs obtained from the GV cumulus-oocyte complex (COC) obtained from IVM and M2 COC obtained from IVF. A total of 43 differentially expressed miRNAs were identified. Using Ingenuity IPA analysis, we identified 7288 potential miRNA-regulated target genes. Two hundred thirty-four of these target genes were also found in our previously generated ovulatory gene library while exhibiting anti-correlated expression to the identified miRNAs. IPA pathway analysis suggested that miR-21 and FOXM1 cooperatively inhibit CDC25A, TOP2A and PRC1. We identified a mechanism for the temporary inhibition of VEGF during ovulation by TGFB1, miR-16-5p and miR-34a-5p. The linkage bioinformatics analysis between the libraries of the coding genes from our preliminary study with the newly generated library of regulatory miRNAs provides us a comprehensive, integrated overview of the miRNA-mRNA co-regulatory networks that may play a key role in controlling post-transcriptomic regulation of the ovulatory process.
Collapse
Affiliation(s)
- G M Yerushalmi
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - M Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - L Ophir
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Yung
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Baum
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Coticchio
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Fadini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Mignini-Renzini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Dal Canto
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Machtinger
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Maman
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Hourvitz
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Gecaj RM, Schanzenbach CI, Kirchner B, Pfaffl MW, Riedmaier I, Tweedie-Cullen RY, Berisha B. The Dynamics of microRNA Transcriptome in Bovine Corpus Luteum during Its Formation, Function, and Regression. Front Genet 2017; 8:213. [PMID: 29326752 PMCID: PMC5736867 DOI: 10.3389/fgene.2017.00213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The formation, function, and subsequent regression of the ovarian corpus luteum (CL) are dynamic processes that enable ovary cyclical activity. Studies in whole ovary tissue have found microRNAs (miRNAs) to by critical for ovary function. However, relatively little is known about the role of miRNAs in the bovine CL. Utilizing small RNA next-generation sequencing we profiled miRNA transcriptome in bovine CL during the entire physiological estrous cycle, by sampling the CL on days: d 1–2, d 3–4, and d 5–7 (early CL, eCL), d 8–12 (mid CL, mCL), d 13–16 (late CL, lCL), and d > 18 (regressed CL, rCL). We characterized patterns of miRNAs abundance and identified 42 miRNAs that were consistent significantly different expressed (DE) in the eCL relative to their expression at each of the analyzed stages (mCL, lCL, and rCL). Out of these, bta-miR-210-3p, −2898, −96, −7-5p, −183-5p, −182, and −202 showed drastic up-regulation with a fold-change of ≥2.0 and adjusted P < 0.01 in the eCL, while bta-miR-146a was downregulated at lCL and rCL vs. the eCL. Another 24, 11, and 21 miRNAs were significantly DE only between individual comparisons, eCL vs. the mCL, lCL, and rCL, respectively. Irrespective of cycle stage two miRNAs, bta-miR-21-5p and bta-miR-143 were identified as the most abundant miRNAs species and show opposing expression abundance. Whilst bta-miR-21-5p peaked in number of reads in the eCL and was significantly downregulated in the mCL and lCL, bta-miR-143 reached its peak in the rCL and is significantly downregulated in the eCL. MiRNAs with significant DE in at least one cycle stage (CL class) were further grouped into eight distinct clusters by the self-organizing tree algorithm (SOTA). Half of the clusters contain miRNAs with low-expression, whilst the other half contain miRNAs with high-expression levels during eCL. Prediction analysis for significantly DE miRNAs resulted in target genes involved with CL formation, functionalization and CL regression. This study is the most comprehensive profiling of miRNA transcriptome in bovine CL covering the entire estrous cycle and provides a compact database for further functional validation and biomarker identification relevant for CL viability and fertility.
Collapse
Affiliation(s)
- Rreze M Gecaj
- Department of Animal Husbandry and Biotechnology, Faculty of Agriculture and Veterinary, University of Pristina, Pristina, Albania
| | - Corina I Schanzenbach
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany.,Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Benedikt Kirchner
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximillian Universität, München, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany
| | - Irmgard Riedmaier
- Department of Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Eurofins Medigenomix Forensik GmbH, Ebersberg, Germany
| | - Ry Y Tweedie-Cullen
- Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Bajram Berisha
- Department of Animal Husbandry and Biotechnology, Faculty of Agriculture and Veterinary, University of Pristina, Pristina, Albania.,Department of Animal Physiology & Immunology, Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
34
|
Significant Down-Regulation of "Biological Adhesion" Genes in Porcine Oocytes after IVM. Int J Mol Sci 2017; 18:ijms18122685. [PMID: 29232894 PMCID: PMC5751287 DOI: 10.3390/ijms18122685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group), or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group). As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.
Collapse
|
35
|
Rodler D, Sinowatz F. Localization of thrombospondin-1 and its receptor CD36 in the ovary of the ostrich (Struthio camelus). Anat Histol Embryol 2017; 47:124-132. [PMID: 29205453 DOI: 10.1111/ahe.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a decisive role for the rapid growth of avian follicles. Compared to mammals, few data on the angiogenesis in the avian ovary are available. However, whereas several pro-angiogenic factors in the avian ovary have been recently studied in detail, little information is available on the localization of anti-angiogenic factors. The aim of this study was to determine the localization and possible function of the anti-angiogenic factor thrombospondin-1 (TSP-1) and its receptor CD36 in the ovary of the ostrich using immunohistochemistry and to correlate the results with ultrastructural data. Whereas the oocytes and granulosa cells of all follicular stages were negative for TSP-1, myofibroblasts of the theca externa and smooth muscle cells of blood vessels showed distinct reactions. A distinctly different staining pattern was observed for CD36. The oocytes were CD36 negative. No immunostaining for CD36 could be observed neither in the granulosa cells nor in the adjacent theca interna of vitellogenic follicles. In the theca externa, blood vessels protruding towards the oocyte showed CD36-positive endothelial cells. In conclusion, a fine balance between angiogenic and anti-angiogenic processes assures that a dense net of blood vessels develops during the rapid growth of a selected follicle. Anti-angiogenic molecules, such as TSP-1 and its receptor CD36 may, after the oocyte has reached its final size, inhibit further angiogenesis and limit the transport of yolk material to the mature oocyte. By this mechanism, the growth of the megalecithal oocyte during folliculogenesis may cease.
Collapse
Affiliation(s)
- D Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian University of Munich, Munich, Germany
| | - F Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
36
|
Basavaraja R, Przygrodzka E, Pawlinski B, Gajewski Z, Kaczmarek MM, Meidan R. Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction 2017; 154:559-568. [PMID: 28808111 DOI: 10.1530/rep-17-0290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023]
Abstract
Interferon-tau (IFNT), a maternal recognition of pregnancy (MRP) signals in domestic ruminants, suppresses the release of luteolytic pulses of uterine prostaglandin F2a (PGF2a), thus extending the corpus luteum (CL) life span. We hypothesized that IFNT also exerts anti-luteolytic actions in bovine CL. To examine the direct effects of IFNT on bovine CL, luteal slices and enriched luteal endothelial cells (LECs) were utilized. We found that recombinant ovine IFNT (roIFNT) markedly elevates interferon-associated genes (STAT1, STAT2 and IRF9) and interferon-stimulated genes (ISGs: MX2, ISG15 and OAS1Y) in both models. Furthermore, IFNT time-dependently induced STAT1 phosphorylation in LECs without affecting total STAT1. roIFNT-stimulated viable LECs numbers and the knockdown of protein inhibitor of activated STAT1 (PIAS1) abolished this effect, suggesting that PIAS1 may mediate the proliferative effect of IFNT. IFNT significantly downregulated luteolytic genes such as TGFB1, thrombospondin-1 (THBS1), endothelin-1 (EDN1) and serpin family E member-1 (SERPINE1) in LECs. However, less robust effects were observed in luteal slices. Moreover, PGF2a alone induced THBS1, SERPINE1 and EDN1 mRNA in CL slices whereas in the presence of IFNT, THBS1 and SERPINE1 stimulation was abolished. Collectively, these results indicate that IFNT acts via STAT1- IRF9-dependent and independent pathways and affects diverse luteal functions. Most interestingly, this study suggests the existence of an anti-luteolytic effect of IFNT in bovine CL, namely, inhibiting key PGF2a-induced luteolytic genes. The proliferative effect of IFNT may constitute an additional mechanism that promotes luteal cell survival, thus, extending the luteal life span during early pregnancy in cows.
Collapse
Affiliation(s)
- Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Emilia Przygrodzka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bartosz Pawlinski
- Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Zdzislaw Gajewski
- Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.,Department for Large Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
| | - Rina Meidan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
37
|
Sacchi S, Marinaro F, Tondelli D, Lui J, Xella S, Marsella T, Tagliasacchi D, Argento C, Tirelli A, Giulini S, La Marca A. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod Biol Endocrinol 2016; 14:52. [PMID: 27582109 PMCID: PMC5006365 DOI: 10.1186/s12958-016-0189-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). METHODS The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. RESULTS DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. CONCLUSIONS Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.
Collapse
Affiliation(s)
- Sandro Sacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Federica Marinaro
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Debora Tondelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Jessica Lui
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Susanna Xella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Tiziana Marsella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Cindy Argento
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Alessandra Tirelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Simone Giulini
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Antonio La Marca
- University of Modena and Reggio Emilia and Clinica Eugin Modena, Modena, Italy
| |
Collapse
|