1
|
Irie K, Nakamura-Maruyama E, Ishikawa M, Nakamura T, Miyake K. Effects of d-allose on anti-brain edema effects and reduction of tumor necrosis factor-alpha and interleukin-6 in the water intoxication model. Heliyon 2024; 10:e30700. [PMID: 38770322 PMCID: PMC11103412 DOI: 10.1016/j.heliyon.2024.e30700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare sugars, which exist only in very small quantities in nature, have recently attracted attention for their various biological functions in medicine. Among them, d-allose is known to have cytoprotective effects by antioxidant effects. In this study, we investigated whether the antioxidant effects of d-allose reduce brain edema in a water intoxication model of cytotoxic brain edema. Methods: Mice were injected intraperitoneally with distilled water (10 % of body weight) to create a model of brain edema. d-allose was administered orally at 400 mg/kg 30 min before the model was created. Two hours later, the degree of brain edema was measured by the dry-weight method to determine whether d-allose reduced brain edema. As an index of antioxidant effects, we measured changes over time in inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) induced by the water intoxication model, and whether d-allose reduced inflammatory cytokines 4 h after model creation. Results: Administration of d-allose significantly suppressed brain edema formation of the water-intoxication model. And it significantly reduced inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6). These results suggest that the antioxidant effect of d-allose exerts an anti-inflammatory effect and reduces brain edema.
Collapse
Affiliation(s)
- Keiichiro Irie
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| | | | - Mai Ishikawa
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Takehiro Nakamura
- Department of Physiology 2, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, Miki, Japan
| |
Collapse
|
2
|
Duan S, Chen Y, Wang G, Li Z, Dong S, Wu Y, Wang Y, Ma C, Wang R. A study of targeted mutation of l-rhamnose isomerase to improve the conversion efficiency of D-allose. Enzyme Microb Technol 2023; 168:110259. [PMID: 37245327 DOI: 10.1016/j.enzmictec.2023.110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
D-Allose is a rare cis-caprose with a wide range of physiological functions, which has a wide range of applications in medicine, food, and other industries. L-Rhamnose isomerase (L-Rhi) is the earliest enzyme found to catalyze the production of D-allose from D-psicose. This catalyst has a high conversion rate, but its specificity for substrates is limited; thus, it cannot fulfill the requirements of industrial production of D-allose. In this study, L-Rhi derived from Bacillus subtilis was employed as the research subject, and D-psicose as the conversion substrate. Two mutant libraries were constructed through alanine scanning, saturation mutation, and rational design based on the analysis of the secondary structure, tertiary structure, and interactions with ligands of the enzyme. The yield of D-allose produced by these mutants was assessed; it was found that the conversion rate of mutant D325M to D-allose was increased by 55.73 %, and the D325S improved by 15.34 %, while mutant W184H increased by 10.37 % at 55 °C, respectively. According to modeling analysis, manganese (Mn2+) had no significant effect on the production of D-psicose from D-psicose by L-Rhi. The results of molecular dynamics simulation demonstrated that the mutants W184H, D325M, and D325S had more stable protein structures while binding with the substrate D-psicose, as evidenced by its root mean square deviation (RMSD), root mean square fluctuation (RMSF), and binding free energy values. It was more conducive to binding D-psicose and facilitating its conversion to D-allose, providing the basis for the production of D-allose.
Collapse
Affiliation(s)
- Shuangshuang Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yonghua Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Shitong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yingshuai Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Yuanwei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan 250353, PR China.
| |
Collapse
|
3
|
Yu Y, He L, Xu H, Zhang L, Zhang H, Li M. Mathematical model of the ratio of sucrose added to dangshan pear paste based on GC analysis of d-allose as the characteristic component. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr 2018; 58:2768-2778. [PMID: 28662355 DOI: 10.1080/10408398.2017.1341385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.
Collapse
Affiliation(s)
- Muhammad Bilal
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Hafiz M N Iqbal
- b School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey , Ave. Eugenio Garza Sada 2501, Monterrey , N.L., CP , Mexico
| | - Hongbo Hu
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
- c National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Wei Wang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Xuehong Zhang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
5
|
Wen L, Huang K, Zheng Y, Fang J, Kondengaden SM, Wang PG. Two-step enzymatic synthesis of 6-deoxy-L-psicose. Tetrahedron Lett 2016; 57:3819-3822. [PMID: 27546917 DOI: 10.1016/j.tetlet.2016.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rare sugars offer a plethora of applications in the pharmaceutical, medicinal, and industries, as well as in synthetic chemistry. However, studies of rare sugars have been hampered by their relative scarcity. In this work, we describe a two-step strategy to efficiently and conveniently prepare 6-deoxy-L-psicose from L-rhamnose. In the first reaction step, the isomerization of L-rhamnose (6-deoxy-L-mannose) to L-rhamnulose (6-deoxy-L-fructose) catalyzed by L-rhamnose isomerase (RhaI), and the epimerization of L-rhamnulose to 6-deoxy-L-psicose catalyzed by D-tagatose 3-epimerase (DTE) were coupled with selective phosphorylation reaction by fructose kinase from human (HK), which selectively phosphorylate 6-deoxy-L-psicose at C-1 position. 6-deoxy-L-psicose 1-phosphate was purified by a silver nitrate precipitation method. In the second step, the phosphate group of the 6-deoxy-L-sorbose 1-phosphate was hydrolyzed with acid phosphatase (AphA) to produce 6-deoxy-L-psicose in 81% yield with respect to L-rhamnose. This method allows that the 6-deoxy-L-psicose to be obtained from readily available starting materials with high purity and without having to undergo isomer separation.
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Yuan Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100. People's Republic of China
| | | | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303. USA
| |
Collapse
|
6
|
d-Allose Attenuates Overexpression of Inflammatory Cytokines after Cerebral Ischemia/Reperfusion Injury in Gerbil. J Stroke Cerebrovasc Dis 2016; 25:2184-8. [PMID: 27342700 DOI: 10.1016/j.jstrokecerebrovasdis.2016.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The present study investigates the effects of d-allose, a rare sugar, on the inflammatory response after transient forebrain ischemia in the gerbil and whether it reduces oxidative stress (8-hydroxyl-2'-deoxyguanosine levels) and behavioral deficits. METHODS Transient forebrain ischemia was induced by occlusion of the bilateral common carotid arteries for 5 minutes. d-Allose was intraperitoneally injected immediately after ischemia (400 mg/kg). Inflammatory cytokines and oxidative damage in the hippocampus and behavioral deficits were examined 3 days after ischemia. RESULTS d-Allose administration reduced ischemia-induced cytokine production, oxidative stress, and behavioral deficits (motor and memory related). CONCLUSIONS The present results suggest that d-allose reduces brain injury after transient global ischemia by suppressing inflammation as well as by inhibiting oxidative stress.
Collapse
|
7
|
Huang T, Gao D, Hei Y, Zhang X, Chen X, Fei Z. D-allose protects the blood brain barrier through PPARγ-mediated anti-inflammatory pathway in the mice model of ischemia reperfusion injury. Brain Res 2016; 1642:478-486. [PMID: 27103568 DOI: 10.1016/j.brainres.2016.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Our early experiments confirmed that D-allose was closely involved in the blood brain barrier (BBB) protection from ischemia reperfusion (IR) injury, but the regulatory mechanism is not fully defined. In this study, we aimed to investigate the role of D-allose in the protection of BBB integrity and the relevant mechanisms involved in the mice model of middle cerebral artery occlusion and reperfusion (MCAO/Rep). D-allose was intravenously injected via a tail vein (0.2mg/g and 0.4mg/g, 1h before ischemia), GW9662 was intraperitoneal injected to the mice (4mg/kg) before inducing ischemia 24h. Pretreatment with D-allose ameliorated the neurological deficits, infarct volume and brain edema in brains of MCAO/Rep mice. D-allose inhibited cell apoptosis in the mice model of MCAO/Rep. We observed that D-allose remarkably decreased BBB permeability and prevented the reduction of ZO-1, Occludin and Claudin-5 in mice brains with MCAO/Rep injury. D-allose also repressed the levels of TNF-α, NF-κB, interleukin (IL)-1β and IL-8 in inflammatory responses. The increases of intercellular adhesion molecular-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and CD11b/CD18 were significantly inhibited by D-allose during the MCAO/Rep injury. And D-allose decreased the L-selectin and P-selectin levels after MCAO/Rep. Moreover, D-allose induced up-regulation of peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of TNF-α and NF-κB after MCAO/Rep, which were abolished by utilization of GW9662. In conclusion, we provided evidences that D-allose may has therapeutic potential against brain IR injury through attenuating BBB disruption and the inflammatory response via PPARγ-dependent regulation of NF-κB.
Collapse
Affiliation(s)
- Tao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.15 Changle West Road, Xincheng District, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
8
|
Ueki M, Ueno M, Morishita J, Maekawa N. D-ribose ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. TOHOKU J EXP MED 2013; 229:195-201. [PMID: 23438786 DOI: 10.1620/tjem.229.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cisplatin is one of the most potent chemotherapeutic anticancer drugs, but it can produce side effects such as nephrotoxicity. Inflammatory cytokines, chemokines and adhesion molecules have important roles in the pathogenesis of cisplatin-induced nephrotoxicity. D-Ribose is a naturally occurring five-carbon monosaccharide that is found in all living cells, and has anti-inflammatory effects in renal ischemia/reperfusion injury. The purpose of this study was to determine the protective effects of D-ribose on cisplatin-induced nephrotoxicity. Forty-eight mice were randomly divided into four groups: control, cisplatin, cisplatin + ribose, and ribose. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without D-ribose (400 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). At 72 h after cisplatin injection, we measured serum and renal tumor necrosis factor (TNF)-α and renal monocyte chemoattractant protein (MCP)-1 concentrations by enzyme-linked immunosorbent assay; renal expression of intercellular adhesion molecule (ICAM)-1 mRNA by real-time polymerase chain reaction; serum blood urea nitrogen and creatinine; and histological changes. Cisplatin increased serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Treatment with D-ribose attenuated the increase in serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis were attenuated by D-ribose treatment. This is believed to be the first time that protective effects of D-ribose on cisplatin-induced nephrotoxicity via inhibition of inflammatory reactions have been investigated. Thus, D-ribose may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Masaaki Ueki
- Department of Anesthesia, Nishiwaki Municipal Hospital, Nishiwaki, Hyogo, Japan.
| | | | | | | |
Collapse
|
9
|
Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol 2012; 27:1067-78. [PMID: 22012033 PMCID: PMC3362708 DOI: 10.1007/s00467-011-2024-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) leads to high rates of morbidity and independently increases mortality risk. Therapy for AKI is likely limited by the inability to reliably diagnose AKI in its early stages, and, importantly, small changes in serum creatinine may be associated with poor outcomes and severe AKI. Whereas AKI biomarker research seeks to identify more sensitive and timely indices of kidney dysfunction, AKI lacks physical signs and symptoms to trigger biomarker assessment in at-risk patients, limiting biomarker efficacy. Accurate models of AKI prediction are unavailable. Severity of illness (SOI) scoring systems and organ dysfunction scores (OD), which stratify patients by prediction of mortality risk, are AKI reactive, not predictive. Kidney-specific severity scores do not account for AKI progression, and stratification models of AKI severity are not predictive of AKI. Thus, there is a need for a kidney scoring system that can help predict the development of AKI. This review highlights the concept of renal angina, a combination of patient risk factors and subtle AKI, as a methodology to predict AKI progression. Fulfillment of renal angina criteria will improve the efficiency of AKI prediction by biomarkers, in turn expediting early therapy and assisting in creation of AKI-predictive scoring systems.
Collapse
|
10
|
Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 2011; 91:229-35. [DOI: 10.1007/s00253-011-3370-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
11
|
The anti-inflammatory effects of d-allose contribute to attenuation of cerebral ischemia–reperfusion injury. Med Hypotheses 2011; 76:911-3. [DOI: 10.1016/j.mehy.2011.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/20/2011] [Accepted: 03/03/2011] [Indexed: 11/23/2022]
|