1
|
Zhu E, Hiramatsu K, Inoue T, Mori K, Tashiro K, Fujita K, Karashima T, Takashita H, Okutsu K, Yoshizaki Y, Takamine K, Tamaki H, Futagami T. Deficiency of β-xylosidase activity in Aspergillus luchuensis mut. kawachii IFO 4308. Biosci Biotechnol Biochem 2024; 88:816-823. [PMID: 38621718 DOI: 10.1093/bbb/zbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
In this study, we investigated a deleterious mutation in the β-xylosidase gene, xylA (AkxylA), in Aspergillus luchuensis mut. kawachii IFO 4308 by constructing an AkxylA disruptant and complementation strains of AkxylA and xylA derived from A. luchuensis RIB2604 (AlxylA), which does not harbor the mutation in xylA. Only the AlxylA complementation strain exhibited significantly higher growth and substantial β-xylosidase activity in medium containing xylan, accompanied by an increase in XylA expression. This resulted in lower xylobiose and higher xylose concentrations in the mash of barley shochu. These findings suggest that the mutation in xylA affects xylose levels during the fermentation process. Because the mutation in xylA was identified not only in the genome of strain IFO 4308 but also the genomes of other industrial strains of A. luchuensis and A. luchuensis mut. kawachii, these findings enhance our understanding of the genetic factors that affect the fermentation characteristics.
Collapse
Affiliation(s)
- Enkang Zhu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- School of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Taiga Inoue
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kiyotaka Fujita
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Yumiko Yoshizaki
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Kazunori Takamine
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Hisanori Tamaki
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| | - Taiki Futagami
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Korimoto, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, Japan
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Korimoto, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Rodríguez-Sanz A, Fuciños C, Soares C, Torrado AM, Lima N, Rúa ML. A comprehensive method for the sequential separation of extracellular xylanases and β-xylosidases/arabinofuranosidases from a new Fusarium species. Int J Biol Macromol 2024; 272:132722. [PMID: 38821304 DOI: 10.1016/j.ijbiomac.2024.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare β-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate β-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest β-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and β-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified β-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/β-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.
Collapse
Affiliation(s)
- Andrea Rodríguez-Sanz
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Clara Fuciños
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Célia Soares
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana M Torrado
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - María L Rúa
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain.
| |
Collapse
|
3
|
Li X, Dilokpimol A, Kabel MA, de Vries RP. Fungal xylanolytic enzymes: Diversity and applications. BIORESOURCE TECHNOLOGY 2022; 344:126290. [PMID: 34748977 DOI: 10.1016/j.biortech.2021.126290] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
As important polysaccharide degraders in nature, fungi can diversify their extensive set of carbohydrate-active enzymes to survive in ecological habitats of various composition. Among these enzymes, xylanolytic ones can efficiently and sustainably degrade xylans into (fermentable) monosaccharides to produce valuable chemicals or fuels from, for example relevant for upgrading agro-food industrial side streams. Moreover, xylanolytic enzymes are being used in various industrial applications beyond biomass saccharification, e.g. food, animal feed, biofuel, pulp and paper. As a reference for researchers working in related areas, this review summarized the current knowledge on substrate specificity of xylanolytic enzymes from different families of the Carbohydrate-Active enZyme database. Additionally, the diversity of enzyme sets in fungi were discussed by comparing the number of genes encoding xylanolytic enzymes in selected fungal genomes. Finally, to support bio-economy, the current applications of fungal xylanolytic enzymes in industry were reviewed.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
4
|
Galanopoulou AP, Haimala I, Georgiadou DN, Mamma D, Hatzinikolaou DG. Characterization of the Highly Efficient Acid-Stable Xylanase and β-Xylosidase System from the Fungus Byssochlamys spectabilis ATHUM 8891 ( Paecilomyces variotii ATHUM 8891). J Fungi (Basel) 2021; 7:jof7060430. [PMID: 34072339 PMCID: PMC8228849 DOI: 10.3390/jof7060430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Two novel xylanolytic enzymes, a xylanase and a β-xylosidase, were simultaneously isolated and characterized from the extracellular medium of Byssochlamys spectabilis ATHUM 8891 (anamorph Paecilomyces variotii ATHUM 8891), grown on Brewer’s Spent Grain as a sole carbon source. They represent the first pair of characterized xylanolytic enzymes of the genus Byssochlamys and the first extensively characterized xylanolytic enzymes of the family Thermoascaceae. In contrast to other xylanolytic enzymes isolated from the same family, both enzymes are characterized by exceptional thermostability and stability at low pH values, in addition to activity optima at temperatures around 65 °C and acidic pH values. Applying nano-LC-ESI-MS/MS analysis of the purified SDS-PAGE bands, we sequenced fragments of both proteins. Based on sequence-comparison methods, both proteins appeared conserved within the genus Byssochlamys. Xylanase was classified within Glycoside Hydrolase family 11 (GH 11), while β-xylosidase in Glycoside Hydrolase family 3 (GH 3). The two enzymes showed a synergistic action against xylan by rapidly transforming almost 40% of birchwood xylan to xylose. The biochemical profile of both enzymes renders them an efficient set of biocatalysts for the hydrolysis of xylan in demanding biorefinery applications.
Collapse
Affiliation(s)
- Anastasia P. Galanopoulou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Irini Haimala
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Daphne N. Georgiadou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
- Correspondence: (D.M.); (D.G.H.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.G.); (I.H.); (D.N.G.)
- Correspondence: (D.M.); (D.G.H.)
| |
Collapse
|
5
|
Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, Zhang Y, Ge X, Lu F. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem 2019; 295:653-661. [DOI: 10.1016/j.foodchem.2019.05.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
6
|
Penicillium purpurogenum produces a novel, acidic, GH3 beta-xylosidase: Heterologous expression and characterization of the enzyme. Carbohydr Res 2019; 482:107738. [PMID: 31280019 DOI: 10.1016/j.carres.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/13/2023]
Abstract
Xylan, a component of plant cell walls, is composed of a backbone of β-1,4-linked xylopyranosyl units with a number of substituents. The complete degradation of xylan requires the action of several enzymes, among them β-xylosidase. The fungus Penicillium purpurogenum secretes a number of enzymes participating in the degradation of xylan. In this study, a β-xylosidase from this fungus was expressed in Pichia pastoris, and characterized. This enzyme (Xyl2) is a member of glycoside hydrolase family 3; it consists of a sequence of 792 residues including a signal peptide of 20 residues, with a theoretical molecular mass for the mature protein of 84.2 KDa and an isoelectric point of 5.07. The highest identity with a characterized fungal enzyme, is with a β-xylosidase from Aspergillus oryzae (70%). The optimal activity of Xyl2 is found at pH 2.0 and 28 °C. The enzyme is most stable at pH 2.0 and conserves 40% of activity at 42 °C (after 1h incubation). The kinetic parameters for p-nitrophenyl-β-d-xylopyranoside are: KM 0.53 mM, kcat 1*107 s-1 and kcat/KM 1.9*1010 M-1 s-1. The enzyme is about 10% active on p-nitrophenyl-α-l-arabinofuranoside. Xyl2 exhibits a high hydrolytic activity on xylooligosaccharides; it liberates xylose from beechwood and birchwood glucuronoxylan and it acts synergistically with endoxylanases in the degradation of xylan. Its low pH optimum make this enzyme particularly useful in potential applications requiring a low pH such as increasing the flavor of wine.
Collapse
|
7
|
Carvalho DRD, Carli S, Meleiro LP, Rosa JC, Oliveira AHCD, Jorge JA, Furriel RPM. A halotolerant bifunctional β-xylosidase/α-l-arabinofuranosidase from Colletotrichum graminicola: Purification and biochemical characterization. Int J Biol Macromol 2018; 114:741-750. [DOI: 10.1016/j.ijbiomac.2018.03.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/09/2023]
|
8
|
Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol 2018; 186:712-730. [DOI: 10.1007/s12010-018-2761-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
|
9
|
Cintra LC, Fernandes AG, Oliveira ICMD, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, Faria FPD. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol 2017; 105:262-271. [DOI: 10.1016/j.ijbiomac.2017.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
|
10
|
Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11. Int J Biol Macromol 2017; 109:1260-1269. [PMID: 29174354 DOI: 10.1016/j.ijbiomac.2017.11.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022]
Abstract
β-Xylosidase plays an important role in xylan degradation by relieving the end product inhibition of endo-xylanase caused by xylo-oligosaccharides. β-Xylosidase has a wide range of applications in food, feed, paper and pulp, pharmaceutical industries and in bioconversion of lignocellulosic biomass. Hence, in the present study focused on purification, biochemical characterization and partial sequencing of purified β-xylosidase from xylanolytic strain Aspergillus niger ADH-11. Acetone precipitation followed by GPC using Sephacryl S-200 yielded 20.59-fold purified β-xylosidase with 58.30% recovery. SDS-PAGE analysis of purified β-xylosidase relieved a monomeric subunit with a molecular weight 120.48kDa. Kinetic parameters of purified β-xylosidase viz Km, Vmax, Kcat and catalytic efficiency were assessed. Purified β-xylosidase was additionally active on p-nitrophenyl-β-d-glucopyranoside substrate also. Moreover, peptide mass fingerprinting analysis support our biochemical studies and showed that the purified protein is a novel β-xylosidase with β-glucosidase activity and belongs to the bi-functional GH3 superfamily. Besides, tolerance of purified β-xylosidase towards glucose and xylose was also assessed.
Collapse
|
11
|
Inoue K, Takahashi Y, Obara K, Murakami S. Localization of functional β-xylosidases, encoded by the same single gene, xlsIV (xlnD), from Aspergillus niger E-1. Biosci Biotechnol Biochem 2017; 81:621-624. [PMID: 28077024 DOI: 10.1080/09168451.2016.1268040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cell wall-associated β-xylosidase was isolated from Aspergillus niger E-1 and identified as XlsIV, corresponding to the extracellular enzyme XlnD reported previously. xlsIV was transcribed only in the early cultivation period. Cell wall-associated enzyme activity gradually decreased, but extracellular activity increased as the strain grew. These results indicate that XlsIV (XlnD) was secreted into culture after localizing at cell wall.
Collapse
Affiliation(s)
- Kotomi Inoue
- a Department of Agricultural Chemistry , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Yui Takahashi
- a Department of Agricultural Chemistry , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Ken Obara
- a Department of Agricultural Chemistry , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Shuichiro Murakami
- a Department of Agricultural Chemistry , School of Agriculture, Meiji University , Kawasaki , Japan
| |
Collapse
|
12
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
13
|
Mhetras N, Liddell S, Gokhale D. Purification and characterization of an extracellular β-xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an unexplored yeast. AMB Express 2016; 6:73. [PMID: 27637943 PMCID: PMC5023640 DOI: 10.1186/s13568-016-0243-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
This paper reports on the production of β-xylosidase from an unexplored yeast, Pseudozyma hubeinsis. The expression of this enzyme could be induced by beech wood xylan when the yeast was grown at 27 °C. The enzyme was purified to homogeneity as a glycoprotein with 23 % glycosylation. The purification protocol involved ammonium sulphate precipitation, QAE-Sephadex A50 ion exchange chromatography and sephacryl-200 column chromatography which resulted in 8.3-fold purification with 53.12 % final recovery. The purified enzyme showed prominent single band on SDS-PAGE. It is a monomeric protein of 110 kDa molecular weight confirmed by SDS-PAGE followed by MALDI-TOF mass spectrometry (112.3 kDa). The enzyme was optimally active at 60 °C and pH 4.5 and stable at pH range (4–9) and at 50 °C for 4 h. Chemical modification studies revealed that active site of the purified enzyme comprised of carboxyl, tyrosine and tryptophan residues. The carboxyl residue is involved in catalysis and tryptophan residue is solely involved in substrate binding. The best match from the search of the NCBInr database was with gi|808364558 glycoside hydrolase of Pseudozyma hubeiensis SY62 with 26 % sequence coverage confirming that it is a glycoside hydrolase/beta-glucosidase. From the search of customized SWISSPROT database, it was revealed that SWISSPROT does not contain any entries that are similar to the purified enzyme.
Collapse
|
14
|
Mustafa G, Kousar S, Rajoka MI, Jamil A. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases. AMB Express 2016; 6:30. [PMID: 27080227 PMCID: PMC5471287 DOI: 10.1186/s13568-016-0202-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023] Open
Abstract
Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications.
Collapse
|
15
|
Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii. Appl Biochem Biotechnol 2016; 182:349-366. [DOI: 10.1007/s12010-016-2331-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
16
|
Nieto-Domínguez M, Prieto A, Fernández de Toro B, Cañada FJ, Barriuso J, Armstrong Z, Withers SG, de Eugenio LI, Martínez MJ. Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-D-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae. Microb Cell Fact 2016; 15:171. [PMID: 27716291 PMCID: PMC5050587 DOI: 10.1186/s12934-016-0568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/23/2016] [Indexed: 02/02/2023] Open
Abstract
Background Glycosides are compounds displaying crucial biological roles and plenty of applications. Traditionally, these molecules have been chemically obtained, but its efficient production is limited by the lack of regio- and stereo-selectivity of the chemical synthesis. As an interesting alternative, glycosidases are able to catalyze the formation of glycosides in a process considered green and highly selective. In this study, we report the expression and characterization of a fungal β-xylosidase in Pichia pastoris. The transglycosylation potential of the enzyme was evaluated and its applicability in the synthesis of a selective anti-proliferative compound demonstrated. Results The β-xylosidase BxTW1 from the ascomycete fungus Talaromyces amestolkiae was cloned and expressed in Pichia pastoris GS115. The yeast secreted 8 U/mL of β-xylosidase that was purified by a single step of cation-exchange chromatography. rBxTW1 in its active form is an N-glycosylated dimer of about 200 kDa. The enzyme was biochemically characterized displaying a Km and kcat against p-nitrophenyl-β-d-xylopyranoside of 0.20 mM and 69.3 s−1 respectively, and its maximal activity was achieved at pH 3 and 60 °C. The glycan component of rBxTW1 was also analyzed in order to interpret the observed loss of stability and maximum velocity when compared with the native enzyme. A rapid screening of aglycone specificity was performed, revealing a remarkable high number of potential transxylosylation acceptors for rBxTW1. Based on this analysis, the enzyme was successfully tested in the synthesis of 2-(6-hydroxynaphthyl) β-d-xylopyranoside, a well-known selective anti-proliferative compound, enzymatically obtained for the first time. The application of response surface methodology, following a Box-Behnken design, enhanced this production by eightfold, fitting the reaction conditions into a multiparametric model. The naphthyl derivative was purified and its identity confirmed by NMR. Conclusions A β-xylosidase from T. amestolkiae was produced in P. pastoris and purified. The final yields were much higher than those attained for the native protein, although some loss of stability and maximum velocity was observed. rBxTW1 displayed remarkable acceptor versatility in transxylosylation, catalyzing the synthesis of a selective antiproliferative compound, 2-(6-hydroxynaphthyl) β-d-xylopyranoside. These results evidence the interest of rBxTW1 for transxylosylation of relevant products with biotechnological interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco Javier Cañada
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jorge Barriuso
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Zach Armstrong
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Stephen G Withers
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Laura I de Eugenio
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - María Jesús Martínez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Xylanase and β-xylosidase from Penicillium janczewskii : Purification, characterization and hydrolysis of substrates. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Choengpanya K, Arthornthurasuk S, Wattana-amorn P, Huang WT, Plengmuankhae W, Li YK, Kongsaeree PT. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28. Protein Expr Purif 2015; 115:132-40. [DOI: 10.1016/j.pep.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
19
|
Gramany V, Khan FI, Govender A, Bisetty K, Singh S, Permaul K. Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. J Biomol Struct Dyn 2015; 34:1681-92. [DOI: 10.1080/07391102.2015.1089186] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vashni Gramany
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Faez Iqbal Khan
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Algasan Govender
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| |
Collapse
|
20
|
Novel pH-Stable Glycoside Hydrolase Family 3 β-Xylosidase from Talaromyces amestolkiae: an Enzyme Displaying Regioselective Transxylosylation. Appl Environ Microbiol 2015; 81:6380-92. [PMID: 26150469 DOI: 10.1128/aem.01744-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
This paper reports on a novel β-xylosidase from the hemicellulolytic fungus Talaromyces amestolkiae. The expression of this enzyme, called BxTW1, could be induced by beechwood xylan and was purified as a glycoprotein from culture supernatants. We characterized the gene encoding this enzyme as an intronless gene belonging to the glycoside hydrolase gene family 3 (GH3). BxTW1 exhibited transxylosylation activity in a regioselective way. This feature would allow the synthesis of oligosaccharides or other compounds not available from natural sources, such as alkyl glycosides displaying antimicrobial or surfactant properties. Regioselective transxylosylation, an uncommon combination, makes the synthesis reproducible, which is desirable for its potential industrial application. BxTW1 showed high pH stability and Cu(2+) tolerance. The enzyme displayed a pI of 7.6, a molecular mass around 200 kDa in its active dimeric form, and Km and Vmax values of 0.17 mM and 52.0 U/mg, respectively, using commercial p-nitrophenyl-β-d-xylopyranoside as the substrate. The catalytic efficiencies for the hydrolysis of xylooligosaccharides were remarkably high, making it suitable for different applications in food and bioenergy industries.
Collapse
|
21
|
Xia W, Shi P, Xu X, Qian L, Cui Y, Xia M, Yao B. High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose. PLoS One 2015; 10:e0117578. [PMID: 25658646 PMCID: PMC4320052 DOI: 10.1371/journal.pone.0117578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/28/2014] [Indexed: 11/18/2022] Open
Abstract
A novel β-xylosidase gene of glycosyl hydrolase (GH) family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0-9.0 (incubated at 37°C for 1 h) and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Lichun Qian
- College of Animal Science, Zhejiang University, Hangzhou 310058, P. R. China
- * E-mail: (BY); (LQ)
| | - Ying Cui
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Mengjuan Xia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- * E-mail: (BY); (LQ)
| |
Collapse
|
22
|
Kirikyali N, Wood J, Connerton IF. Characterisation of a recombinant β-xylosidase (xylA) from Aspergillus oryzae expressed in Pichia pastoris. AMB Express 2014; 4:68. [PMID: 25401069 PMCID: PMC4230903 DOI: 10.1186/s13568-014-0068-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/07/2014] [Indexed: 12/04/2022] Open
Abstract
β-xylosidases catalyse the hydrolysis of short chain xylooligosaccharides from their non-reducing ends into xylose. In this study we report the heterologous expression of Aspergillus oryzae β-xylosidase (XylA) in Pichia pastoris under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The recombinant enzyme was optimally active at 55°C and pH 4.5 with Km and Vmax values of 1.0 mM and 250 μmol min−1 mg−1 respectively against 4-nitrophenyl β-xylopyranoside. Xylose was a competitive inhibitor with a Ki of 2.72 mM, whereas fructose was an uncompetitive inhibitor reducing substrate binding affinity (Km) and conversion efficiency (Vmax). The enzyme was characterised to be an exo-cutting enzyme releasing xylose from the non-reducing ends of β-1,4 linked xylooligosaccharides (X2, X3 and X4). Catalytic conversion of X2, X3 and X4 decreased (Vmax and kcat) with increasing chain length.
Collapse
|
23
|
Thongpoo P, Srisomsap C, Chokchaichamnankit D, Kitpreechavanich V, Svasti J, Kongsaeree PT. Purification and characterization of three β-glycosidases exhibiting high glucose tolerance from Aspergillus niger ASKU28. Biosci Biotechnol Biochem 2014; 78:1167-76. [PMID: 25229852 DOI: 10.1080/09168451.2014.915727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Production and utilization of cellulosic ethanol has been limited, partly due to the difficulty in degradation of cellulosic feedstock. β-Glucosidases convert cellobiose to glucose in the final step of cellulose degradation, but they are inhibited by high concentrations of glucose. Thus, in this study, we have screened, isolated, and characterized three β-glycosidases exhibiting highly glucose-tolerant property from Aspergillus niger ASKU28, namely β-xylosidase (P1.1), β-glucosidase (P1.2), and glucan 1,3-β-glucosidase (P2). Results from kinetic analysis, inhibition study, and hydrolysis of oligosaccharide substrates supported the identification of these enzymes by both LC/MS/MS analysis and nucleotide sequences. Moreover, the highly efficient P1.2 performed better than the commercial β-glucosidase preparation in cellulose saccharification, suggesting its potential applications in the cellulosic ethanol industry. These results shed light on the nature of highly glucose-tolerant β-glucosidase activities in A. niger, whose kinetic properties and identities have not been completely determined in any prior investigations.
Collapse
Affiliation(s)
- Preeyanuch Thongpoo
- a Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School , Kasetsart University , Bangkok , Thailand
| | | | | | | | | | | |
Collapse
|
24
|
Kirikyali N, Connerton I. Heterologous expression and kinetic characterisation of Neurospora crassa β-xylosidase in Pichia pastoris. Enzyme Microb Technol 2014; 57:63-8. [DOI: 10.1016/j.enzmictec.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
25
|
Ravanal MC, Alegría-Arcos M, Gonzalez-Nilo FD, Eyzaguirre J. Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference. Arch Biochem Biophys 2013; 540:117-24. [DOI: 10.1016/j.abb.2013.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
|
26
|
Gottschalk LMF, de Sousa Paredes R, Teixeira RSS, da Silva AS, da Silva Bon EP. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Braz J Microbiol 2013; 44:569-76. [PMID: 24294256 PMCID: PMC3833162 DOI: 10.1590/s1517-83822013000200037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 07/23/2012] [Indexed: 11/22/2022] Open
Abstract
The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.
Collapse
|
27
|
Ohta K, Fujii S, Higashida C. Characterization of a glycoside hydrolase family-51 α-l-arabinofuranosidase gene from Aureobasidium pullulans ATCC 20524 and its encoded product. J Biosci Bioeng 2013; 116:287-92. [DOI: 10.1016/j.jbiosc.2013.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
|
28
|
Cheng HL, Zhao RY, Chen TJ, Yu WB, Wang F, Cheng KD, Zhu P. Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues. Mol Cell Proteomics 2013; 12:2236-48. [PMID: 23665501 PMCID: PMC3734582 DOI: 10.1074/mcp.m113.030619] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 04/30/2013] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel, a natural antitumor compound, is produced by yew trees at very low concentrations, causing a worldwide shortage of this important anticancer medicine. These plants also produce significant amounts of 7-β-xylosyl-10-deacetyltaxol, which can be bio-converted into 10-deacetyltaxol for the semi-synthesis of paclitaxel. Some microorganisms can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol, but the bioconversion yield needs to be drastically improved for industrial applications. In addition, the related β-xylosidases of these organisms have not yet been defined. We set out to discover an efficient enzyme for 10-deacetyltaxol production. By combining the de novo sequencing of β-xylosidase isolated from Lentinula edodes with RT-PCR and the rapid amplification of cDNA ends, we cloned two cDNA variants, Lxyl-p1-1 and Lxyl-p1-2, which were previously unknown at the gene and protein levels. Both variants encode a specific bifunctional β-d-xylosidase/β-d-glucosidase with an identical ORF length of 2412 bp (97% identity). The enzymes were characterized, and their 3.6-kb genomic DNAs (G-Lxyl-p1-1, G-Lxyl-p1-2), each harboring 18 introns, were also obtained. Putative substrate binding motifs, the catalytic nucleophile, the catalytic acid/base, and potential N-glycosylation sites of the enzymes were predicted. Kinetic analysis of both enzymes showed kcat/Km of up to 1.07 s(-1)mm(-1) against 7-β-xylosyl-10-deacetyltaxol. Importantly, at substrate concentrations of up to 10 mg/ml (oversaturated), the engineered yeast could still robustly convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol with a conversion rate of over 85% and a highest yield of 8.42 mg/ml within 24 h, which is much higher than those reported previously. Therefore, our discovery might lead to significant progress in the development of new 7-β-xylosyl-10-deacetyltaxol-converting enzymes for more efficient use of 7-β-xylosyltaxanes to semi-synthesize paclitaxel and its analogues. This work also might lead to further studies on how these enzymes act on 7-β-xylosyltaxanes and contribute to the growing database of glycoside hydrolases.
Collapse
Affiliation(s)
- Hai-Li Cheng
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui-Yu Zhao
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tian-Jiao Chen
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Bo Yu
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fen Wang
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ke-Di Cheng
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- From the ‡State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Kundu A, Ray RR. Production of intracellular β-xylosidase from the submerged fermentation of citrus wastes by Penicillium janthinellum MTCC 10889. 3 Biotech 2013; 3:241-246. [PMID: 28324373 PMCID: PMC3646107 DOI: 10.1007/s13205-012-0091-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/31/2012] [Indexed: 11/30/2022] Open
Abstract
Production of intracellular β-xylosidase was studied in cultures of Penicillium janthinellum grown on citrus fruit waste
supplemented cultivation media. Both dried orange peel and sweet lime peel could
induce the production of this enzyme. The working strain showed a pronounced optimum
pH and temperature for β-xylosidase production at 6.0 and 27 °C, respectively. The
enzyme production was found to remain stable for a long period of 120 h. Orange peel
and sweet lime peel showed different responses in the presence of various nitrogen
sources, probably due to their differences in hemicellulosic contents. This could be
further confirmed by the difference in enzyme production after pretreatment with
acid and alkali.
Collapse
Affiliation(s)
- Aditi Kundu
- Microbiology Research Laboratory, Post Graduate Department of Zoology, Molecular Biology and Genetics, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Rina Rani Ray
- Microbiology Research Laboratory, Post Graduate Department of Zoology, Molecular Biology and Genetics, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
30
|
Benassi VM, Silva TMD, Pessela BC, Guisan JM, Mateo C, Lima MS, Jorge JA, Polizeli MDLT. Immobilization and biochemical properties of a β-xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Wongwisansri S, Promdonkoy P, Matetaviparee P, Roongsawang N, Eurwilaichitr L, Tanapongpipat S. High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production. BIORESOURCE TECHNOLOGY 2013; 132:410-413. [PMID: 23265813 DOI: 10.1016/j.biortech.2012.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/26/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
A gene coding for thermotolerant β-xylosidase from Aspergillus sp. BCC125 was characterized. The recombinant enzyme was expressed in methylotrophic yeast Pichia pastoris KM71 and especially high yield of secreted enzyme was obtained. β-xylosidase possessed high enzyme efficiency (Kcat/Km=198.8mM(-1)s(-1)) toward pNP-β-D-xylopyranoside (pNPβX) with optimal temperature and pH for activity of 60°C and pH 4.0-5.0, respectively. The identified β-xylosidase showed clear synergism with previously identified xylanase for hydrolysis of xylan in vitro as well as simultaneous saccharification and fermentation process (SSF) in vivo with Pichia stipitis.
Collapse
Affiliation(s)
- Sriwan Wongwisansri
- Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand.
| | | | | | | | | | | |
Collapse
|
32
|
Juturu V, Wu JC. Heterologous expression of β-xylosidase gene from Paecilomyces thermophila in Pichia pastoris. World J Microbiol Biotechnol 2012; 29:249-55. [PMID: 23014842 DOI: 10.1007/s11274-012-1176-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/18/2012] [Indexed: 11/26/2022]
Abstract
β-xylosidase from thermophilic fungi Paecilomyces thermophila was functionally expressed in Pichia pastoris with a his tag in the C-terminal under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 0.22 mg l(-1). Its molecular mass was estimated to be 52.3 kDa based on the SDS-PAGE analysis, which is 1.3 times higher than the predicted 39.31 kDa from its amino acid compositions, although no potential N- or O- glycosylation sites were predicted from its amino acid sequence. This is presumed to be caused by some unpredictable posttranslational modifications based on mass spectrum analysis of the recombinant protein. The enzyme was most active at 60 °C and pH 7. It showed not only a β-xylosidase activity with a K(m) of 8 mM and a V(max) of 54 μmol min(-1) mg(-1) for hydrolysis of p-nitrophenyl β-D-xylopyranoside but also an arabinofuranosidase activity (6.2 U mg(-1)) on p-nitrophenyl arabinofuranoside.
Collapse
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | |
Collapse
|
33
|
Chen Z, Jia H, Yang Y, Yan Q, Jiang Z, Teng C. Secretory expression of a β-xylosidase gene fromThermomyces lanuginosusinEscherichia coliand characterization of its recombinant enzyme. Lett Appl Microbiol 2012; 55:330-7. [DOI: 10.1111/j.1472-765x.2012.03299.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Michelin M, Peixoto-Nogueira SC, Silva TM, Jorge JA, Terenzi HF, Teixeira JA, Polizeli MDLTM. A novel xylan degrading β-D-xylosidase: purification and biochemical characterization. World J Microbiol Biotechnol 2012; 28:3179-86. [PMID: 22828792 DOI: 10.1007/s11274-012-1128-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular β-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. β-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 °C and 3.0-5.5, respectively. β-xylosidase was stable in acidic pH (3.0-6.0) and 70 °C for 1 h. The enzyme was activated by 5 mM MnCl₂ (28 %) and MgCl₂ (20 %) salts. The β-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-β-D-xylopyranoside, exhibiting apparent K(m) and V(max) values of 0.66 mM and 39 U (mg protein)⁻¹ respectively, and to a lesser extent p-nitrophenyl-β-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel β-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by β-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.
Collapse
Affiliation(s)
- Michele Michelin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Knob A, Carmona EC. Purification and properties of an acid β-xylosidase from Penicillium sclerotiorum. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Dilokpimol A, Nakai H, Gotfredsen CH, Appeldoorn M, Baumann MJ, Nakai N, Schols HA, Hachem MA, Svensson B. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two β-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Carbohydr Res 2011; 346:421-9. [DOI: 10.1016/j.carres.2010.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 11/25/2022]
|
37
|
Teng C, Jia H, Yan Q, Zhou P, Jiang Z. High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. BIORESOURCE TECHNOLOGY 2011; 102:1822-1830. [PMID: 20970996 DOI: 10.1016/j.biortech.2010.09.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/11/2010] [Accepted: 09/14/2010] [Indexed: 05/30/2023]
Abstract
A novel β-xylosidase gene (designated as PtXyl43) from thermophilic fungus Paecilomycesthermophila was cloned and extracellularly expressed in Escherichia coli. PtXyl43 belonging to glycoside hydrolase (GH) family 43 has an open reading frame of 1017 bp, encoding 338 amino acids without a predicted signal peptide. No introns were found by comparison of the PtXyl43 genomic DNA and cDNA sequences. The recombinant β-xylosidase (PtXyl43) was secreted into the culture medium in E. coli with a yield of 98.0 U mL(-1) in shake-flask cultures. PtXyl43 was purified 1.2-fold to homogeneity with a recovery yield of 61.5% from the cell-free culture supernatant. It appeared as a single protein band on SDS-PAGE with a molecular mass of approx 52.3 kDa. The enzyme exhibited an optimal activity at 55 °C and pH 7.0, respectively. This is the first report on the cloning and expression of a GH family 43 β-xylosidase gene from thermophilic fungi.
Collapse
Affiliation(s)
- Chao Teng
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
38
|
Amaro-Reyes A, García-Almendárez BE, Vázquez-Mandujano DG, Amaya-Llano S, Castaño-Tostado E, Guevara-González RG, Loera O, Regalado C. Homologue expression of a β-xylosidase from native Aspergillus niger. J Ind Microbiol Biotechnol 2010; 38:1311-9. [DOI: 10.1007/s10295-010-0912-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
39
|
Ohta K, Fujimoto H, Fujii S, Wakiyama M. Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. J Biosci Bioeng 2010; 110:152-7. [DOI: 10.1016/j.jbiosc.2010.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
40
|
Luang S, Hrmova M, Ketudat Cairns JR. High-level expression of barley beta-D-glucan exohydrolase HvExoI from a codon-optimized cDNA in Pichia pastoris. Protein Expr Purif 2010; 73:90-8. [PMID: 20406687 DOI: 10.1016/j.pep.2010.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
The native beta-d-glucan exohydrolase isoenzyme ExoI from barley seedlings, designated HvExoI, was the first GH3 glycoside hydrolase, for which a crystal structure was determined. A precise understanding of relationships between structure and function in this enzyme has been gained by structural and enzymatic studies. To allow testing of hypotheses gained from these studies, an efficient system for expression of HvExoI in Pichia pastoris was developed using a codon-optimized cDNA. Protein expression at a temperature of 20 degrees C yielded a recombinant enzyme, designated rHvExoI, which had molecular masses of 70-110 kDa due to heavy glycosylation at Asn221, Asn498 and Asn600, the three sites of N-glycosylation in native HvExoI. Most of the N-linked carbohydrate could be removed from rHvExoI, resulting in N-deglycosylated rHvExoI with a substantially decreased molecular mass of 67 kDa. rHvExoI was able to hydrolyse barley (1,3;1,4)-beta-D-glucan, laminarin and lichenans. The catalytic efficiency value k(cat)/K(M) of rHvExoI with barley (1,3;1,4)-beta-D-glucan was similar to that reported for native HvExoI. Further, laminaribiose, cellobiose and gentiobiose were formed through transglycosylation reactions with 4-nitrophenyl beta-D-glucoside and barley (1,3;1,4)-beta-D-glucan. Overall, the biochemical properties of rHvExoI were similar to those reported for native HvExoI, although differences were seen in thermostabilities and hydrolytic rates of certain beta-linked glucosides.
Collapse
Affiliation(s)
- Sukanya Luang
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | |
Collapse
|
41
|
Wakiyama M, Yoshihara K, Hayashi S, Ohta K. An extracellular endo-1,4-β-xylanase from Aspergillus japonicus: Purification, properties, and characterization of the encoding gene. J Biosci Bioeng 2010; 109:227-9. [DOI: 10.1016/j.jbiosc.2009.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/29/2022]
|
42
|
Characterization of Aspergillus oryzae glycoside hydrolase family 43 β-xylosidase expressed in Escherichia coli. J Biosci Bioeng 2010; 109:115-7. [DOI: 10.1016/j.jbiosc.2009.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/16/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022]
|
43
|
|
44
|
Knob A, Terrasan CRF, Carmona EC. β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0190-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Semenova MV, Drachevskaya MI, Sinitsyna OA, Gusakov AV, Sinitsyn AP. Isolation and properties of extracellular β-xylosidases from fungi Aspergillus japonicus and Trichoderma reesei. BIOCHEMISTRY (MOSCOW) 2009; 74:1002-8. [DOI: 10.1134/s0006297909090089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|