1
|
Shen Q, Zhang K, Voroney P, Meng L, Xu J, Brookes P. Biodiesel Co-Product enhances microbial stability and beneficial microbial communities along a gradient of soil water content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159204. [PMID: 36198351 DOI: 10.1016/j.scitotenv.2022.159204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel Co-Product (BCP) is a complex carbonaceous liquid formed during the commercial production of biodiesel. Previously, BCP was shown to decrease nitrogen (N) leaching from the soil, but the effects of BCP on the diversity, composition, and structure of soil microbial communities are not well understood. Here, we applied 1.5 mg BCP-C to acidic soil (pH 3.5) at a range of different water contents (from 40 % to 100 % water holding capacity) to investigate the interactions between BCP and increasing water holding capacity on the diversity, composition, and interactions of soil microbial communities. Distance-based multivariate linear model (DistLM) and non-metric multidimensional scaling (NMDS) analyses showed that BCP caused larger changes in fungal than bacterial communities, while soil water content had a greater effect on bacterial communities relative to fungal communities. Co-occurrence network analyses indicated that BCP amendment produced more robust and complex bacterial networks and more stable fungal ones. BCP significantly increased the OTU numbers of beneficial microbes (e.g., Trichoderma spp.) in all water contents, with fewer OTU numbers of putative pathogenetic species (Fusarium spp. and Aspergillus spp.). These findings indicate that BCP addition may be conducive to the health and stability of soil ecosystems.
Collapse
Affiliation(s)
- Qunli Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Paul Voroney
- Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lei Meng
- School of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Philip Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Aoki M, Miyashita Y, Tran PT, Okuno Y, Watari T, Yamaguchi T. Enrichment of marine manganese-oxidizing microorganisms using polycaprolactone as a solid organic substrate. Biotechnol Lett 2021; 43:813-823. [PMID: 33496920 DOI: 10.1007/s10529-021-03088-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Heterotrophic manganese (Mn)-oxidizing microorganisms responsible for biogenic manganese oxide (Bio-MnOx) production are fastidious. Their enrichment is not easily accomplished by merely adding a soluble organic substrate to non-sterile mixed cultures. The objective of this study was to evaluate polycaprolactone (PCL), an aliphatic polyester, as an effective solid organic substrate for the enrichment of marine Mn-oxidizing microorganisms. RESULTS We successfully obtained marine microbial enrichment with the capacity for dissolved Mn removal and MnOx production using PCL as a solid organic substrate. The removal of dissolved Mn by the Mn-oxidizing enrichment culture followed first-order kinetics with a rate constant of 0.014 h-1. 16S rRNA gene amplicon sequencing analysis revealed that the Mn-oxidizing enrichment culture was highly dominated by operational taxonomic units related to the bacterial phyla Cyanobacteria, Planctomycetes, and Proteobacteria. CONCLUSIONS Our data demonstrate that PCL can serve as a potential substrate to enrich Mn-oxidizing microorganisms with the ability to produce MnOx under marine conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan.
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan
| | - P Thao Tran
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan.,Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Chen Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. BIORESOURCE TECHNOLOGY 2020; 298:122444. [PMID: 31784254 DOI: 10.1016/j.biortech.2019.122444] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
To maximize energy recovery, carbon capture followed by shortcut nitrogen removal is becoming the most promising route in biological wastewater treatment. As the intermediate of microbial denitrification, nitrite could serve as a substrate for anammox bacteria, while N2O is a combustion promoter that can increase 37% energy release from CH4 than O2. Therefore, the important advances in partial denitrification (PD) that produces nitrite or N2O as the main product using inorganic or organic electron donors were critically reviewed. Specifically, the enrichment strategies of PD microorganisms were obtained by analyzing the selection pressures, metabolism, physiology, and microbiology of these microorganisms. Furthermore, some prospective and promising processes integrating PD microorganisms and the bottlenecks of current applications were discussed. The obtained knowledge would provide new insights into the upgrading of current WWTPs involving commitment to achieve nitrogen removal from wastewaters more economically and environmentally friendly.
Collapse
Affiliation(s)
- Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Yamada T, Tsuji H, Daimon H. Nitrate removal performance and diversity of active denitrifying bacteria in denitrification reactors using poly(L-lactic acid) with enhanced chemical hydrolyzability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36236-36247. [PMID: 31713134 DOI: 10.1007/s11356-019-06722-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Poly(L-lactic acid) (PLLA) can be used as an external electron donor in denitrification reactors to treat drinking water, aquaculture water, and industrial wastewater with an imbalanced carbon/nitrogen ratio. However, for PLLA to function in these applications, its chemical hydrolyzability requires improvement. Although the adjustment of the crystallinity (Xc) is effective in improving the hydrolyzability of PLLA, the condition for the Xc of PLLA, in which a sufficient amount of lactic acid is released for denitrification, must be clarified. Therefore, this study investigated the effective Xc range and optimal PLLA content as an electron donor for continuous nitrate removal in denitrification reactors. This study also explored the abundance, succession, and diversity of active denitrifying bacteria in denitrification reactors. The nitrate removal activity of activated sludge using the highly crystalline PLLA (Xc = 39.4%) was 1.8 mg NO3- -N g MLSS-1 h-1, which is 2.4 times higher than that using the nearly amorphous PLLA (Xc = 0.9%). During the 57 days of operation, the denitrification reactor with 3% (w/v) highly crystalline PLLA continued to completely remove nitrate, with a maximum nitrate removal activity of 22.8 mg NO3- -N g MLSS-1 h-1. The 16S rRNA amplicon sequencing and clone library analyses are using transcripts of two nitrite reductase genes, encoding cytochrome cd1 nitrite reductase, and copper-containing nitrite reductase revealed that bacteria belonging to the families Comamonadaceae, Rhodocyclaceae, and Alcaligenaceae were active denitrifying bacteria in the denitrification reactor using PLLA.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| | - Hideto Tsuji
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Hiroyuki Daimon
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
- Core for Global Network Innovation in Technology Education, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
5
|
Maxwell BM, Birgand F, Schipper LA, Christianson LE, Tian S, Helmers MJ, Williams DJ, Chescheir GM, Youssef MA. Drying-Rewetting Cycles Affect Nitrate Removal Rates in Woodchip Bioreactors. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:93-101. [PMID: 30640347 DOI: 10.2134/jeq2018.05.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Woodchip bioreactors are widely used to control nitrogen export from agriculture using denitrification. There is abundant evidence that drying-rewetting (DRW) cycles can promote enhanced metabolic rates in soils. A 287-d experiment investigated the effects of weekly DRW cycles on nitrate (NO) removal in woodchip columns in the laboratory receiving constant flow of nitrated water. Columns were exposed to continuous saturation (SAT) or to weekly, 8-h drying-rewetting (8 h of aerobiosis followed by saturation) cycles (DRW). Nitrate concentrations were measured at the column outlets every 2 h using novel multiplexed sampling methods coupled to spectrophotometric analysis. Drying-rewetting columns showed greater export of total and dissolved organic carbon and increased NO removal rates. Nitrate removal rates in DRW columns increased by up to 80%, relative to SAT columns, although DRW removal rates decreased quickly within 3 d after rewetting. Increased NO removal in DRW columns continued even after 39 DRW cycles, with ∼33% higher total NO mass removed over each weekly DRW cycle. Data collected in this experiment provide strong evidence that DRW cycles can dramatically improve NO removal in woodchip bioreactors, with carbon availability being a likely driver of improved efficiency. These results have implications for hydraulic management of woodchip bioreactors and other denitrification practices.
Collapse
|
6
|
Xu Z, Dai X, Chai X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:195-204. [PMID: 29627542 DOI: 10.1016/j.scitotenv.2018.03.348] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Solid and liquid organic substances as carbon sources for denitrification process were deeply explored. In this study, the effect of three carbon sources, referred to as poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic acid) (PHBV/PLA) polymer, glucose and CH3COONa, on denitrification performance, microbial community and functional genes were investigated. It was found that maximum denitrification rates of 0.37, 0.46 and 0.39gN/(L·d) were achieved in PHBV/PLA, glucose and CH3COONa supported denitrification systems, respectively. Meanwhile, Illumina MiSeq sequencing revealed that three carbon sources led to different microbial community structures. It can be seen that Brevinema/Thauera/Dechloromonas, Tolumonas/Thauera/Dechloromonas, Thauera dominated in the PHBV/PLA, glucose and CH3COONa supported denitrification systems, respectively. Transcriptome-based analysis further indicated that the glucose supported denitrification system showed the highest FPKM values (the fragments per kilobase per million mapped reads) of the genes participating in the dissimilatory nitrate reduction process, corresponding to the greatest effluent NH4+-N concentration. A better knowledge of effect of different carbon sources on denitrification process will be significant for nitrate removal in practice.
Collapse
Affiliation(s)
- Zhongshuo Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoli Chai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Jeszeová L, Puškárová A, Bučková M, Kraková L, Grivalský T, Danko M, Mosnáčková K, Chmela Š, Pangallo D. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World J Microbiol Biotechnol 2018; 34:101. [DOI: 10.1007/s11274-018-2483-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/16/2018] [Indexed: 12/01/2022]
|
8
|
Irizar A, Amorim MJB, Fuller KP, Zeugolis DI, Scott-Fordsmand JJ. Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:51. [PMID: 29713809 DOI: 10.1007/s10856-018-6063-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Poly-ε-caprolactone (PCL) based medical devices are increasingly produced and thus, their presence in the environment is likely to increase. The present study analysed the biodegradation of PCL electro-spun scaffolds (alone) and PCL electro-spun scaffolds coated with human recombinant (hR) collagen and Bovine Achilles tendon (BAT) collagen in sewage sludge and in soil. Additionally, an eco-toxicological test with the model organism Enchytraeus crypticus was performed to assess environmental hazard of the produced materials in soils. The electro-spun scaffolds were exposed to activated sludge and three different soils for various time periods (0-7-14-21-28-56-180 days); subsequently the degradation was determined by weight loss and microscopical analysis. Although no toxicity occurred in terms of Enchytraeus crypticus reproduction, our data indicate that biodegradation was dependent on the coating of the material and exposure condition. Further, only partial PCL decomposition was possible in sewage treatment plants. Collectively, these data indicate that electro-spun PCL scaffolds are transferred to amended soils.
Collapse
Affiliation(s)
- A Irizar
- Department of Bioscience, Aarhus University, Vejlsoevej 25, DK-8600, Silkeborg, Denmark
| | - M J B Amorim
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - K P Fuller
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - J J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsoevej 25, DK-8600, Silkeborg, Denmark.
| |
Collapse
|
9
|
Xu Z, Song L, Dai X, Chai X. PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: Denitrification performance, microbial community structure evolution and key denitrifying bacteria. CHEMOSPHERE 2018; 197:96-104. [PMID: 29334654 DOI: 10.1016/j.chemosphere.2018.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Biodegradable polymer supported denitrification (BPD) system shows good denitrification performance for the wastewater with low nitrate concentrations. In this study, a BPD system using Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polymer as carbon source was developed to treat the wastewater with high nitrate concentrations. The denitrification performance, utilization ratio of PHBV polymers, and microbial community structure evolution and key denitrifying bacteria were comprehensively studied. Results indicated that an average nitrate removal efficiency of 99% could be achieved with an influent NO3--N concentration of 100 mg L-1 and a hydraulic retention time (HRT) of 7.25 h. Mass balance model predicted that 80% of the PHBV polymers were consumed by denitrifying bacteria, close to 72% consumption in real condition, suggesting the model might be useful for PHBV polymers management in BPD system. Further, the bacterial community structures varied along the bioreactor profile, which closely linked to the concentration profiles of nitrate and ammonia. Metatranscriptomic analysis identified the key denitrifying bacteria as Comamonas, Acidovorax and Dechloromonas. The PHBV supported denitrification system developed in this study shows potential for removal of high concentration of nitrate from wastewater.
Collapse
Affiliation(s)
- Zhongshuo Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (CAS), Chongqing, 400714, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoli Chai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate- co -3-hydroxyvalerate) blend as the carbon source and biofilm carrier. J Biosci Bioeng 2017; 123:606-612. [DOI: 10.1016/j.jbiosc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
|
12
|
Zhu SM, Deng YL, Ruan YJ, Guo XS, Shi MM, Shen JZ. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. BIORESOURCE TECHNOLOGY 2015; 192:603-610. [PMID: 26093254 DOI: 10.1016/j.biortech.2015.06.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Nitrate removal is essential for the sustainable operation of recirculating aquaculture system (RAS). This study evaluated the heterotrophic denitrification using poly(butylene succinate) as carbon source and biofilm carrier for RAS wastewater treatment. The effect of varied operational conditions (influent type, salinity and nitrate loading) on reactor performance and microbial community was investigated. The high denitrification rates of 0.53 ± 0.19 kg NO3(-)-N m(-3) d(-1) (salinity, 0‰) and 0.66 ± 0.12 kg NO3(-)-Nm(-3) d(-1) (salinity, 25‰) were achieved, and nitrite concentration was maintained below 1mg/L. In addition, the existence of salinity exhibited more stable nitrate removal efficiency, but caused adverse effects such as excessive effluent dissolved organic carbon (DOC) and dissimilation nitrate reduce to ammonia (DNRA) activity. The degradation of PBS was further confirmed by SEM and FTIR analysis. Illumina sequencing revealed the abundance and species changes of functional denitrification and degradation microflora which might be the primary cause of varied reactor performance.
Collapse
Affiliation(s)
- Song-Ming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ya-Le Deng
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yun-Jie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xi-Shan Guo
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ming-Ming Shi
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Zheng Shen
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Acharya KP, Shilpkar P, Shah MC, Chellapandi P. Biodegradation of Insecticide Monocrotophos by Bacillus subtilis KPA-1, Isolated from Agriculture Soils. Appl Biochem Biotechnol 2014; 175:1789-804. [DOI: 10.1007/s12010-014-1401-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/12/2014] [Indexed: 11/28/2022]
|
14
|
Scherson YD, Woo SG, Criddle CS. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5612-9. [PMID: 24780056 DOI: 10.1021/es501009j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.
Collapse
Affiliation(s)
- Yaniv D Scherson
- Stanford University , Stanford, California 94305-4020, United States
| | | | | |
Collapse
|
15
|
Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment. Bioprocess Biosyst Eng 2013; 37:1105-14. [DOI: 10.1007/s00449-013-1082-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/17/2013] [Indexed: 11/26/2022]
|
16
|
Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier. Appl Microbiol Biotechnol 2012; 97:2725-33. [DOI: 10.1007/s00253-012-4110-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/12/2012] [Accepted: 04/15/2012] [Indexed: 02/03/2023]
|
17
|
Okabe S, Oshiki M, Kamagata Y, Yamaguchi N, Toyofuku M, Yawata Y, Tashiro Y, Nomura N, Ohta H, Ohkuma M, Hiraishi A, Minamisawa K. A great leap forward in microbial ecology. Microbes Environ 2011; 25:230-40. [PMID: 21576878 DOI: 10.1264/jsme2.me10178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was founded, and its official journal "Microbes and Environments (M&E)" was launched, in 1985. Thus, the past 25 years have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the biodegradation of hazardous organic compounds.
Collapse
Affiliation(s)
- Satoshi Okabe
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl Microbiol Biotechnol 2011; 91:1659-75. [DOI: 10.1007/s00253-011-3354-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
19
|
Takahashi M, Yamada T, Tanno M, Tsuji H, Hiraishi A. Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly ( L-lactic acid) as the Solid Substrate. Microbes Environ 2011; 26:212-9. [DOI: 10.1264/jsme2.me11107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Masaaki Takahashi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Takeshi Yamada
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Motohiro Tanno
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Hideto Tsuji
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| |
Collapse
|
20
|
Piñar G, Jimenez-Lopez C, Sterflinger K, Ettenauer J, Jroundi F, Fernandez-Vivas A, Gonzalez-Muñoz MT. Bacterial community dynamics during the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of ornamental limestone. MICROBIAL ECOLOGY 2010; 60:15-28. [PMID: 20393845 PMCID: PMC2917555 DOI: 10.1007/s00248-010-9661-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/17/2010] [Indexed: 05/07/2023]
Abstract
In this study, we investigated under laboratory conditions the bacterial communities inhabiting quarry and decayed ornamental carbonate stones before and after the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of the stones. The dynamics of the community structure and the prevalence of the inoculated bacterium, M. xanthus, were monitored during the time course of the consolidation treatment (30 days). For this purpose, we selected a molecular strategy combining fingerprinting by denaturing gradient gel electrophoresis (DGGE) with the screening of eubacterial 16S rDNA clone libraries by DGGE and sequencing. Quantification of the inoculated strain was performed by quantitative real-time PCR (qPCR) using M. xanthus-specific primers designed in this work. Results derived from DGGE and sequencing analysis showed that, irrespective of the origin of the stone,the same carbonatogenic microorganisms were activated by the application of a M. xanthus culture. Those microorganisms were Pseudomonas sp., Bacillus sp., and Brevibacillus sp. The monitoring of M. xanthus in the culture media of treated stones during the time course experiment showed disparate results depending on the applied technique. By culture-dependent methods, the detection of this bacterium was only possible in the first day of the treatment, showing the limitation of these conventional techniques. By PCR-DGGE analysis, M. xanthus was detected during the first 3-6 days of the experiment. At this time, the population of this bacterium in the culture media varied between 108-106 cells ml-1, as showed by qPCR analyses. Thereafter, DGGE analyses showed to be not suitable for the detection of M. xanthus in a mixed culture. Nevertheless, qPCR analysis using specific primers for M. xanthus showed to bea more sensitive technique for the detection of thisbacterium, revealing a population of 104 cells ml-1 in the culture media of both treated stones at the end of the consolidation treatment. The molecular strategy used in this study is proposed as an effective monitoring system to evaluate the impact of the application of a bacterially induced carbonate mineralization as restoration/conservation treatment for ornamental stones.
Collapse
Affiliation(s)
- Guadalupe Piñar
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bai Y, Sun Q, Zhao C, Wen D, Tang X. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation 2008; 19:915-26. [PMID: 18437507 DOI: 10.1007/s10532-008-9193-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
Abstract
A bacterial strain using pyridine as sole carbon, nitrogen and energy source was isolated from the activated sludge of a coking wastewater treatment plant. By means of morphologic observation, physiological characteristics study and 16S rRNA gene sequence analysis, the strain was identified as the species of Paracoccus. The strain could degrade 2,614 mg l(-1) of pyridine completely within 49.5 h. Experiment designed to track the metabolic pathway showed that pyridine ring was cleaved between the C2 and N, then the mineralization of the carbonous intermediate products may comply with the early proposed pathway and the transformation of the nitrogen may proceed on a new pathway of simultaneous heterotrophic nitrification and aerobic denitrification. During the degradation, NH3-N occurred and increased along with the decrease of pyridine in the solution; but the total nitrogen decreased steadily and equaled to the quantity of NH3-N when pyridine was degraded completely. Adding glucose into the medium as the extra carbon source would expedite the biodegradation of pyridine and the transformation of the nitrogen. The fragments of nirS gene and nosZ gene were amplified which implied that the BW001 had the potential abilities to reduce NO2- to NO and/or N2O, and then to N2.
Collapse
Affiliation(s)
- Yaohui Bai
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Okubo Y, Hiraishi A. Population Dynamics and Acetate Utilization Kinetics of Two Different Species of Phototrophic Purple Nonsulfur Bacteria in a Continuous Co-culture System. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yoko Okubo
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
23
|
Khan ST, Horiba Y, Takahashi N, Hiraishi A. Activity and Community Composition of Denitrifying Bacteria in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Using Solid-phase Denitrification Processes. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.20] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shams Tabrez Khan
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Yoko Horiba
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Naoto Takahashi
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
24
|
Jia KZ, Cui ZL, He J, Guo P, Li SP. Isolation and characterization of a denitrifying monocrotophos-degradingParacoccussp. M-1. FEMS Microbiol Lett 2006; 263:155-62. [PMID: 16978350 DOI: 10.1111/j.1574-6968.2006.00389.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A bacterium strain, which is capable of degrading monocrotophos, was isolated from sludge collected from the bottom of a wastewater treatment system of a chemical factory, and named M-1. On the basis of the results of the cellular morphology, physiological and chemotaxonomic characteristics and phylogenetic similarity of 16S rDNA gene sequences, the strain was identified as a Paracoccus sp. The ability of the strain to mineralize monocrotophos was investigated under different culture conditions. Other organophosphorus insecticides and amide herbicides were also degraded by M-1. The key enzyme (s) involved in the initial biodegradation of monocrotophos in M-1 was shown to be a constitutively expressed cytosolic protein. The addition of M-1 (10(6) CFU g(-1)) to fluvo-aquic soil and a high-sand soil containing monocrotophos (50 mg kg(-1)) resulted in a higher degradation rate than that obtained from noninoculated soil. This microbial culture has great potential utility for the bioremediation of wastewater or soil contaminated with organophosphorus pesticides and amide herbicides.
Collapse
Affiliation(s)
- Kai-zhi Jia
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
25
|
Bertin L, Colao MC, Ruzzi M, Marchetti L, Fava F. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor. Microb Cell Fact 2006; 5:16. [PMID: 16595023 PMCID: PMC1501037 DOI: 10.1186/1475-2859-5-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. RESULTS The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl(-1)day(-1) of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl(-1)day(-1) of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. CONCLUSION The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs.
Collapse
Affiliation(s)
- Lorenzo Bertin
- DICASM, Faculty of Engineering, University of Bologna, viale Risorgimento 2, I-40136 Bologna, Italy
| | - Maria Chiara Colao
- DABAC, University of Tuscia, Via C. de Lellis, snc. I-01100 Viterbo, Italy
| | - Maurizio Ruzzi
- DABAC, University of Tuscia, Via C. de Lellis, snc. I-01100 Viterbo, Italy
| | - Leonardo Marchetti
- DICASM, Faculty of Engineering, University of Bologna, viale Risorgimento 2, I-40136 Bologna, Italy
| | - Fabio Fava
- DICASM, Faculty of Engineering, University of Bologna, viale Risorgimento 2, I-40136 Bologna, Italy
| |
Collapse
|