1
|
Ahmadi F, Lackner M. Recent findings in methanotrophs: genetics, molecular ecology, and biopotential. Appl Microbiol Biotechnol 2024; 108:60. [PMID: 38183483 DOI: 10.1007/s00253-023-12978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/08/2023] [Accepted: 10/01/2023] [Indexed: 01/08/2024]
Abstract
The potential consequences for mankind could be disastrous due to global warming, which arises from an increase in the average temperature on Earth. The elevation in temperature primarily stems from the escalation in the concentration of greenhouse gases (GHG) such as CO2, CH4, and N2O within the atmosphere. Among these gases, methane (CH4) is particularly significant in driving alterations to the worldwide climate. Methanotrophic bacteria possess the distinctive ability to employ methane as both as source of carbon and energy. These bacteria show great potential as exceptional biocatalysts in advancing C1 bioconversion technology. The present review describes recent findings in methanotrophs including aerobic and anaerobic methanotroph bacteria, phenotypic characteristics, biotechnological potential, their physiology, ecology, and native multi-carbon utilizing pathways, and their molecular biology. The existing understanding of methanogenesis and methanotrophy in soil, as well as anaerobic methane oxidation and methanotrophy in temperate and extreme environments, is also covered in this discussion. New types of methanogens and communities of methanotrophic bacteria have been identified from various ecosystems and thoroughly examined for a range of biotechnological uses. Grasping the processes of methanogenesis and methanotrophy holds significant importance in the development of innovative agricultural techniques and industrial procedures that contribute to a more favorable equilibrium of GHG. This current review centers on the diversity of emerging methanogen and methanotroph species and their effects on the environment. By amalgamating advanced genetic analysis with ecological insights, this study pioneers a holistic approach to unraveling the biopotential of methanotrophs, offering unprecedented avenues for biotechnological applications. KEY POINTS: • The physiology of methanotrophic bacteria is fundamentally determined. • Native multi-carbon utilizing pathways in methanotrophic bacteria are summarized. • The genes responsible for encoding methane monooxygenase are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | |
Collapse
|
2
|
Chen SC, Musat F, Richnow HH, Krüger M. Microbial diversity and oil biodegradation potential of northern Barents Sea sediments. J Environ Sci (China) 2024; 146:283-297. [PMID: 38969457 DOI: 10.1016/j.jes.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 07/07/2024]
Abstract
The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655, Hannover, Germany
| |
Collapse
|
3
|
Toppings N, Marshall M, Smirnova AV, Sheremet A, Pasala AS, Nwosu FC, Hepburn M, Lewis I, Coleman NV, Dunfield PF. Ethylene and epoxyethane metabolism in methanotrophic bacteria: comparative genomics and physiological studies using Methylohalobius crimeensis. Microb Genom 2024; 10:001306. [PMID: 39453690 PMCID: PMC11507031 DOI: 10.1099/mgen.0.001306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
The genome of the methanotrophic bacterium Methylohalobius crimeensis strain 10Ki contains a gene cluster that encodes a putative coenzyme-M (CoM)-dependent pathway for oxidation of epoxyethane, based on homology to genes in bacteria that grow on ethylene and propylene as sole substrates. An alkene monooxygenase was not detected in the M. crimeensis genome, so epoxyethane is likely produced from co-oxidation of ethylene by the methane monooxygenase enzyme. Similar gene clusters were detected in about 10% of available genomes from aerobic methanotrophic bacteria, primarily strains grown from rice paddies and other wetlands. The sparse occurrence of the gene cluster across distant phylogenetic groups suggests that multiple lateral gene transfer events have occurred in methanotrophs. In support of this, the gene cluster in M. crimeensis was detected within a large genomic island predicted using multiple methods. Growth studies, reverse transcription-quantitative PCR (RT-qPCR) and proteomics were performed to examine the expression of these genes in M. crimeensis. Growth and methane oxidation activity were completely inhibited by the addition of >0.5% (v/v) ethylene to the headspace of cultures, but at 0.125% and below, the inhibition was only partial, and ethylene was gradually oxidized. The etnE gene encoding epoxyalkane:CoM transferase was strongly upregulated in ethylene-exposed cells based on RT-qPCR. Proteomics analysis confirmed that EtnE and nine other proteins encoded in the same gene cluster became much more predominant after cells were exposed to ethylene. The results suggest that ethylene is strongly inhibitory to M. crimeensis, but the bacterium responds to ethylene exposure by expressing an epoxide oxidation system similar to that used by bacteria that grow on alkenes. In the obligate methanotroph M. crimeensis, this system does not facilitate growth on ethylene but likely alleviates toxicity of epoxyethane formed through ethylene co-oxidation by particulate methane monooxygenase. The presence of predicted epoxide detoxification systems in several other wetland methanotrophs suggests that co-oxidation of ambient ethylene presents a stress for methanotrophic bacteria in these environments and that epoxyethane removal has adaptive value.
Collapse
Affiliation(s)
- Noah Toppings
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Meghan Marshall
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Angela V. Smirnova
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Anthony S. Pasala
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Felix C. Nwosu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas V. Coleman
- School of Natural Sciences, Macquarie University, New South Wales, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Peter F. Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Arrington EC, Tarn J, Kittner HE, Kivenson V, Liu RM, Valentine DL. Methylated cycloalkanes fuel a novel genus in the Porticoccaceae family (Ca. Reddybacter gen. nov). Environ Microbiol 2023; 25:2958-2971. [PMID: 37599091 DOI: 10.1111/1462-2920.16474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.
Collapse
Affiliation(s)
- Eleanor C Arrington
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Jonathan Tarn
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Hailie E Kittner
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, USA
| | - Rachel M Liu
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - David L Valentine
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California-Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
5
|
Kuchi N, Khandeparker L, Anil AC. Response of the bacterial metagenome in port environments to changing environmental conditions. MARINE POLLUTION BULLETIN 2021; 172:112869. [PMID: 34425364 DOI: 10.1016/j.marpolbul.2021.112869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Port environments are highly dynamic and hotspots for marine bioinvasion. This study investigated the bacterial diversity at two geographically distant ports (Mangalore-marine port; and Haldia-riverine port) using next-generation sequencing during southwest monsoon and non-monsoon (Pre-monsoon) seasons. During southwest monsoon, at both marine and riverine ports, operational taxonomic units (OTUs) affiliated to bacteria reported to have hydrocarbon degrading ability were observed. Whereas during pre-monsoon, a significant increase in benthic bacterial OTUs was evident at the marine port, and the riverine port was characterized by oceanic species OTUs. Results suggest that the dynamics of prevalent environmental conditions, driven by seasons, led to emergence of ecologically relevant bacteria, many of which have been observed for the first time in Indian coastal waters. Their presence could be used as indicators of prevailing environmental conditions and nature of anthropogenic influence in port ecosystems. Unravelling functional roles of such ecologically relevant species is a way forward.
Collapse
Affiliation(s)
- Nishanth Kuchi
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | | | | |
Collapse
|
6
|
Horizontal Gene Transfer of Genes Encoding Copper-Containing Membrane-Bound Monooxygenase (CuMMO) and Soluble Di-iron Monooxygenase (SDIMO) in Ethane- and Propane-Oxidizing Rhodococcus Bacteria. Appl Environ Microbiol 2021; 87:e0022721. [PMID: 33962978 DOI: 10.1128/aem.00227-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.
Collapse
|
7
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME JOURNAL 2019; 14:714-726. [PMID: 31796935 DOI: 10.1038/s41396-019-0561-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/09/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022]
Abstract
Copper-containing membrane monooxygenases (CuMMOs) are encoded by xmoCAB(D) gene clusters and catalyze the oxidation of methane, ammonia, or some short-chain alkanes and alkenes. In a metagenome constructed from an oilsands tailings pond we detected an xmoCABD gene cluster with <59% derived protein sequence identity to genes from known bacteria. Stable isotope probing experiments combined with a specific xmoA qPCR assay demonstrated that the bacteria possessing these genes were incapable of methane assimilation, but did grow on ethane and propane. Single-cell amplified genomes (SAGs) from propane-enriched samples were screened with the specific PCR assay to identify bacteria possessing the target gene cluster. Multiple SAGs of Betaproteobacteria belonging to the genera Rhodoferax and Polaromonas possessed homologues of the metagenomic xmoCABD gene cluster. Unexpectedly, each of these two genera also possessed other xmoCABD paralogs, representing two additional lineages in phylogenetic analyses. Metabolic reconstructions from SAGs predicted that neither bacterium encoded enzymes with the potential to support catabolic methane or ammonia oxidation, but that both were capable of higher n-alkane degradation. The involvement of the encoded CuMMOs in alkane oxidation was further suggested by reverse transcription PCR analyses, which detected elevated transcription of the xmoA genes upon enrichment of water samples with propane as the sole energy source. Enrichments, isotope incorporation studies, genome reconstructions, and gene expression studies therefore all agreed that the unknown xmoCABD operons did not encode methane or ammonia monooxygenases, but rather n-alkane monooxygenases. This study broadens the known diversity of CuMMOs and identifies these enzymes in non-nitrifying Betaproteobacteria.
Collapse
|
9
|
Li J, Wang T, Yu S, Bai J, Qin S. Community characteristics and ecological roles of bacterial biofilms associated with various algal settlements on coastal reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109459. [PMID: 31479939 DOI: 10.1016/j.jenvman.2019.109459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms, which are a group of bacteria attaching to and ultimately forming communities on reefs, perform essential ecological functions in coastal ecosystems. Particularly, they may attract or repulse the settling down of opportunistic algae. However, this phenomenon and the interaction mechanism are not fully understood. This study investigated reefs from the Changdao coastal zone to determine the structures and functions of bacterial biofilms symbiosing with various algae using high-throughput sequencing analysis. The Shannon diversity index of microbiota with algal symbiosis reached 5.34, which was higher than that of microbiota wherein algae were absent (4.80). The beta diversity results for 11 samples revealed that there existed a separation between bacterial communities on reefs with and without attached algae, while communities with similar algae clustered together. The taxa mostly associated with algae-symbiotic microbiota are the Actinobacteria phylum, and the Flavobacteriia and Gammaproteobacteria classes. The Cyanobacteria phylum was not associated with algae-symbiotic microbiota. As revealed by functional analysis, the bacteria mostly involved in the metabolism of sulfur were represented by brown and red algae in the biofilm symbiosis. Bacteria related to the metabolism of certain trace elements were observed only in specific groups. Moreover, phototrophy-related bacteria were less abundant in samples coexisting with algae. This study established the link between bacterial biofilms and algal settlements on costal reefs, and revealed the possible holobiont relationship between them. This may provide new technical directions toward realizing algal cultivation and management during the construction of artificial reef ecosystems.
Collapse
Affiliation(s)
- Jialin Li
- Key Lab of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ting Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shuxian Yu
- Key Lab of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, Shandong, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Song Qin
- Key Lab of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
10
|
Suzuki T, Yazawa T, Morishita N, Maruyama A, Fuse H. Genetic and Physiological Characteristics of a Novel Marine Propylene-Assimilating Halieaceae Bacterium Isolated from Seawater and the Diversity of Its Alkene and Epoxide Metabolism Genes. Microbes Environ 2019; 34:33-42. [PMID: 30651420 PMCID: PMC6440738 DOI: 10.1264/jsme2.me18053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gram-negative marine propylene-assimilating bacterium, strain PE-TB08W, was isolated from surface seawater. A structural gene analysis using the 16S rRNA gene showed 96, 94, and 95% similarities to Halioglobus species, Haliea sp. ETY-M, and Haliea sp. ETY-NAG, respectively. A phylogenetic tree analysis showed that strain PE-TB08W belonged to the EG19 (Chromatocurvus)-Congregibacter-Haliea cluster within the Halieaceae (formerly Alteromonadaceae) family. Thus, strain PE-TB08W was characterized as a newly isolated Halieaceae bacterium; we suggest that this strain belongs to a new genus. Other bacterial characteristics were investigated and revealed that strain PE-TB08W assimilated propylene, n-butane, 1-butene, propanol, and 1-butanol (C3 and C4 gaseous hydrocarbons and primary alcohols), but not various other alcohols, including methane, ethane, ethylene, propane, and i-butane. The putative alkene monooxygenase (amo) gene in this strain was a soluble methane monooxygenase-type (sMMO) gene that is ubiquitous in alkene-assimilating bacteria for the initial oxidation of alkenes. In addition, two epoxide carboxylase systems containing epoxyalkane, the co-enzyme M transferase (EaCoMT) gene, and the co-enzyme M biosynthesis gene, were found in the upstream region of the sMMO gene cluster. Both of these genes were similar to those in Xanthobacter autotrophicus Py2 and were inductively expressed by propylene. These results have a significant impact on the genetic relationship between terrestrial and marine alkene-assimilating bacteria.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture
| | - Tomoki Yazawa
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Naonori Morishita
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Akihiko Maruyama
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroyuki Fuse
- College of Systems Engineering and Science, Shibaura Institute of Technology
| |
Collapse
|
11
|
Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary History of Copper Membrane Monooxygenases. Front Microbiol 2018; 9:2493. [PMID: 30420840 PMCID: PMC6215863 DOI: 10.3389/fmicb.2018.02493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022] Open
Abstract
Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.
Collapse
Affiliation(s)
- Roshan Khadka
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lindsay Clothier
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lin Wang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Martin G Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Richland, WA, United States.,State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Appl Environ Microbiol 2017; 84:AEM.01443-17. [PMID: 29054869 DOI: 10.1128/aem.01443-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
The difficulty involved in quantifying biogeochemically significant microbes in marine sediments limits our ability to assess interspecific interactions, population turnover times, and niches of uncultured taxa. We incubated surface sediments from Cape Lookout Bight, North Carolina, USA, anoxically at 21°C for 122 days. Sulfate decreased until day 68, after which methane increased, with hydrogen concentrations consistent with the predicted values of an electron donor exerting thermodynamic control. We measured turnover times using two relative quantification methods, quantitative PCR (qPCR) and the product of 16S gene read abundance and total cell abundance (FRAxC, which stands for "fraction of read abundance times cells"), to estimate the population turnover rates of uncultured clades. Most 16S rRNA reads were from deeply branching uncultured groups, and ∼98% of 16S rRNA genes did not abruptly shift in relative abundance when sulfate reduction gave way to methanogenesis. Uncultured Methanomicrobiales and Methanosarcinales increased at the onset of methanogenesis with population turnover times estimated from qPCR at 9.7 ± 3.9 and 12.6 ± 4.1 days, respectively. These were consistent with FRAxC turnover times of 9.4 ± 5.8 and 9.2 ± 3.5 days, respectively. Uncultured Syntrophaceae, which are possibly fermentative syntrophs of methanogens, and uncultured Kazan-3A-21 archaea also increased at the onset of methanogenesis, with FRAxC turnover times of 14.7 ± 6.9 and 10.6 ± 3.6 days. Kazan-3A-21 may therefore either perform methanogenesis or form a fermentative syntrophy with methanogens. Three genera of sulfate-reducing bacteria, Desulfovibrio, Desulfobacter, and Desulfobacterium, increased in the first 19 days before declining rapidly during sulfate reduction. We conclude that population turnover times on the order of days can be measured robustly in organic-rich marine sediment, and the transition from sulfate-reducing to methanogenic conditions stimulates growth only in a few clades directly involved in methanogenesis, rather than in the whole microbial community.IMPORTANCE Many microbes cannot be isolated in pure culture to determine their preferential growth conditions and predict their response to changing environmental conditions. We created a microcosm of marine sediments that allowed us to simulate a diagenetic profile using a temporal analog for depth. This allowed for the observation of the microbial community population dynamics caused by the natural shift from sulfate reduction to methanogenesis. Our research provides evidence for the population dynamics of uncultured microbes as well as the application of a novel method of turnover rate analysis for individual taxa within a mixed incubation, FRAxC, which stands for "fraction of read abundance times cells," which was verified by quantitative PCR. This allows for the calculation of population turnover times for microbes in a natural setting and the identification of uncultured clades involved in geochemical processes.
Collapse
|
13
|
Abstract
Cycloclasticus bacteria are ubiquitous in oil-rich
regions of the ocean and are known for their ability to degrade polycyclic
aromatic hydrocarbons (PAHs). In this study, we describe
Cycloclasticus that have established a symbiosis with
Bathymodiolus heckerae mussels and poecilosclerid sponges
from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of
Mexico. Genomic and transcriptomic analyses revealed that in contrast to all
known Cycloclasticus, the symbiotic
Cycloclasticus appeared to lack the genes needed for PAH
degradation. Instead, these symbionts use propane and other short-chain alkanes
such as ethane and butane as carbon and energy sources, thus expanding the
limited range of substrates known to power chemosynthetic symbioses. Analyses of
short-chain alkanes in the environment of the Campeche Knolls symbioses revealed
that these are present at high concentrations (in the µM to mM range).
Comparative genomic analyses revealed high similarities between the genes used
by the symbiotic Cycloclasticus to degrade short-chain alkanes
and those of free-living Cycloclasticus that bloomed during the
Deepwater Horizon (DWH) oil spill. Our results indicate that the metabolic
versatility of bacteria within the Cycloclasticus clade is
higher than previously assumed, and highlight the expanded role of these
keystone species in the degradation of marine hydrocarbons.
Collapse
|
14
|
Wang JG, Xia F, Zeleke J, Zou B, Rhee SK, Quan ZX. An improved protocol with a highly degenerate primer targeting copper-containing membrane-bound monooxygenase genes for community analysis of methane- and ammonia-oxidizing bacteria. FEMS Microbiol Ecol 2016; 93:fiw244. [PMID: 27940646 DOI: 10.1093/femsec/fiw244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/18/2016] [Accepted: 12/03/2016] [Indexed: 11/14/2022] Open
Abstract
The copper-containing membrane-bound monooxygenase (CuMMO) family comprises key enzymes for methane or ammonia oxidation: particulate methane monooxygenase (PMMO) and ammonia monooxygenase (AMO). To comprehensively amplify CuMMO genes, a two-step PCR strategy was developed using a newly designed tagged highly degenerate primer (THDP; degeneracy = 4608). Designated THDP-PCR, the technique consists of primary CuMMO gene-specific PCR followed by secondary PCR with a tag as a single primer. No significant bias in THDP-PCR amplification was found using various combinations of template mixtures of pmoA and amoA genes, which encode key subunits of the pMMO and AMO enzymes, respectively, from different microbes. THDP-PCR was successfully applied to nine different environmental samples and revealed relatively high contents of complete ammonia oxidation (Comammox)-related bacteria and a novel group of the CuMMO family. The levels of freshwater cluster methanotrophs obtained by THDP-PCR were much higher than those obtained by conventional methanotroph-specific PCR. The THDP-PCR strategy developed in this study can be extended to other functional gene-based community analyses, particularly when the target gene sequences lack regions of high consensus for primer design.
Collapse
Affiliation(s)
- Jian-Gong Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Xia
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jemaneh Zeleke
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Korea
| | - Zhe-Xue Quan
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Epoxyalkane:Coenzyme M Transferase Gene Diversity and Distribution in Groundwater Samples from Chlorinated-Ethene-Contaminated Sites. Appl Environ Microbiol 2016; 82:3269-3279. [PMID: 27016563 DOI: 10.1128/aem.00673-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epoxyalkane:coenzyme M transferase (EaCoMT) plays a critical role in the aerobic biodegradation and assimilation of alkenes, including ethene, propene, and the toxic chloroethene vinyl chloride (VC). To improve our understanding of the diversity and distribution of EaCoMT genes in the environment, novel EaCoMT-specific terminal-restriction fragment length polymorphism (T-RFLP) and nested-PCR methods were developed and applied to groundwater samples from six different contaminated sites. T-RFLP analysis revealed 192 different EaCoMT T-RFs. Using clone libraries, we retrieved 139 EaCoMT gene sequences from these samples. Phylogenetic analysis revealed that a majority of the sequences (78.4%) grouped with EaCoMT genes found in VC- and ethene-assimilating Mycobacterium strains and Nocardioides sp. strain JS614. The four most-abundant T-RFs were also matched with EaCoMT clone sequences related to Mycobacterium and Nocardioides strains. The remaining EaCoMT sequences clustered within two emergent EaCoMT gene subgroups represented by sequences found in propene-assimilating Gordonia rubripertincta strain B-276 and Xanthobacter autotrophicus strain Py2. EaCoMT gene abundance was positively correlated with VC and ethene concentrations at the sites studied. IMPORTANCE The EaCoMT gene plays a critical role in assimilation of short-chain alkenes, such as ethene, VC, and propene. An improved understanding of EaCoMT gene diversity and distribution is significant to the field of bioremediation in several ways. The expansion of the EaCoMT gene database and identification of incorrectly annotated EaCoMT genes currently in the database will facilitate improved design of environmental molecular diagnostic tools and high-throughput sequencing approaches for future bioremediation studies. Our results further suggest that potentially significant aerobic VC degraders in the environment are not well represented in pure culture. Future research should aim to isolate and characterize aerobic VC-degrading bacteria from these underrepresented groups.
Collapse
|
16
|
Gong J, Qing Y, Zou S, Fu R, Su L, Zhang X, Zhang Q. Protist-Bacteria Associations: Gammaproteobacteria and Alphaproteobacteria Are Prevalent as Digestion-Resistant Bacteria in Ciliated Protozoa. Front Microbiol 2016; 7:498. [PMID: 27148188 PMCID: PMC4826875 DOI: 10.3389/fmicb.2016.00498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022] Open
Abstract
Protistan bacterivory, a microbial process involving ingestion and digestion, is ecologically important in the microbial loop in aquatic and terrestrial ecosystems. While bacterial resistance to protistan ingestion has been relatively well understood, little is known about protistan digestion in which some ingested bacteria could not be digested in cells of major protistan grazers in the natural environment. Here we report the phylogenetic identities of digestion-resistant bacteria (DRB) that could survive starvation and form relatively stable associations with 11 marine and one freshwater ciliate species. Using clone library and sequencing of 16S rRNA genes, we found that the protistan predators could host a high diversity of DRB, most of which represented novel bacterial taxa that have not been cultivated. The localization inside host cells, quantity, and viability of these bacteria were checked using fluorescence in situ hybridization. The DRB were affiliated with Actinobacteria, Bacteroidetes, Firmicutes, Parcubacteria (OD1), Planctomycetes, and Proteobacteria, with Gammaproteobacteria and Alphaproteobacteria being the most frequently occurring classes. The dominance of Gamma- and Alphaproteobacteria corresponds well to a previous study of Global Ocean Sampling metagenomic data showing the widespread types of bacterial type VI and IV secretion systems (T6SS and T4SS) in these two taxa, suggesting a putatively significant role of secretion systems in promoting marine protist-bacteria associations. In the DRB assemblages, opportunistic bacteria such as Alteromonadaceae, Pseudoalteromonadaceae, and Vibrionaceae often presented with high proportions, indicating these bacteria could evade protistan grazing thus persist and accumulate in the community, which, however, contrasts with their well-known rarity in nature. This begs the question whether viral lysis is significant in killing these indigestible bacteria in microbial communities. Taken together, our study on the identity of DRB sheds new light on microbial interactions and generates further hypotheses including the potential importance of bacterial protein secretion systems in structuring bacterial community composition and functioning of “microbial black box” in aquatic environments.
Collapse
Affiliation(s)
- Jun Gong
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China; School of Life Science, South China Normal UniversityGuangzhou, China
| | - Yao Qing
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China; School of Life Science, South China Normal UniversityGuangzhou, China
| | - Songbao Zou
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China; School of Life Science, South China Normal UniversityGuangzhou, China
| | - Rao Fu
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Lei Su
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Xiaoli Zhang
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| | - Qianqian Zhang
- Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai, China
| |
Collapse
|
17
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
18
|
Pyrosequencing-Based Seasonal Observation of Prokaryotic Diversity in Pneumatophore-Associated Soil of Avicennia marina. Curr Microbiol 2015; 72:68-74. [DOI: 10.1007/s00284-015-0920-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/09/2015] [Indexed: 02/02/2023]
|
19
|
Coleman NV. Primers: Functional Genes for Aerobic Chlorinated Hydrocarbon-Degrading Microbes. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H, Siam R. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol 2014; 5:487. [PMID: 25295031 PMCID: PMC4172156 DOI: 10.3389/fmicb.2014.00487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023] Open
Abstract
The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt
| | - Mustafa Adel
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Amged Ouf
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Ahmed Sayed
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Intikhab Alam
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Feras F Lafi
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Hamza El-Dorry
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Rania Siam
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt ; YJ-Science and Technology Research Center, American University in Cairo Cairo, Egypt
| |
Collapse
|
21
|
Lawton TJ, Ham J, Sun T, Rosenzweig AC. Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily. Proteins 2014; 82:2263-7. [PMID: 24523098 DOI: 10.1002/prot.24535] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/09/2022]
Abstract
The ammonia monooxygenase (AMO)/particulate methane monooxygenase (pMMO) superfamily is a diverse group of membrane-bound enzymes of which only pMMO has been characterized on the molecular level. The pMMO active site is believed to reside in the soluble N-terminal region of the pmoB subunit. To understand the degree of structural conservation within this superfamily, the crystal structure of the corresponding domain of an archaeal amoB subunit from Nitrosocaldus yellowstonii has been determined to 1.8 Å resolution. The structure reveals a remarkable conservation of overall fold and copper binding site location as well as several notable differences that may have implications for function and stability.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois, 60208
| | | | | | | |
Collapse
|
22
|
Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME JOURNAL 2013; 7:2315-29. [PMID: 23902988 DOI: 10.1038/ismej.2013.129] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 02/01/2023]
Abstract
The Deepwater Horizon blowout released a massive amount of oil and gas into the deep ocean between April and July 2010, stimulating microbial blooms of petroleum-degrading bacteria. To understand the metabolic response of marine microorganisms, we sequenced ≈ 66 million community transcripts that revealed the identity of metabolically active microbes and their roles in petroleum consumption. Reads were assigned to reference genes from ≈ 2700 bacterial and archaeal taxa, but most assignments (39%) were to just six genomes representing predominantly methane- and petroleum-degrading Gammaproteobacteria. Specific pathways for the degradation of alkanes, aromatic compounds and methane emerged from the metatranscriptomes, with some transcripts assigned to methane monooxygenases representing highly divergent homologs that may degrade either methane or short alkanes. The microbial community in the plume was less taxonomically and functionally diverse than the unexposed community below the plume; this was due primarily to decreased species evenness resulting from Gammaproteobacteria blooms. Surprisingly, a number of taxa (related to SAR11, Nitrosopumilus and Bacteroides, among others) contributed equal numbers of transcripts per liter in both the unexposed and plume samples, suggesting that some groups were unaffected by the petroleum inputs and blooms of degrader taxa, and may be important for re-establishing the pre-spill microbial community structure.
Collapse
Affiliation(s)
- Adam R Rivers
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Li M, Jain S, Baker BJ, Taylor C, Dick GJ. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 2013; 16:60-71. [PMID: 23826624 DOI: 10.1111/1462-2920.12182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment.
Collapse
Affiliation(s)
- Meng Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
24
|
Tavormina PL, Ussler W, Steele JA, Connon SA, Klotz MG, Orphan VJ. Abundance and distribution of diverse membrane-bound monooxygenase (Cu-MMO) genes within the Costa Rica oxygen minimum zone. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:414-423. [PMID: 23754722 DOI: 10.1111/1758-2229.12025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 06/02/2023]
Abstract
Diverse copper-containing membrane-bound monooxygenase-encoding sequences (Cu-MMOs) have recently been described from the marine environment, suggesting widespread potential for oxidation of reduced substrates. Here, we used the well-defined oxygen and methane gradients associated with the Costa Rican oxygen minimum zone (OMZ) to gain insight into the physico-chemical parameters influencing the distribution and abundance of Cu-MMO-encoding marine microorganisms. Two Methylococcales-related Cu-MMO-encoding lineages, termed groups OPU1 and OPU3, demonstrated differences in their relative abundance, with both pmoA and candidate 16S rRNA genes correlating significantly with reduced environmental oxygen concentrations and depth. In contrast, a newly identified Cu-MMO-encoding lineage, Group C, was primarily associated with the oxygenated euphotic zone. An updated phylogenetic analysis including these sequences, a marine pxmABC gene cluster, ethylene-utilizing Cu-MMO-encoding lineages and previously reported planktonic Cu-MMOs (Groups W, X, Z and O) demonstrates the breadth of diversity of Cu-MMO-encoding marine microorganisms. Groups C and X affiliated phylogenetically with ethane- and ethylene-oxidizing Cu-MMOs, Groups W and O affiliated phylogenetically with the recently described Cu-MMO 'pXMO', and Group Z clustered with Cu-MMOs recovered from soils. Collectively, these data demonstrate widespread genetic potential in ocean waters for the oxidation of small, reduced molecules and advance our understanding of the microorganisms involved in methane cycling in the OMZ environment.
Collapse
Affiliation(s)
- Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:114-35. [PMID: 22842521 DOI: 10.1016/j.bbabio.2012.07.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential element of life that needs to be assimilated in its most reduced form, ammonium. On the other hand, nitrogen exists in a multitude of oxidation states and, consequently, nitrogen compounds (NCs) serve as electron donor and/or acceptors in many catabolic pathways including various forms of microbial respiration that contribute to the global biogeochemical nitrogen cycle. Some of these NCs are also known as reactive nitrogen species able to cause nitrosative stress because of their high redox reactivity. The best understood processes of the nitrogen cycle are denitrification and ammonification (both beginning with nitrate reduction to nitrite), nitrification (aerobic oxidation of ammonium and nitrite) and anaerobic ammonium oxidation (anammox). This review presents examples of the diverse architecture, either elucidated or anticipated, and the high degree of modularity of the corresponding respiratory electron transport processes found in Bacteria and Archaea, and relates these to their respective bioenergetic mechanisms of proton motive force generation. In contrast to the multiplicity of enzymes that catalyze NC transformations, the number of proteins or protein modules involved in connecting electron transport to and from these enzymes with the quinone/quinol pool is comparatively small. These quinone/quinol-reactive protein modules consist of cytochromes b and c and iron-sulfur proteins. Conclusions are drawn towards the evolutionary relationships of bioenergetic systems involved in NC transformation and deduced aspects of the evolution of the biogeochemical nitrogen cycle are presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|