1
|
Kamada S, Wakabayashi R, Naganuma T. Phylogenetic Revisit to a Review on Predatory Bacteria. Microorganisms 2023; 11:1673. [PMID: 37512846 PMCID: PMC10385382 DOI: 10.3390/microorganisms11071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory bacteria, along with the biology of their predatory behavior, have attracted interest in terms of their ecological significance and industrial applications, a trend that has been even more pronounced since the comprehensive review in 2016. This mini-review does not cover research trends, such as the role of outer membrane vesicles in myxobacterial predation, but provides an overview of the classification and newly described taxa of predatory bacteria since 2016, particularly with regard to phylogenetic aspects. Among them, it is noteworthy that in 2020 there was a major phylogenetic reorganization that the taxa hosting Bdellovibrio and Myxococcus, formerly classified as Deltaproteobacteria, were proposed as the new phyla Bdellovibrionota and Myxococcota, respectively. Predatory bacteria have been reported from other phyla, especially from the candidate divisions. Predatory bacteria that prey on cyanobacteria and predatory cyanobacteria that prey on Chlorella have also been found. These are also covered in this mini-review, and trans-phylum phylogenetic trees are presented.
Collapse
Affiliation(s)
- Saki Kamada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ryoka Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| |
Collapse
|
2
|
Zhong YW, Zhou P, Cheng H, Zhou YD, Pan J, Xu L, Li M, Tao CH, Wu YH, Xu XW. Metagenomic Features Characterized with Microbial Iron Oxidoreduction and Mineral Interaction in Southwest Indian Ridge. Microbiol Spectr 2022; 10:e0061422. [PMID: 36286994 PMCID: PMC9769843 DOI: 10.1128/spectrum.00614-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
The Southwest Indian Ridge (SWIR) is one of the typical representatives of deep-sea ultraslow-spreading ridges, and has increasingly become a hot spot of studying subsurface geological activities and deep-sea mining management. However, the understanding of microbial activities is still limited on active hydrothermal vent chimneys in SWIR. In this study, samples from an active black smoker and a diffuse vent located in the Longqi hydrothermal region were collected for deep metagenomic sequencing, which yielded approximately 290 GB clean data and 295 mid-to-high-quality metagenome-assembled genomes (MAGs). Sulfur oxidation conducted by a variety of Gammaproteobacteria, Alphaproteobacteria, and Campylobacterota was presumed to be the major energy source for chemosynthesis in Longqi hydrothermal vents. Diverse iron-related microorganisms were recovered, including iron-oxidizing Zetaproteobacteria, iron-reducing Deferrisoma, and magnetotactic bacterium. Twenty-two bacterial MAGs from 12 uncultured phyla harbored iron oxidase Cyc2 homologs and enzymes for organic carbon degradation, indicated novel chemolithoheterotrophic iron-oxidizing bacteria that affected iron biogeochemistry in hydrothermal vents. Meanwhile, potential interactions between microbial communities and chimney minerals were emphasized as enriched metabolic potential of siderophore transportation, and extracellular electron transfer functioned by multi-heme proteins was discovered. Composition of chimney minerals probably affected microbial iron metabolic potential, as pyrrhotite might provide more available iron for microbial communities. Collectively, this study provides novel insights into microbial activities and potential mineral-microorganism interactions in hydrothermal vents. IMPORTANCE Microbial activities and interactions with minerals and venting fluid in active hydrothermal vents remain unclear in the ultraslow-spreading SWIR (Southwest Indian Ridge). Understanding about how minerals influence microbial metabolism is currently limited given the obstacles in cultivating microorganisms with sulfur or iron oxidoreduction functions. Here, comprehensive descriptions on microbial composition and metabolic profile on 2 hydrothermal vents in SWIR were obtained based on cultivation-free metagenome sequencing. In particular, autotrophic sulfur oxidation supported by minerals was presumed, emphasizing the role of chimney minerals in supporting chemosynthesis. Presence of novel heterotrophic iron-oxidizing bacteria was also indicated, suggesting overlooked biogeochemical pathways directed by microorganisms that connected sulfide mineral dissolution and organic carbon degradation in hydrothermal vents. Our findings offer novel insights into microbial function and biotic interactions on minerals in ultraslow-spreading ridges.
Collapse
Affiliation(s)
- Ying-Wen Zhong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Hong Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Ya-Dong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Chun-Hui Tao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Submarine Geosciences, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yue-Hong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| |
Collapse
|
3
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
4
|
Prondzinsky P, Berkemer SJ, Ward LM, McGlynn SE. The Thermosynechococcus Genus: Wide Environmental Distribution, but a Highly Conserved Genomic Core. Microbes Environ 2021; 36. [PMID: 33952861 PMCID: PMC8209445 DOI: 10.1264/jsme2.me20138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyanobacteria thrive in diverse environments. However, questions remain about possible growth limitations in ancient environmental conditions. As a single genus, the Thermosynechococcus are cosmopolitan and live in chemically diverse habitats. To understand the genetic basis for this, we compared the protein coding component of Thermosynechococcus genomes. Supplementing the known genetic diversity of Thermosynechococcus, we report draft metagenome-assembled genomes of two Thermosynechococcus recovered from ferrous carbonate hot springs in Japan. We find that as a genus, Thermosynechococcus is genomically conserved, having a small pan-genome with few accessory genes per individual strain as well as few genes that are unique to the genus. Furthermore, by comparing orthologous protein groups, including an analysis of genes encoding proteins with an iron related function (uptake, storage or utilization), no clear differences in genetic content, or adaptive mechanisms could be detected between genus members, despite the range of environments they inhabit. Overall, our results highlight a seemingly innate ability for Thermosynechococcus to inhabit diverse habitats without having undergone substantial genomic adaptation to accommodate this. The finding of Thermosynechococcus in both hot and high iron environments without adaptation recognizable from the perspective of the proteome has implications for understanding the basis of thermophily within this clade, and also for understanding the possible genetic basis for high iron tolerance in cyanobacteria on early Earth. The conserved core genome may be indicative of an allopatric lifestyle-or reduced genetic complexity of hot spring habitats relative to other environments.
Collapse
Affiliation(s)
- Paula Prondzinsky
- Department of Chemical Science and Engineering, Tokyo Institute of Technology.,Earth-Life Science Institute, Tokyo Institute of Technology
| | - Sarah J Berkemer
- Bioinformatics Group, Department of Computer Science, University Leipzig.,Competence Center for Scalable Data Services and Solutions
| | - Lewis M Ward
- Earth-Life Science Institute, Tokyo Institute of Technology.,Department of Earth and Planetary Sciences, Harvard University
| | | |
Collapse
|