1
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Goswami B, Sarkar S, Sengupta S, Bhattacharjee B. Assessment of serum nitric oxide level and its correlation with anthropometric parameters and lipid profile in diabetic patients: A hospital-based study from Tripura. J Family Med Prim Care 2022; 11:5161-5165. [PMID: 36505578 PMCID: PMC9731029 DOI: 10.4103/jfmpc.jfmpc_2395_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background Endothelial dysfunction is a well-known finding in hyper-cholesterolaemic patients. Multiple factors including increased inactivation of nitric oxide by radicals and inhibition of nitric oxide formation by different mechanisms contribute to this. Objectives (i) To estimate serum nitric oxide (NO) levels among diabetic and non-diabetic subjects attending a tertiary care hospital of Tripura and (ii) to determine the correlation of serum nitric oxide with different anthropometric parameters and lipid profile among the study subjects. Methods This cross-sectional study was conducted during June 2019 to May 2020 among 227 subjects. Anthropometric measurements like weight, body mass index (BMI), body fat percentage, visceral fat percentage were measured by using OMRON Body Composition Monitor (HBF 701). Serum NO levels were measured using standard NO colorimetric assay kit and HbA1C and lipid profile were analyzed by using a Biochemical Autoanalyser. Statistical analysis was performed by using SPSS software version 25. Result One hundred fifteen (115) diabetics were considered as test group whereas One hundred twelve (112) non-diabetic subjects were included as control. The mean serum level of NO in the diabetic group was 86.91 ± 14.13 mmoles/L whereas in the non-diabetic group it was 33.23 ± 12.90 mmoles/L which is statistically significant. Significant correlation is also found between serum NO level and different anthropometric parameters, namely, age, BMI and visceral fat percentage. Conclusion In this study, positive correlation is found between serum NO, BMI, and body visceral fat. As NO is considered as a potential biomarker for diabetic patients developing hypertension, BMI, and body visceral fat may be considered as a good prognostic parameter in future development of diabetic complications. While dealing with diabetic patients the family physicians should be aware of these two parameters and besides treating them, physicians should convince the diabetic patients to maintain ideal BMI and body visceral fat by following proper life style.
Collapse
Affiliation(s)
- Bidhan Goswami
- Department of Microbiology, Agartala Government Medical College, Agartala, Tripura, India,Address for correspondence: Dr. Bidhan Goswami, Department of Microbiology, Agartala Government Medical College, Agartala, P. O. Kunjavan, 799 006, Tripura, India. E-mail:
| | - Swapan Sarkar
- Department of Medicine, Agartala Government Medical College & GBP Hospital, Agartala, Tripura, India
| | - Shauli Sengupta
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura, India
| | - Bhaskar Bhattacharjee
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura, India
| |
Collapse
|
3
|
Salvolini E, Vignini A, Sabbatinelli J, Lucarini G, Pompei V, Sartini D, Cester AM, Ciavattini A, Mazzanti L, Emanuelli M. Nitric oxide synthase and VEGF expression in full-term placentas of obese women. Histochem Cell Biol 2019; 152:415-422. [PMID: 31552486 DOI: 10.1007/s00418-019-01819-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/01/2023]
Abstract
An adequate placental vascularization allows the proper development of the fetus and it is crucial for the gestational success. A number of factors regulate angiogenesis, including vascular endothelial growth factor (VEGF), which induces the synthesis of nitric oxide (NO), a potent vasodilator produced by three different nitric oxide synthase (NOS) isoforms. NO is essential to maintain a low vascular resistance in the fetoplacental circulation, although at high concentrations, it may combine with excess superoxide to produce peroxynitrite, which reacts with proteins giving rise to nitrotyrosine. Since obesity, whose incidence is increasing worldwide, is characterized by a low-grade inflammatory state and increased levels of oxidative and nitrative stress, both affecting placental function, our aim was to evaluate the expression of VEGF, eNOS, and iNOS in full-term placentas obtained from normal weight and pre-pregnancy obese women by means of immunohistochemistry and real-time PCR. Moreover, we assessed the NO levels and the nitrotyrosine immunoexpression in the same sample groups. Our results show a significantly higher immunohistochemical expression of VEGF and eNOS in the endothelium of placentas from obese women than in controls, whereas the immunoexpression of iNOS was comparable in the two groups. These data agree with those of the gene expression analysis, thus suggesting the possible existence of a compensatory mechanism for changes in placental blood flow associated with obesity. As concerns nitrotyrosine and NO levels, we observed a significant increase in placental tissue from obese women which may contribute to the development of metabolic and cardiovascular diseases both in the mother and the offspring.
Collapse
Affiliation(s)
- Eleonora Salvolini
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy.
| | - Arianna Vignini
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Anna Maria Cester
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Laura Mazzanti
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Università Politecnica delle Marche, Via Tronto, 10/A, 60126, Ancona, Italy
| |
Collapse
|
4
|
Foroumandi E, Alizadeh M, Kheirouri S, Asghari Jafarabadi M. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS One 2019; 14:e0213307. [PMID: 30856212 PMCID: PMC6411143 DOI: 10.1371/journal.pone.0213307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
This study aimed to identify any association of serum nitric oxide (NO) and advanced glycation end products (AGEs) with body mass index (BMI) in apparently healthy subjects. In this cross-sectional study, participants were 90 apparently healthy subjects, categorized into three BMI groups as follows: BMI≤19.5 (n = 21), 19.6≤BMI≤24.9 (n = 35), and BMI≥25 (n = 34). Serum levels of NO were measured by griess reaction method. Determination of serum pentosidine and carboxymethyllysine (CML) was done using ELISA. Median (95% confidence interval [CI]: lower- upper) of serum NO in subjects with BMI≥25 were 68.94 (CI: 55.01–70.56) μmol/L, which was higher compared with 19.6≤BMI≤24.9 and BMI≤19.5 groups (22.65 (CI: 19.29–28.17) μmol/L and 8.00 (CI: 9.12–29.58) μmol/L, respectively). Serum NO positively correlated with BMI in total subjects (r = 0.585, p<0.001), which this correlation was significant in both male and female groups (r = 0.735, p<0.001 and r = 0.476, p = 0.001, respectively). Serum pentosidine and CML were significantly lower in subjects with higher BMI. Further, BMI showed negative correlations with pentosidine and CML (r = -0.363, p<0.001 and r = -0.484, p<0.001, respectively). There were not any significant differences in serum NO, pentosidine, and CML levels between sex groups. After adjusting the effects of confounders (BMI, sex, age, and waist to hip ratio), serum NO significantly correlated with serum pentosidine and CML (r = -0.319, p = 0.003 and r = -0.433, p<0.001, respectively). It is concluded that higher BMI is accompanied by increased serum NO and suppressed pentosidine and CML.
Collapse
Affiliation(s)
- Elaheh Foroumandi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- * E-mail:
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Bahadoran Z, Mirmiran P, Jeddi S, Carlström M, Azizi F, Ghasemi A. Circulating markers of nitric oxide homeostasis and cardiometabolic diseases: insights from population-based studies. Free Radic Res 2019; 53:359-376. [PMID: 30821533 DOI: 10.1080/10715762.2019.1587168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging data suggest that impaired nitric oxide (NO) homeostasis has a key role in development of cardiometabolic disorders. The association between circulating levels of NO metabolites, i.e. nitrate and nitrite (NOx), and risk of chronic diseases has not yet been fully clarified. This work aims to address epidemiologic aspects of NO metabolism and discusses different physiologic and pathophysiologic conditions influencing circulating NOx. Further, cross-sectional associations of serum NOx with metabolic disorders are described and along the way, potential short-term and long-term power of serum NOx for predicting cardiometabolic outcomes are reviewed. Results from population-based studies show that circulating NOx is affected by aging, smoking habits, pregnancy, menopause status, thyroid hormones, and various pathologic conditions including type 2 diabetes, insulin resistance, hypertension, and renal dysfunction. Lifestyle factors, especially dietary habits, but also smoking habits and the degree of physical activity influence NO homeostasis and the circulating levels of NOx. Elevated serum NOx, due to increased iNOS activity, is associated with increased incidence of metabolic syndrome, different obesity phenotypes, and cardiovascular events.
Collapse
Affiliation(s)
- Zahra Bahadoran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- b Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sajad Jeddi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mattias Carlström
- d Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Fereidoun Azizi
- e Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
6
|
Dimassi S, Chahed K, Boumiza S, Canault M, Tabka Z, Laurant P, Riva C. Role of eNOS- and NOX-containing microparticles in endothelial dysfunction in patients with obesity. Obesity (Silver Spring) 2016; 24:1305-12. [PMID: 27130266 DOI: 10.1002/oby.21508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the pathophysiological profile of patients who have obesity and to investigate the potential role of circulating microparticles (MPs) in endothelial dysfunction in patients who have obesity. METHODS The inflammatory and oxidative status and the cutaneous microvascular blood flow were characterized in 69 patients with android obesity and 46 subjects with normal weight (controls) by using laser Doppler flowmetry. Circulating MP levels were measured by flow cytometry, and endothelial nitric oxide synthase (eNOS) and NADPH oxidase (NOX) expression in MPs was investigated by Western blotting. MP effect on vascular reactivity was assessed in rat aorta rings. RESULTS Patients with obesity showed endothelial dysfunction, hyperglycemia, inflammation, and oxidative stress. In controls, low MP levels were positively correlated with normal microvascular function. Western blot analysis revealed reduced eNOS and increased NOX4D expression in MPs from subjects with obesity compared with controls. However, this was not correlated with endothelial dysfunction parameters and did not impair ex vivo endothelium-dependent vasodilation. CONCLUSIONS These results suggest that MPs do not contribute directly to endothelial dysfunction associated with obesity. Conversely, eNOS- and NOX-containing MPs could be involved in the compensatory mechanism of vascular endothelial cells to counteract the pathologic mechanisms underlying endothelial dysfunction.
Collapse
Affiliation(s)
- Saloua Dimassi
- Avignon University, LAPEC EA4278, Avignon, France
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Karim Chahed
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Soumaya Boumiza
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Matthias Canault
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France
- Aix Marseille University, Faculté de Médecine, Marseille, France
| | - Zouhair Tabka
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | | | | |
Collapse
|
7
|
Serum nitric oxide metabolites are associated with the risk of hypertriglyceridemic-waist phenotype in women: Tehran Lipid and Glucose Study. Nitric Oxide 2015; 50:52-57. [PMID: 26284308 DOI: 10.1016/j.niox.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM There are some controversial issues regarding the association of nitric oxide and obesity-related states. This study was conducted to investigate whether serum nitric oxide metabolites (NOx) could predict the occurrence of visceral lipid accumulation, defined as hypertriglyceridemic-waist (HTW) phenotype. METHODS We used a prospective approach for this study conducted on participants of the Tehran Lipid and Glucose Study, 2243 adult men and women were followed for a median of 6.3 years. Serum NOx concentrations were measured at baseline (2006-2008), and demographics, anthropometrics and biochemical variables were evaluated at baseline and again after a 3-year (2009-2011) and a 6-year follow-up (2012-2014). The occurrence of HTW phenotype, defined as waist circumference ≥90 cm in men and ≥85 cm in women, along with serum triglyceride levels ≥177 mg/dL, were assessed across serum NOx tertiles. RESULTS Mean age of participants was 41.5 ± 14.5 years at baseline and 39.4% were male. The cumulative incidence of HTW phenotype was 37.6% (33.2% in men, 40.5% in women). There was no significant association between serum NOx and the occurrence of HTW phenotype in men. After adjustment of confounding variables, risk of HTW phenotype in women, in the highest compared to the lowest tertile of serum NOx (≥30.9 vs. <19.9 μmol/L), increased by 39% (OR = 1.39, 95% CI = 1.05-1.93, P for trend = 0.053). CONCLUSION Serum NOx level was an independent predictor of HTW phenotype in women.
Collapse
|
8
|
Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. Nutr Metab (Lond) 2015; 12:16. [PMID: 25991919 PMCID: PMC4436104 DOI: 10.1186/s12986-015-0013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 12/17/2022] Open
Abstract
Background and aim The ability of inorganic nitrate and nitrite to convert to nitric oxide (NO), and some of its properties e.g. regulation of glucose metabolism, vascular homeostasis, and insulin signaling pathway, have recently raised the hypothesis that inorganic nitrate and nitrite could be potential therapeutic agents in type 2 diabetes. In this review, we reviewed experimental and clinical studies investigating the effect of nitrate/nitrite administration on various aspects of type 2 diabetes. Findings Studies showed that an altered metabolism of nitrate/nitrite and impaired NO pathway occurs in diabetes which could contribute to its complications. Some important beneficial properties, including regulation of glucose homeostasis and insulin signaling pathway, improvement of insulin resistance and vascular function, hypotensive, hypolipidemic as well as anti-inflammatory and anti-oxidative effects have been observed following administration of inorganic nitrate/nitrite. Conclusion It seems that dietary nitrate/nitrite could be a compensatory fuel for a disrupted nitrate/nitrite/NO pathway and related disorders in diabetes. Although some beneficial properties of nitrate/nitrite have been reported by experimental investigations, long-term clinical studies with various doses of inorganic nitrate/nitrite supplementation, are recommended to confirm these effects.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, and Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, 19395-4763 Tehran, Iran
| |
Collapse
|
9
|
Xu H, Xue Z, Han J, Su X, Han S. Centrifugation aided highly sensitive detection of nitrite with a dye–silica conjugate featuring cleavable linkages. Bioorg Med Chem Lett 2014; 24:4861-4. [DOI: 10.1016/j.bmcl.2014.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
10
|
Zhegalova NG, Gonzales G, Berezin MY. Synthesis of nitric oxide probes with fluorescence lifetime sensitivity. Org Biomol Chem 2013; 11:8228-34. [PMID: 24166035 PMCID: PMC3872128 DOI: 10.1039/c3ob41498a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the rationale, synthesis and evaluation of the first activatable fluorescent probe that utilizes fluorescence lifetime change for detection of nitric oxide. The new probe DAP-LT1 features a near-infrared polymethine skeleton with a diaminobenzene functionality incorporated into the meso-position. The probe is partially quenched, and upon reaction with nitric oxide shows an increase in the fluorescence lifetime from 1.08 ns to 1.24 ns.
Collapse
Affiliation(s)
- Natalia G Zhegalova
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
11
|
Zheng MY, Yang JH, Shan CY, Zhou HT, Xu YG, Wang Y, Ren HZ, Chang BC, Chen LM. Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: a preliminary report. Cardiovasc Diabetol 2013; 12:73. [PMID: 23642288 PMCID: PMC3653752 DOI: 10.1186/1475-2840-12-73] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/01/2013] [Indexed: 12/25/2022] Open
Abstract
Background Treatment with the alpha-glucosidase inhibitor (AGI) acarbose is associated with a significant reduction the risk of cardiovascular events. However, the underlying mechanisms of this effect are unclear. AGIs were recently suggested to participate in stimulating glucagon-like peptide 1 (GLP-1) secretion. We therefore examined the effects of a 24-week treatment of acarbose on endogenous GLP-1, nitric oxide (NO) levels, nitric oxide synthase (NOS) activity, and carotid intima-media thickness (CIMT) in newly diagnosed patients with type 2 diabetes (T2D). Methods Blood was drawn from 24 subjects (14 male, 10 female, age: 50.7 ± 7.36 years, BMI: 26.64 ± 3.38 kg/m2, GHbA1c: 7.00 ± 0.74%) with drug-naïve T2D at 0 and 120 min following a standard mixed meal for the measurements of active GLP-1, NO and NOS. The CIMT was measured prior to and following 24 weeks of acarbose monotherapy (mean dose: 268 mg daily). Results Following 24 weeks of acarbose treatment, both fasting and postprandial plasma GLP-1 levels were increased. In patients with increased postprandial GLP-1 levels, serum NO levels and NOS activities were also significantly increased and were positively related to GLP-1 levels. Although the CIMT was not significantly altered following treatment with acarbose, a decreased CIMT was negatively correlated with increased GLP-1 levels. Conclusions Twenty-four weeks of acarbose monotherapy in newly diagnosed patients with T2D is associated with significantly increased levels of both fasting and postprandial GLP-1 as well as significantly increased NO levels and NOS activity for those patients in whom postprandial GLP-1 levels were increased. Therefore, the benefits of acarbose on cardiovascular risk may be related to its stimulation of GLP-1 secretion.
Collapse
Affiliation(s)
- Miao-yan Zheng
- Key Laboratory of Hormone and Development, Ministry of Health, Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit 2012; 17:RA221-6. [PMID: 21959625 PMCID: PMC3539480 DOI: 10.12659/msm.881972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our mini-review focuses on dual regulation of cellular nitric oxide (NO) signaling pathways by traditionally characterized enzymatic formation from L-arginine via the actions of NO synthases (NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic and mitochondrial nitrite reductases. Nitrite is a major metabolic product of NO and is found in all cell and tissue types that utilize NO signaling processes. Xanthine oxidoreductase (XOR) has been previously characterized as a housekeeping enzyme responsible for cellular uric acid formation via enzymatic conversion of hypoxanthine and xanthine. It has become apparent that XOR possesses multi-functional enzymatic activities outside the realm of xanthine metabolism and a small but significant literature also established a compelling functional association between administered sodium nitrite, XOR activation, and pharmacologically characterized NO transductive effects in positive cardiovascular function enhanced pulmonary perfusion, and protection against ischemia/reperfusion injury and hypoxic damage and oxidative stress. Similar positive vascular and cellular effects were observed to be functionally associated with mitochondrial aldehyde dehydrogenase and cytochrome c/cytochrome c oxidase. The profound implications of a reciprocal regulatory mechanism responsible for cytosolic and mitochondrial NO production are discussed below.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
13
|
Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L. Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:349286. [PMID: 22144986 PMCID: PMC3226353 DOI: 10.1155/2011/349286] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the "endothelial L-arginine/nitric oxide signalling pathway." Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an "altered metabolic state" leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|